# SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Case

#### 2.1. The Pont del Petroli Pier

#### 2.2. Storm Gloria: Description and Damage to the Pont del Petroli

## 3. Numerical Model

#### 3.1. The DualSPHysics Code

#### 3.2. Validation

#### 3.3. Model Set-Up

## 4. Results and Discussion

#### Derived Pile Axial Loads and Soil Bearing Capacity

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Amores, A.; Marcos, M.; Carrió, D.S.; Gómez-Pujol, L. Coastal impacts of storm Gloria (January 2020) over the north-western Mediterranean. Nat. Hazards Earth Syst. Sci.
**2020**, 20, 1955–1968. [Google Scholar] [CrossRef] - Reed, H.L. Wave interactions in swept-wing flows. Phys. Fluids
**1987**, 30, 3419–3426. [Google Scholar] [CrossRef] - Rainey, R.C.T. A new equation for calculating wave loads on offshore structures. J. Fluid Mech.
**1989**, 204, 295–324. [Google Scholar] [CrossRef] - Ferrant, P. Runup On a Cylinder Due to Waves and Current: Potential Flow Solution With Fully Nonlinear Boundary Conditions. Int. Soc. Offshore Polar Eng.
**2001**, 11, 33–41. [Google Scholar] - Chalikov, D.; Sheinin, D. Modeling extreme waves based on equations of potential flow with a free surface. J. Comput. Phys.
**2005**, 210, 247–273. [Google Scholar] [CrossRef] - Garriga, O.S.; Falzarano, J.M. Water Wave Interaction on a Truncated Vertical Cylinder. J. Offshore Mech. Arct. Eng.
**2008**, 130, 031002. [Google Scholar] [CrossRef] - Casadei, F.; Halleux, J.; Sala, A.; Chillè, F. Transient fluid—Structure interaction algorithms for large industrial applications. Comput. Methods Appl. Mech. Eng.
**2001**, 190, 3081–3110. [Google Scholar] [CrossRef] - Wang, Q.; Goosen, J.; van Keulen, F. An efficient fluid—Structure interaction model for optimizing twistable flapping wings. J. Fluids Struct.
**2017**, 73, 82–99. [Google Scholar] [CrossRef] - Martínez-Ferrer, P.J.; Qian, L.; Ma, Z.; Causon, D.M.; Mingham, C.G. An efficient finite-volume method to study the interaction of two-phase fluid flows with elastic structures. J. Fluids Struct.
**2018**, 83, 54–71. [Google Scholar] [CrossRef][Green Version] - Zhan, L.; Peng, C.; Zhang, B.; Wu, W. A stabilized TL—WC SPH approach with GPU acceleration for three-dimensional fluid—Structure interaction. J. Fluids Struct.
**2019**, 86, 329–353. [Google Scholar] [CrossRef] - Liang, H.; Ouled Housseine, C.; Chen, X.; Shao, Y. Efficient methods free of irregular frequencies in wave and solid/porous structure interactions. J. Fluids Struct.
**2020**, 98, 103130. [Google Scholar] [CrossRef] - Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc.
**1977**, 181, 375–389. [Google Scholar] [CrossRef] - Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astr.
**1992**, 30, 543–574. [Google Scholar] [CrossRef] - Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003. [Google Scholar]
- Violeau, D.; Rogers, B.D. Smoothed particle hydrodynamics (SPH) for free-surface flows: Past, present and future. J. Hydraul. Res.
**2016**, 54, 1–26. [Google Scholar] [CrossRef] - Gotoh, H.; Khayyer, A. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy
**2016**, 2, 251–278. [Google Scholar] [CrossRef][Green Version] - Violeau, D. Fluid Mechanics and the SPH Method: Theory and Applications; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Tafuni, A.; Sahin, I. Non-linear hydrodynamics of thin laminae undergoing large harmonic oscillations in a viscous fluid. J. Fluids Struct.
**2015**, 52, 101–117. [Google Scholar] [CrossRef] - Shi, Y.; Li, S.; Chen, H.; He, M.; Shao, S. Improved SPH simulation of spilled oil contained by flexible floating boom under wave—Current coupling condition. J. Fluids Struct.
**2018**, 76, 272–300. [Google Scholar] [CrossRef] - Pan, K.; IJzermans, R.H.A.; Jones, B.D.; Thyagarajan, A.; van Beest, B.W.H.; Williams, J.R. Application of the SPH method to solitary wave impact on an offshore platform. Comp. Part. Mech.
**2016**, 3, 155–166. [Google Scholar] [CrossRef][Green Version] - Yang, Y.; Li, J. SPH-FE-Based Numerical Simulation on Dynamic Characteristics of Structure under Water Waves. J. Mar. Sci. Eng.
**2020**, 8, 630. [Google Scholar] [CrossRef] - Domínguez, J.M.; Crespo, A.J.; Hall, M.; Altomare, C.; Wu, M.; Stratigaki, V.; Troch, P.; Cappietti, L.; Gómez-Gesteira, M. SPH simulation of floating structures with moorings. Coast. Eng.
**2019**, 153, 103560. [Google Scholar] [CrossRef] - Gong, K.; Shao, S.; Liu, H.; Wang, B.; Tan, S.K. Two-phase SPH simulation of fluid—Structure interactions. J. Fluids Struct.
**2016**, 65, 155–179. [Google Scholar] [CrossRef][Green Version] - Peng, C.; Xu, G.; Wu, W.; sui Yu, H.; Wang, C. Multiphase SPH modeling of free surface flow in porous media with variable porosity. Comput. Geotech.
**2017**, 81, 239–248. [Google Scholar] [CrossRef] - Mokos, A.; Rogers, B.D.; Stansby, P.K. A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. J. Hydraul. Res.
**2017**, 55, 143–162. [Google Scholar] [CrossRef][Green Version] - Crespo, A.; Domínguez, J.; Rogers, B.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O. DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Commun.
**2015**, 187, 204–216. [Google Scholar] [CrossRef] - Altomare, C.; Tagliafierro, B.; Suzuki, T.; Domínguez, J.M.; Crespo, A.J.C.; Briganti, R. Relaxation zone method in SPH-based model applied to wave-structure interaction. In Proceedings of the International Ocean and Polar Engineering Conference, Sapporo, Japan, 10–15 June 2018; pp. 204–216. [Google Scholar]
- Altomare, C.; Viccione, G.; Tagliafierro, B.; Bovolin, V.; Domínguez, J.M.; Crespo, A.J.C. Computational Fluid Dynamics—Basic Instruments and Applications in Science; Chapter Free-Surface Flow Simulations with Smoothed Particle Hydrodynamics Method Using High-Performance Computing; IntechOpen: London, UK, 2017; pp. 73–100. [Google Scholar]
- Verbrugghe, T.; Domínguez, J.; Altomare, C.; Tafuni, A.; Vacondio, R.; Troch, P.; Kortenhaus, A. Non-linear wave generation and absorption using open boundaries within DualSPHysics. Comput. Phys. Commun.
**2019**, 240, 46–59. [Google Scholar] [CrossRef] - Gómez Lahoz, M.; Carretero Albiach, J.C. Wave forecasting at the Spanish coasts. J. Atmos. Ocean Sci.
**2005**, 10, 389–405. [Google Scholar] [CrossRef] - Booij, N.; Holthuijsen, L.; Ris, R. The “Swan” Wave Model for Shallow Water. In Proceedings of the 25th International Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996; pp. 668–676. [Google Scholar]
- Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math.
**1995**, 4, 389–396. [Google Scholar] [CrossRef] - Rota Roselli, R.A.; Vernengo, G.; Altomare, C.; Brizzolara, S.; Bonfiglio, L.; Guercio, R. Ensuring numerical stability of wave propagation by tuning model parameters using genetic algorithms and response surface methods. Environ. Model. Softw.
**2018**, 103, 62–73. [Google Scholar] [CrossRef] - Altomare, C.; Domínguez, J.; Crespo, A.; González-Cao, J.; Suzuki, T.; Gómez-Gesteira, M.; Troch, P. Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coast. Eng.
**2017**, 127, 37–54. [Google Scholar] [CrossRef] - Fourtakas, G.; Dominguez, J.M.; Vacondio, R.; Rogers, B.D. Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Comput. Fluids
**2019**, 190, 346–361. [Google Scholar] [CrossRef] - Leimkuhler, B.; Matthews, C. Molecular Dynamics; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Monaghan, J.J.; Cas, R.; Kos, A.; Hallworth, M. Gravity currents descending a ramp in a stratified tank. J. Fluid Mech.
**1999**, 379, 39–70. [Google Scholar] [CrossRef] - Crespo, A.J.C.; Gomez-Gesteira, M.; Dalrymple, R.A. Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Contin.
**2007**, 5, 173–184. [Google Scholar] - Altomare, C.; Crespo, A.; Domínguez, J.M.; Gómez-Gesteira, M.; Suzuki, T.; Verwaest, T. Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coast. Eng.
**2015**, 96, 1–12. [Google Scholar] [CrossRef] - Tafuni, A.; Sahin, I. Hydrodynamic Loads on Vibrating Cantilevers Under a Free Surface in Viscous Fluids With SPH. In ASME International Mechanical Engineering Congress and Exposition; Volume 7B: Fluids Engineering Systems and Technologies; American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar]
- Mogan, S.C.; Chen, D.; Hartwig, J.; Sahin, I.; Tafuni, A. Hydrodynamic analysis and optimization of the Titan submarine via the SPH and Finite—Volume methods. Comput. Fluids
**2018**, 174, 271–282. [Google Scholar] [CrossRef] - Tafuni, A.; Domínguez, J.M.; Vacondio, R.; Crespo, A.J.C. A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models. Comput. Methods Appl. Mech. Eng.
**2018**, 342, 604–624. [Google Scholar] [CrossRef] - Ferrand, M.; Laurence, D.R.; Rogers, B.D.; Violeau, D.; Kassiotis, C. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int. J. Numer. Methods Fluids
**2013**, 71, 446–472. [Google Scholar] [CrossRef][Green Version] - Rogers, B.D.; Dalrymple, R.A.; Stansby, P.K. Simulation of caisson breakwater movement using 2-D SPH. J. Hydraul. Res.
**2010**, 48, 135–141. [Google Scholar] [CrossRef] - Antuono, M.; Colagrossi, A.; Marrone, S.; Lugni, C. Propagation of gravity waves through an SPH scheme with numerical diffusive terms. Comput. Phys. Commun.
**2011**, 182, 866–877. [Google Scholar] [CrossRef] - Verbrugghe, T.; Domínguez, J.M.; Altomare, C.; Tafuni, A.; Troch, P.; Kortenhaus, A. Application of open boundaries within a two-way coupled SPH model to simulate non-linear wave-structure interactions. Coast. Eng. Proc.
**2018**, 1, 14. [Google Scholar] [CrossRef][Green Version] - Altomare, C.; Domínguez, J.M.; Crespo, A.J.C.; Suzuki, T.; Caceres, I.; Gómez-Gesteira, M. Hybridization of the Wave Propagation Model SWASH and the Meshfree Particle Method SPH for Real Coastal Applications. Coast. Eng. J.
**2015**, 57, 1550024-1–1550024-34. [Google Scholar] [CrossRef] - Lowe, R.; Buckley, M.; Altomare, C.; Rijnsdorp, D.; Yao, Y.; Suzuki, T.; Bricker, J. Numerical simulations of surf zone wave dynamics using Smoothed Particle Hydrodynamics. Ocean Model.
**2019**, 144, 101481. [Google Scholar] [CrossRef][Green Version] - Gomez-Gesteira, M.; Rogers, B.; Crespo, A.; Dalrymple, R.; Narayanaswamy, M.; Dominguez, J. SPHysics—Development of a free-surface fluid solver—Part 1: Theory and formulations. Comput. Geosci.
**2012**, 48, 289–299. [Google Scholar] [CrossRef] - Gomez-Gesteira, M.; Crespo, A.; Rogers, B.; Dalrymple, R.; Dominguez, J.; Barreiro, A. SPHysics—Development of a free-surface fluid solver—Part 2: Efficiency and test cases. Comput. Geosci.
**2012**, 48, 300–307. [Google Scholar] [CrossRef] - Domínguez, J.M.; Altomare, C.; Gonzalez-Cao, J.; Lomonaco, P. Towards a more complete tool for coastal engineering: Solitary wave generation, propagation and breaking in an SPH-based model. Coast. Eng. J.
**2019**, 61, 15–40. [Google Scholar] [CrossRef] - González-Cao, J.; Altomare, C.; Crespo, A.; Domínguez, J.; Gómez-Gesteira, M.; Kisacik, D. On the accuracy of DualSPHysics to assess violent collisions with coastal structures. Comput. Fluids
**2019**, 179, 604–612. [Google Scholar] [CrossRef] - St-Germain, P.; Nistor, I.; Townsend, R.; Shibayama, T. Smoothed-Particle Hydrodynamics Numerical Modeling of Structures Impacted by Tsunami Bores. J. Waterw. Port Coast. Ocean Eng.
**2014**, 140, 66–81. [Google Scholar] [CrossRef] - Cunningham, L.S.; Rogers, B.D.; Pringgana, G. Tsunami wave and structure interaction: An investigation with Smoothed-particle hydrodynamics. Proc. Inst. Civ. Eng.—Eng. Comput. Mech.
**2014**, 167, 126–138. [Google Scholar] [CrossRef][Green Version] - Pringgana, G.; Cunningham, L.S.; Rogers, B.D. Modelling of tsunami-induced bore and structure interaction. Proc. Inst. Civ. Eng.—Eng. Comput. Mech.
**2016**, 169, 109–125. [Google Scholar] [CrossRef][Green Version] - Altomare, C.; Crespo, A.; Rogers, B.; Dominguez, J.; Gironella, X.; Gómez-Gesteira, M. Numerical modelling of armour block sea breakwater with Smoothed particle hydrodynamics. Comput. Struct.
**2014**, 130, 34–45. [Google Scholar] [CrossRef] - Zhang, F.; Crespo, A.; Altomare, C.; Domínguez, J.; Marzeddu, A.; ping Shang, S.; Gómez-Gesteira, M. A numerical tool to simulate real breakwaters. J. Hydrodyn.
**2018**, 30, 95–105. [Google Scholar] [CrossRef] - Subramaniam, S.; Scheres, B.; Schilling, M.; Liebisch, S.; Kerpen, N.; Schlurmann, T.; Altomare, C.; Schüttrumpf, H. Influence of Convex and Concave Curvatures in a Coastal Dike Line on Wave Run-up. Water
**2019**, 11, 1333. [Google Scholar] [CrossRef][Green Version] - Meyerhof, G.G. Closure of “Compaction of Sands and Bearing Capacity of Piles”. J. S. Mech. Fdtn. Div. ASCE
**1959**, 85, 1–29. [Google Scholar] - Broms, B. Lateral Resistance of Piles in Cohesionless Soils. J. Soil Mech. Found. Div.
**1964**, 90, 123–156. [Google Scholar] - Goda, Y.; Haranaka, S.; Kitahata, M. Study of impulsive breaking wave forces on piles. Rep. Port Harb. Res. Inst. Jpn.
**1966**, 5, 1–30. [Google Scholar] - Goda, Y. Wave Forces on a Vertical Circular Cylinder: Experiments and a Proposed Method of Wave Force Computation. Rep. Port Harb. Res. Inst. Jpn.
**1964**, 8, 1–74. [Google Scholar] - Departmet of the Army, US Army Corps of Engineers. Shore Protection Manual; CERC: Washington, DC, USA, 1984; Volume 1. [Google Scholar]
- Tanimoto, K.; Takahashi, S.; Kaneko, T.; Shiota, K. Impulsive breaking wave forces on an inclined pile exerted by random waves. In Proceedings of the 20th International Conference on Coastal Engineering, Taipei, Taiwan, 9–14 November 1986; pp. 2288–2302. [Google Scholar]
- Cuomo, G.; Tirindelli, M.; Allsop, W. Wave-in-deck loads on exposed jetties. Coast. Eng.
**2007**, 54, 657–679. [Google Scholar] [CrossRef] - Liu, Q.; Sun, T.; Wang, D.; Wei, Z. Wave uplift force on horizontal panels: A laboratory study. J. Oceanol. Limnol.
**2019**, 37, 1899–1911. [Google Scholar] [CrossRef]

**Figure 1.**1980s (

**left**) and 2017 (

**right**) aerial photos of the Pont del Petroli. Originally constructed for industrial purposes, the pier is now open to the public. (Sources: Concepció Riba).

**Figure 2.**Geometrical details and top view of the platform, beam and pile cap forming the Pont del Petroli pier. The sketches are extracted from the first design report and provided by the Maritime Engineering Laboratory of Universitat Politècnica de Catalunya-BarcelonaTech (LIM/UPC) for the present manuscript. The sketches belong to the original project deposited in the 1965 archive "Colegio de Ingenieros de Caminos, Canales y Puertos de Madrid", PN 9280/65, under José Entrecanales Ibarra.

**Figure 3.**Beach profiles at Pont del Petroli. The original beach profile from the design report is indicated by a blue line. In red, the two profiles surveyed by LIM/UPC before and after storm Gloria.

**Figure 4.**View of the Catalan coast between Barcelona and Capo Begur. (Map Data: Google Earth, SIO, NOAA, U.S. Navy, NGA, GEBCO).

**Figure 5.**A large wave hitting the platform of the Pont del Petroli during storm Gloria. (Source: Badalona City Council).

**Figure 6.**Sketch of the experimental layout. The 2-D numerical model mimics this layout to a great extent. Conversely, the 3-D model has an open boundary for wave generation at the inlet, i.e., at $x=50$ m.

**Figure 7.**Snapshots of the SPH horizontal velocity contours for the test case A1. (

**a**) Time: 10.350 s; (

**b**) Time: 10.800 s; (

**c**) Time: 10.975 s; (

**d**) Time: 11.100 s.

**Figure 8.**Snapshots of the SPH horizontal velocity contours for the test case B1. (

**a**) Time: 10.350 s; (

**b**) Time: 10.600 s; (

**c**) Time: 10.850 s; (

**d**) Time: 11.100 s.

**Figure 9.**Time history of the normalized (

**a**) horizontal and (

**b**) vertical forces on the pier platform for different tested wave conditions.

**Figure 10.**Time history of the normalized forces on the beam and pile cap for different tested wave conditions: (

**a**) horizontal force on the pier beam, (

**b**) vertical force on the pier beam, (

**c**) horizontal force on the pile cap and (

**d**) vertical force on the pile cap.

Element | Main Exposed Area (Volume) | Self-Weight | Distributed Vertical Load (Self-Weight + Accidental Load) | Final Design Vertical Load |
---|---|---|---|---|

Platform | 9.75 m × 6.75 m | 32.90 tons | 2.00 tons/m${}^{2}$ | 131.62 tons |

$\pi $-shaped beam | 15.00 m × 3.20 m | 29.25 tons | 3.60 tons/m${}^{2}$ | 54.00 tons |

Pile cap (2 piles) | 4.40 m × 0.8 (×1.2) m | 9.12 tons | 12.30 tons/m${}^{2}$ | 54.12 tons |

Pile cap (4 piles) | 4.40 m × 0.8 (×2.0) m | 15.20 tons | 15.80 tons/m${}^{2}$ | 60.20 tons |

Test Case | Wave Conditions at Generation in 2-D (in Prototype Scale) | Scaling Factor for $\mathit{u}\left(\mathit{t}\right)$ from Equation (6) |
---|---|---|

A1 | $H=6.5$ m, $T=12.0$ s | 1.00 |

A2 | 1.05 | |

A3 | 1.10 | |

B1 | $H=8.2$ m, $T=12.7$ s | 1.00 |

B2 | 0.95 | |

B3 | 1.05 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Altomare, C.; Tafuni, A.; Domínguez, J.M.; Crespo, A.J.C.; Gironella, X.; Sospedra, J.
SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure. *J. Mar. Sci. Eng.* **2020**, *8*, 826.
https://doi.org/10.3390/jmse8100826

**AMA Style**

Altomare C, Tafuni A, Domínguez JM, Crespo AJC, Gironella X, Sospedra J.
SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure. *Journal of Marine Science and Engineering*. 2020; 8(10):826.
https://doi.org/10.3390/jmse8100826

**Chicago/Turabian Style**

Altomare, Corrado, Angelantonio Tafuni, José M. Domínguez, Alejandro J. C. Crespo, Xavi Gironella, and Joaquim Sospedra.
2020. "SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure" *Journal of Marine Science and Engineering* 8, no. 10: 826.
https://doi.org/10.3390/jmse8100826