Mesoscale Morphological Changes of Nearshore Sand Banks since the Early 19th Century, and Their Influence on Coastal Dynamics, Northern France
Abstract
:1. Introduction
2. Regional Setting
2.1. Morphological and Sedimentological Characteristics
2.2. Tide
2.3. Waves
3. Methodology
4. Results
4.1. Regional Evolution
- The Calais nearshore area, where the Riden de la Rade is characterized by a net seabed accretion, which is associated with an erosion of the channel located between the bank and the beach.
- The offshore area between Calais and Gravelines, where the Dyck bank experienced a lowering of its seaward side, whereas the landward side of the bank recorded a vertical accretion of 20 m during this period, due to a shift in position.
- The coastal zone around Dunkirk shows spatially variable morphological evolutions. Locally, a vertical accretion of more than 20 m was measured, accompanied by a lowering of the sea bed of 20 m in other areas.
4.2. Offshore Area: The Dyck Bank
4.3. Dunkirk
4.4. Calais
- From 1861–1911, the period of the oldest bathymetric surveys, the Riden de la Rade was hardly visible (Figure 9a); it started to develop significantly at the end of the 19th century as revealed by cross-shore profiles (Profiles A, B and C) that clearly shows an increase of both width and height throughout this time period.
- During the 1911–1983 period, the Riden de la Rade gradually migrated onshore, with a maximum displacement of up to 800 m. A maximum degree of movement took place in the central part of the Riden de la Rade (Profile B), which resulted in a curved morphology of the sand bank at the end of the 1970s (Figure 9c). In the western part of the Calais harbor, the foreshore was affected by a strong lowering of the seabed (Figure 5). This can be attributed to the shoreward movement of the bank that was responsible for the onshore displacement of the channel between the coast and the bank (Profile B). Based on the position of the lowest low-water spring level, it can be estimated that the channel migration led to a shoreface retreat of 200 m. The easternmost part of the bank experienced a vertical growth, and continued its landward migration (Profile C).
- Between 1983 and 2009, the distal parts of the Riden de la Rade continued to migrate onshore. The westernmost part moved about 400 m shoreward and underwent a reduction of its width (Profile A). The easternmost part of the bank progressively merged to the shore, creating a wide and gently sloping foreshore that gradually widened to about 500 m during the 20th century (Profile C). In contrast, central segments of the Riden de la Rade revealed a 500 m seaward movement (Profile B), resulting in a general linearization of the sand bank from the start of the 1980s.
4.5. Morphometric and Volume Change
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houbolt, J.J.H.C. Recent sediments in the Southern Bight of the North Sea. Geol. Mijnb. 1968, 47, 245–273. [Google Scholar]
- Swift, D.J.P. Tidal sand ridges and shoal-retreat massifs. Mar. Geol. 1975, 18, 105–133. [Google Scholar] [CrossRef]
- de Swart, H.E.; Yuan, B. Dynamics of offshore tidal sand ridges, a review. Environ. Fluid Mech. 2018, 1–25. [Google Scholar] [CrossRef]
- Huthnance, J.M. On one mechanism forming linear sand banks. Estuar. Coast. Shelf Sci. 1982, 14, 79–99. [Google Scholar] [CrossRef]
- Pattiaratchi, C.; Collins, M. Mechanisms for linear sandbank formation and maintenance in relation to dynamical oceanographic observations. Prog. Oceanogr. 1987, 19, 117–176. [Google Scholar] [CrossRef]
- Calvete, D.; Walgreen, M.; de Swart, H.E.; Falqués, A. A model for sand ridges on the shelf: Effect of tidal and steady currents. J. Geophys. Res. Oceans 2001, 106, 9311–9325. [Google Scholar] [CrossRef] [Green Version]
- Schwab, W.C.; Baldwin, W.E.; Denny, J.F.; Hapke, C.J.; Gayes, P.T.; List, J.H.; Warner, J.C. Modification of the Quaternary stratigraphic framework of the inner-continental shelf by Holocene marine transgression: An example offshore of Fire Island, New York. Mar. Geol. 2014, 355, 346–360. [Google Scholar] [CrossRef] [Green Version]
- van der Veen, H.H.; Hulscher, S.M.J.H. Predicting the occurrence of sand banks in the North Sea. Ocean Dyn. 2009, 59, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Dyer, K.R.; Huntley, D.A. The origin, classification and modelling of sand banks and ridges. Cont. Shelf Res. 1999, 19, 1285–1330. [Google Scholar] [CrossRef]
- Deleu, S.; Van Lancker, V.; Van den Eynde, D.; Moerkerke, G. Morphodynamic evolution of the kink of an offshore tidal sandbank: The Westhinder Bank (Southern North Sea). Cont. Shelf Res. 2004, 24, 1587–1610. [Google Scholar] [CrossRef]
- Off, T. Rhythmic Linear Sand Bodies Caused by Tidal Currents. AAPG Bull. 1963, 47, 324–341. [Google Scholar]
- Caston, V.N.D. Linaer sand banks in the Southern North Sea. Sedimentology 1972, 18, 63–78. [Google Scholar] [CrossRef]
- van de Meene, J.W.H.; van Rijn, L.C. The shoreface-connected ridges along the central Dutch coast—Part 1: Field observations. Cont. Shelf Res. 2000, 20, 2295–2323. [Google Scholar] [CrossRef]
- Kenyon, N.H.; Belderson, R.H.; Stride, A.H.; Johnson, M.A. Offshore Tidal Sand-Banks as Indicators of Net Sand Transport and as Potential Deposits. In Holocene Marine Sedimentation in the North Sea Basin; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 257–268. ISBN 978-1-4443-0375-9. [Google Scholar]
- Bastos, A.C.; Paphitis, D.; Collins, M.B. Short-term dynamics and maintenance processes of headland-associated sandbanks: Shambles Bank, English Channel, UK. Estuar. Coast. Shelf Sci. 2004, 59, 33–47. [Google Scholar] [CrossRef]
- Horrillo-Caraballo, J.M.; Reeve, D.E. Morphodynamic behaviour of a nearshore sandbank system: The Great Yarmouth Sandbanks, U.K. Mar. Geol. 2008, 254, 91–106. [Google Scholar] [CrossRef]
- Collins, M.B.; Shimwell, S.J.; Gao, S.; Powell, H.; Hewitson, C.; Taylor, J.A. Water and sediment movement in the vicinity of linear sandbanks: The Norfolk Banks, southern North Sea. Mar. Geol. 1995, 123, 125–142. [Google Scholar] [CrossRef]
- Van Lancker, V.; Bonne, W.; Velegrakis, A.F.; Collins, M.B. Aggregate extraction from tidal sandbanks: Is dredging with nature an option? Introduction. J. Coast. Res. 2010, 51, 53–61. [Google Scholar]
- Velegrakis, A.F.; Ballay, A.; Poulos, S.; Radzevicius, R.; Bellec, V.; Manso, F. European marine aggregates resources: Origins, usage, prospecting and dredging techniques. J. Coast. Res. 2010, 51, 1–15. [Google Scholar]
- Bonne, W.M.I. European Marine Sand and Gravel Resources: Evaluation and Environmental Impacts of Extraction—An Introduction. J. Coast. Res. 2010, i–vi. [Google Scholar] [CrossRef]
- Chaverot, S.; Héquette, A.; Cohen, O. Changes in storminess and shoreline evolution along the northern coast of france during the second half of the 20 century. Z. Geomorphol. Suppl. Issues 2008, 52, 1–20. [Google Scholar] [CrossRef]
- Keijsers, J.G.S.; Poortinga, A.; Riksen, M.J.P.M.; Maroulis, J. Spatio-Temporal Variability in Accretion and Erosion of Coastal Foredunes in the Netherlands: Regional Climate and Local Topography. PLoS ONE 2014, 9, e91115. [Google Scholar] [CrossRef]
- Brooks, S.M.; Spencer, T.; Christie, E.K. Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea. Geomorphology 2017, 283, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Spodar, A.; Héquette, A.; Ruz, M.-H.; Cartier, A.; Grégoire, P.; Sipka, V.; Forain, N. Evolution of a beach nourishment project using dredged sand from navigation channel, Dunkirk, northern France. J. Coast. Conserv. 2018, 22, 457–474. [Google Scholar] [CrossRef]
- de Schipper, M.A.; de Vries, S.; Ruessink, G.; de Zeeuw, R.C.; Rutten, J.; van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 2016, 111, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Trentesaux, A.; Stolk, A.; Berné, S. Sedimentology and stratigraphy of a tidal sand bank in the southern North Sea. Mar. Geol. 1999, 159, 253–272. [Google Scholar] [CrossRef]
- Lanckneus, J. A comparative study of sedimentological parameters of some superficial sediments on the Flemish Banks. In The Quaternary and Tertiary Geology of the Southern Bight, North Sea; Henriet, J.-P., De Moor, G., De Batist, M., Eds.; Belgian Geological Survey: Brussel, Belgium, 1989; pp. 229–241. [Google Scholar]
- Berné, S.; Auffret, J.-P.; Walker, P. Internal structure of subtidal sandwaves revealed by high-resolution seismic reflection. Sedimentology 1988, 35, 5–20. [Google Scholar] [CrossRef]
- Bellec, V.; Van Lancker, V.; Degrendele, K.; Roche, M.; Le Bot, S. Geo-environmental characterization of the Kwinte Bank. J. Coast. Res. 2010, 63–76. [Google Scholar]
- Williams, J.J.; MacDonald, N.J.; O’Connor, B.A.; Pan, S. Offshore sand bank dynamics. J. Mar. Syst. 2000, 24, 153–173. [Google Scholar] [CrossRef]
- Pan, S.; MacDonald, N.; Williams, J.; O’Connor, B.A.; Nicholson, J.; Davies, A.M. Modelling the hydrodynamics of offshore sandbanks. Cont. Shelf Res. 2007, 27, 1264–1286. [Google Scholar] [CrossRef]
- Briere, C.; Roos, P.C.; Garel, E.; Hulscher, S.J.M.H. Modelling the morphodynamics of the Kwinte Bank, subject to sand extraction. J. Coast. Res. 2010, 51, 117–126. [Google Scholar]
- Fairley, I.; Masters, I.; Karunarathna, H. Numerical modelling of storm and surge events on offshore sandbanks. Mar. Geol. 2016, 371, 106–119. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, N.J.; O’Connor, B.A. Changes in wave impact on the Flemish coast due to increased mean sea level. J. Mar. Syst. 1996, 7, 133–144. [Google Scholar] [CrossRef]
- Héquette, A.; Ruz, M.H.; Maspataud, A.; Sipka, V. Effects of nearshore sand bank and associated channel on beach hydrodynamics: Implications for beach and shoreline evolution. J. Coast. Res. 2009, 56, 59–63. [Google Scholar]
- Hequette, A.; Aernouts, D. The influence of nearshore sand bank dynamics on shoreline evolution in a macrotidal coastal environment, Calais, Northern France. Cont. Shelf Res. 2010, 30, 1349–1361. [Google Scholar] [CrossRef]
- Bakare, A.-M.; Simons, R.; Morley, J.; Guillas, S. Morphologic evolution of the Great Yarmouth Sandbank and channel system. Coast. Eng. Proc. 2011, 1, 72. [Google Scholar] [CrossRef]
- Thomas, T.; Phillips, M.R.; Williams, A.T.; Jenkins, R.E. A multi-century record of linked nearshore and coastal change. Earth Surf. Process. Landf. 2011, 36, 995–1006. [Google Scholar] [CrossRef]
- CEREMA. Dynamiques et Évolution du Littoral Synthèse des Connaissances de la Frontière Belge à la Pointe du Hourdel; Fascicule 1; Cerema: Bron, France, 2018; ISBN 978-2-37180-239-1. [Google Scholar]
- Reichmüth, B.; Anthony, E.J. The Variability of Ridge and Runnel Beach Morphology: Examples from Northern France. J. Coast. Res. 2002, 36, 612–621. [Google Scholar] [CrossRef]
- Anthony, E.J. Long-term marine bedload segregation, and sandy versus gravelly Holocene shorelines in the eastern English Channel. Mar. Geol. 2002, 187, 221–234. [Google Scholar] [CrossRef]
- Augris, C.; Clabaut, P.; Vicaire, O. Le domaine marin du Nord-Pas de Calais. Nature, Morphologie et Mobilité des Fonds; IFREMER: Paris, France, 1990. [Google Scholar]
- Vicaire, O. Dynamique hydro-sédimentaire en mer du Nord mériodionale (du Cap Blanc-Nez à la frontière Belge); Université des Sciences et Techniques de Lille 1: Villeneuve-d’Ascq, France, 1991. [Google Scholar]
- Anthony, E.J.; Héquette, A. The grain-size characterisation of coastal sand from the Somme estuary to Belgium: Sediment sorting processes and mixing in a tide-and storm-dominated setting. Sediment. Geol. 2007, 202, 369–382. [Google Scholar] [CrossRef]
- Corbau, C.; Tessier, B.; Chamley, H. Seasonal Evolution of Shoreface and Beach System Morphology in a Macrotidal Environment, Dunkerque Area, Northern France. J. Coast. Res. 1999, 15, 97–110. [Google Scholar]
- Annuaire des Marées 2019, Ports de France Métropole, Tome 1. 2017; ISBN 978-2-11-139478-0.
- Courants de marée Tidal Streams, Pas de Calais Baie de Somme. 2014; ISBN 978-2-11-128369-5.
- Héquette, A.; Hemdane, Y.; Anthony, E.J. Sediment transport under wave and current combined flows on a tide-dominated shoreface, northern coast of France. Mar. Geol. 2008, 249, 226–242. [Google Scholar] [CrossRef]
- Corbau, C. Dynamique Sédimentaire en Domaine Macrotidale: Exemple du Littoral du Nord de la France (Dunkerque); Université des Sciences et Technologiques de Lille 1: Villeneuve-d’Ascq, France, 1995. [Google Scholar]
- Héquette, A.; Moses, C. SIG BAR. Projet INTERREG IIIA “Beaches At Risk”. 2008. Available online: http://www.unicaen.fr/crec/php/rapport.php?ID=2 (accessed on 20 March 2019).
- Ruz, M.H.; Héquette, A.; Maspataud, A. Identifying forcing conditions responsible for foredune erosion on the northern coast of France. J. Coast. Res. 2009, 56, 356–360. [Google Scholar]
- Sedrati, M.; Anthony, E.J. Storm-generated morphological change and longshore sand transport in the intertidal zone of a multi-barred macrotidal beach. Mar. Geol. 2007, 244, 209–229. [Google Scholar] [CrossRef]
- Héquette, A.; Cartier, A. Theoretical and Observed Breaking Wave Height on a Barred Macrotidal Beach: Implications for the Estimation of Breaker Index on Beaches with Large Tidal Range. J. Coast. Res. 2016, 861–866. [Google Scholar] [CrossRef]
- Créach, R.; Bosch, S.; Boutry, L.; Genevier, J.; Claverie, P.; Badez, A. ScanBathy: A New Solution to Digitize Depth Data from Historic Survey Sheets. Available online: https://www.gebco.net/about_us/gebco_symposium/documents/gebco_sd_2016_ts2.pdf (accessed on 20 March 2019).
- Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Bertin, X. Morphodynamique Séculaire, Modélisation et Architecture Interne d’un Système Baie-Embouchure Tidale: Le Pertuis de Maumusson et la Baie de Marennes-Oléron. Ph.D. Thesis, Université La Rochelle, La Rochelle, France, 2005. [Google Scholar]
- Jabbar, M.; Hénaff, A.; Deschamps, A. Dynamiques et évolutions morpho-sédimentaires de l’avant-plage du secteur littoral de Combrit—Île-Tudy entre le XIXe et le XXIe siècle. Géomorphologie Relief Process. Environ. 2015, 21, 45–56. [Google Scholar] [CrossRef]
- Li, D.; Tang, C.; Hou, X.; Zhang, H. Rapid Morphological Changes Caused by Intensive Coastal Development in Longkou Bay, China. J. Coast. Res. 2019. [Google Scholar] [CrossRef]
- Wheaton, J.; Brasington, J.; Darby, S.E.; Sear, D. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 135–156. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Van Veen, J. Onderzoekingen in de Hoofden in verband met de gesteldheid der Nederlandsche kust. Ph.D. Thesis, University Van Leiden, Leiden, The Netherlands, 1936. [Google Scholar]
- Van Cauwenberghe Relative Sea Level Rise: Further Analyses and Conclusions with Respects to the High Mater, the Mean Sea and the Low Water Levels along the Belgian Coast. Report 37 of the Hydrografische Dienst der Kust 1995. Available online: www.vliz.be/imisdocs/publications/255823.pdf (accessed on 20 March 2019).
- Coastal Sand Bars and Related Structures. In Developments in Sedimentology; Allen, J.R.L. (Ed.) Elsevier: Amsterdam, The Netherlands, 1982; Volume 30, Chapter 11; pp. 433–470. ISBN 0070-4571. [Google Scholar]
- Allen, J.R.L. Sand waves: A model of origin and internal structure. Sediment. Geol. 1980, 26, 281–328. [Google Scholar] [CrossRef]
- Le Bot, S.; Trentesaux, A. Types of internal structure and external morphology of submarine dunes under the influence of tide- and wind-driven processes (Dover Strait, northern France). Mar. Geol. 2004, 211, 143–168. [Google Scholar] [CrossRef]
- Yuhi, M.; Matsuyama, M.; Hayakawa, K. Sandbar Migration and Shoreline Change on the Chirihama Coast, Japan. J. Mar. Sci. Eng. 2016, 4, 40. [Google Scholar] [CrossRef]
- Bertier, J. Analyse multi-échelle de la morphodynamique d’une plage artificielle, Avant-port Ouest de Dunkerque (Nord de la France). Ph.D. Thesis, Université du Littoral Côte d’Opale, Dunkerque, France, 2009. [Google Scholar]
- Beck, C.; Clabaut, P.; Dewez, S.; Vicaire, O.; Chamley, H.; Augris, C.; Hoslin, R.; Caillot, A. Sand bodies and sand transport paths at the English Channel-North Sea border: Morphology, hydrodynamics and radioactive tracing. Oceanol. Acta Spec. Issue 1991. Available online: https://archimer.ifremer.fr/doc/00268/37887/35968.pdf (accessed on 20 March 2019).
- Villaret, C.; Davies, A.G. Numerical modelling of littoral sand transport. In Proceedings of the 29th International Conference on Coastal Engineering 2004, Lisbon, Portugal, 19–24 September 2004. [Google Scholar]
- Tessier, B.; Corbau, C.; Chamley, H.; Auffret, J.-P. Internal Structure of Shoreface Banks Revealed by High-Resolution Seismic Reflection in a Macrotidal Environment (Dunkerque Area, Northern France). J. Coast. Res. 1999, 15, 593–606. [Google Scholar]
- Aernouts, D. Le rôle des changements bathymétriques à l’avant-côte sur l’évolution des littoraux meubles du Cap Gris-Nez à Dunkerque, Côte d’Opale, Nord de la France. Ph.D. Thesis, Université Littoral Côte d’Opale, Dunkerque, France, 2005. [Google Scholar]
- Vincent, C.E.; Young, R.A.; Swift, D.J.P. Sediment transport on the Long Island shoreface, North American Atlantic Shelf: Role of waves and currents in shoreface maintenance. Cont. Shelf Res. 1983, 2, 163–181. [Google Scholar] [CrossRef]
- Swift, D.J.P.; Holliday, B.; Avignone, N.; Shideler, G. Anatomy of a shore face ridge system, False Cape, Virginia. Mar. Geol. 1972, 12, 59–84. [Google Scholar] [CrossRef]
- Shaw, J.; Forbes, D.L. Barriers, barrier platforms, and spillover deposits in St. George’s Bay, Newfoundland: Paraglacial sedimentation on the flanks of a deep coastal basin. Mar. Geol. 1992, 105, 119–140. [Google Scholar] [CrossRef]
- Maspataud, A. Impacts des Tempêtes sur la Morphodynamique du Profil Côtier en Milieu Macrotidal. Ph.D. Thesis, Université du Littoral Côte d’Opale, Dunkerque, France, 2011. [Google Scholar]
- Giardino, A.; Van den Eynde, D.; Monbaliu, J. Wave effects on the morphodynamic evolution of an offshore sand bank. J. Coast. Res. 2010, 51, 127–140. [Google Scholar]
- Anthony, E.J.; Vanhee, S.; Ruz, M.-H. Short-term beach–dune sand budgets on the north sea coast of France: Sand supply from shoreface to dunes, and the role of wind and fetch. Geomorphology 2006, 81, 316–329. [Google Scholar] [CrossRef]
- Crapoulet, A.; Héquette, A.; Marin, D.; Levoy, F.; Bretel, P. Variations in the response of the dune coast of northern France to major storms as a function of available beach sediment volume. Earth Surf. Process. Landf. 2017, 42, 1603–1622. [Google Scholar] [CrossRef]
- Houthuys, R.; De Moor, G.; Sommé, J. The Shaping of the French-Belgian North Sea Coast Throughout Recent Geology and History; ASCE: Reston, VA, USA, 1993; pp. 27–40. [Google Scholar]
- Bourillet, J.-F.; Reynaud, J.; Baltzer, A.; Zaragosi, S. The “Fleuve Manche”: The submarine sedimentary features from the outer shelf to the deep-sea fans. J. Quat. Sci. Publ. Quat. Res. Assoc. 2003, 18, 261–282. [Google Scholar]
- Lericolais, G.; Auffret, J.-P.; Bourillet, J.-F. The Quaternary Channel River: Seismic Stratigraphy of Its Palaeo-Valleys and Deeps. J. Quat. Sci. 2003, 18, 245–260. [Google Scholar] [CrossRef]
- Corbau, C.; Clabaut, P.; Tessier, B.; Chamley, H. Modifications morphosédimentaires historiques et récentes du domaine côtier Dunkerquois (France). C. R. Acad. Des. Sci. Paris 1993, 316, 1573–1580. [Google Scholar]
- Wahl, T.; Haigh, I.D.; Woodworth, P.L.; Albrecht, F.; Dillingh, D.; Jensen, J.; Nicholls, R.J.; Weisse, R.; Wöppelmann, G. Observed mean sea level changes around the North Sea coastline from 1800 to present. Earth-Sci. Rev. 2013, 124, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.B. Stability of an Offset Kink in the North Hinder Bank. In Tide-Influenced Sedimentary Environments and Facies; Wiley: Hoboken, NJ, USA, 1988; pp. 65–78. [Google Scholar]
- Lanckneus, J.; De Moor, G.; De Schaepmeester, G.; De Winne, E.; Meyus, I. Monitoring of a tidal sandbank: Evolution of bedforms, volumetric trends, sedimentological changes. In Proceedings of the 8th Biennal International Symposium on Hydrographical Society, Copenhagen, Denmark, 30 November–3 December 1992. [Google Scholar]
- Lanckneus, J.; De Moor, G.; Stolk, A. Environmental setting, morphology and volumetric evolution of the Middelkerke Bank (southern North Sea). Mar. Geol. 1994, 121, 1–21. [Google Scholar] [CrossRef]
- Van Lancker, V.; Du Four, I.; Degraer, S.; Fettweis, M.; Francken, F.; Van den Eynde, D.; Devolder, M.; Luyten, P.; Monbaliu, J.; Toorman, E.; et al. QUantification of Erosion/Sedimentation patterns to Trace the natural versus anthropogenic sediment dynamics QUEST4D. 2009. Available online: www.marinebiology.ugent.be/node/26721 (accessed on 20 March 2019).
Year | Survey Area | Number of Bathymetric Soundings | Transect Distance (m) | Sounding Spacing (m) | Sounding Technique | Ship Positioning | XYerr (m) | Digiterr (m) | MHE (m) | Vertical Propagated Error with a 3% Slope (m) | Zerr (m) | MVE (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1836 | Dunkirk | 3304 | 500 | 250 | LS | RC | 15.0 | 4.0 | 15.5 | 0.9 | 1 | 1.9 |
1861 | Dunkirk-Gravelines-Calais | 7386 | 250 | 150 | LS | RC | 15.0 | 4.0 | 15.5 | 0.9 | 1 | 1.9 |
1879 | Dunkirk-Gravelines-Calais | 51,471 | 250 | 50 | LS | RC | 15.0 | 4.0 | 15.5 | 0.9 | 1 | 1.9 |
1894 | Dunkirk | 29,782 | 150 | 40 | LS | RC | 15.0 | 4.0 | 15.5 | 0.9 | 1 | 1.9 |
1910–1911 | Dunkirk-Gravelines-Calais | 97,598 | 130 | 30 | LS | RC | 15.0 | 4.0 | 15.5 | 0.9 | 1 | 1.9 |
1929 | Calais | 1263 | 130 | 30 | LS | RC | 15.0 | 4.0 | 15.5 | 0.9 | 1 | 1.9 |
1930–1932 | Dunkirk-Gravelines-Calais | 165,648 | 130 | 30 | LS | RC | 15.0 | 4.0 | 15.5 | 0.9 | 1 | 1.9 |
1962 | Dunkirk | 20,194 | 100 | 50 | ES | DC | 10.0 | 4.0 | 10.8 | 0.7 | 0.5 | 1.2 |
1974–1976 | Gravelines-Calais | 161,827 | 100 | 50 | ES | DC | 10.0 | No digit | 10.0 | 0.6 | 0.5 | 1.1 |
1983 | Calais | 6815 | 100 | 50 | ES | TR | 5.0 | No digit | 5.0 | 0.3 | 0.5 | 0.8 |
1994 | Calais | 123,912 | 50 | 50 | ES | TD | 5.0 | No digit | 5.0 | 0.3 | 0.5 | 0.8 |
2000 * | Dunkirk | 64,602 | 50 | 50 | MES | GPS | 3.0 | No digit | 3.0 | 0.2 | 0.3 | 0.5 |
2006 † | Dunkirk | 190,878 | 200 | 5 | MES | GPS | 3.0 | No digit | 3.0 | 0.2 | 0.3 | 0.5 |
2009 ‡ | Calais | 9,936,655 | 5 | 5 | MES | GPS | 3.0 | No digit | 3.0 | 0.2 | 0.3 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latapy, A.; Héquette, A.; Pouvreau, N.; Weber, N.; Robin-Chanteloup, J.-B. Mesoscale Morphological Changes of Nearshore Sand Banks since the Early 19th Century, and Their Influence on Coastal Dynamics, Northern France. J. Mar. Sci. Eng. 2019, 7, 73. https://doi.org/10.3390/jmse7030073
Latapy A, Héquette A, Pouvreau N, Weber N, Robin-Chanteloup J-B. Mesoscale Morphological Changes of Nearshore Sand Banks since the Early 19th Century, and Their Influence on Coastal Dynamics, Northern France. Journal of Marine Science and Engineering. 2019; 7(3):73. https://doi.org/10.3390/jmse7030073
Chicago/Turabian StyleLatapy, Alexa, Arnaud Héquette, Nicolas Pouvreau, Nicolas Weber, and Jean-Baptiste Robin-Chanteloup. 2019. "Mesoscale Morphological Changes of Nearshore Sand Banks since the Early 19th Century, and Their Influence on Coastal Dynamics, Northern France" Journal of Marine Science and Engineering 7, no. 3: 73. https://doi.org/10.3390/jmse7030073
APA StyleLatapy, A., Héquette, A., Pouvreau, N., Weber, N., & Robin-Chanteloup, J.-B. (2019). Mesoscale Morphological Changes of Nearshore Sand Banks since the Early 19th Century, and Their Influence on Coastal Dynamics, Northern France. Journal of Marine Science and Engineering, 7(3), 73. https://doi.org/10.3390/jmse7030073