Synergistic Use of Synthetic Aperture Radar and Optical Imagery to Monitor Surface Accumulation of Cyanobacteria in the Curonian Lagoon
Abstract
:1. Introduction
2. The Curonian Lagoon
3. Materials and Methods
- Sentinel-1 (S1), operating all-weather, day and night and performing C-band synthetic aperture radar imaging, enabling them to acquire imagery regardless of weather condition with a spatial resolution of 10 m.
- Sentinel-2 (S2) with the on-board Multispectral Instrument (MSI) provides high-resolution optical imaging over land and coastal waters. It measures the Earth’s reflected radiance in 13 spectral bands, at visible and mid-infrared wavelengths and at various spatial resolutions (10, 20, 60 m).
- Sentinel-3 (S3) that makes use of multiple sensing instruments, of which data acquired by OLCI (Ocean and Land Colour Instrument) are used in this study. It is a medium-resolution imaging spectrometer with 21 spectral bands with wavelengths ranging from the optical to the near-infrared at approximately 300 m.
3.1. Optical Images (Sentinel-2/MSI and Sentinel-3/OLCI)
3.2. SAR Images
4. Results
4.1. Discussion
4.2. Application Example
- SAR acquisition around 05:00 UTC classified as “No BAD” and optical images classified as “BAD”, this is the case of the 08/24, 09/18, 10/06 and 10/12.WR index seems still working reasonably since bloom typically forms later in the morning as the air temperature increases [41].
- Optical images classified as “BAD” and SAR acquisition around 16:00 classified as “No BAD”.
- -
- for the days 07/24, 08/23, 09/03, 10/15, 10/21 and 10/28 we observe that m/s. Since the threshold wind speeds required for vertical mixing in shallow inland lakes typically goes from 3.1 m/s [44] to 4 m/s [45], it is therefore reasonable to assume that wind can produce shear forces on the water surface able to destabilize cyanobacteria’s buoyancy.
- -
- For the remaining two days (08/16 and 09/09) additional information is missing and it is difficult to understand if the WR index is failing or if bloom actually disappears for some unknown reason.
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
S1 | Sentinel-1 |
S2 | Sentinel-2 |
S3 | Sentinel-3 |
L2 | Level 2 product for Sentinel-1 |
SAR | Synthetic Aperture Radar |
AVHR | Advanced Very High Resolution Radiometer |
ERS-1 | European Remote-Sensing satellite |
MERIS | MEdium Resolution Imaging Spectrometer |
ASAR | Advanced Synthetic Aperture Radar (ASAR) |
L2 | Level 2 product for Sentinel-1 |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSI | Multispectral Instrument |
OLCI | Ocean and Land Colour Instrument |
Chl-a | Chlorophyll- a concentration |
6SV | Second Simulation of the Satellite Signal in the Solar Spectrum-Vector code |
AOT | Aerosol Optical Thickness |
NIR | Near-InfraRed reflectance |
L2OCN | Level-2 (L2) Ocean product (for S1) |
NRCS | Normalised Radar Cross Section |
ECMWF | European Centre for medium-range weather forecasts |
References
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Gregory-Eaves, I.; Leavitt, P.R.; Bunting, L.; Buchaca, T.; Catalan, J.; Domaizon, I.; Guilizzoni, P.; Lami, A.; McGowan, S.; et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 2015, 18, 375–384. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bartram, J.; Chorus, I. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- PaeRL, H.; HussMann, J. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Walsby, A.E. Stratification by cyanobacteria in lakes: A dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytol. 2005, 168, 365–376. [Google Scholar] [CrossRef]
- Tyler, A.N.; Hunter, P.D.; Spyrakos, E.; Groom, S.; Constantinescu, A.M.; Kitchen, J. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ. 2016, 572, 1307–1321. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W. Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sens. Environ. 2014, 155, 161–177. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Lauceri, R.; Matta, E.; Cazzaniga, I.; Pinardi, M.; Lami, A.; Austoni, M.; Viaggiu, E.; Congestri, R.; et al. Earth observation for monitoring and mapping of cyanobacteria blooms. Case studies on five Italian lakes. J. Limnol. 2017, 76. [Google Scholar] [CrossRef] [Green Version]
- Bracher, A.; Vountas, M.; Dinter, T.; Burrows, J.; Röttgers, R.; Peeken, I. Observation of cyanobacteria and diatoms from space using Differential Optical Absorption Spectroscopy on SCIAMACHY data. In Proceedings of the 5th EGU General Assembly 2008, Vienna, Austria, 16 April 2008. [Google Scholar]
- Kahru, M.; Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 2014, 11, 3619. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Metsamaa, L.; Strömbeck, N.; Vahtmäe, E. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 2006, 67, 303–312. [Google Scholar] [CrossRef]
- Öberg, J. Cyanobacteria blooms in the Baltic Sea. In HELCOM Baltic Sea Environment Fact Sheets 2017; Helcom: Helsinki, Finland, 2016. [Google Scholar]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 2006, 102, 74–85. [Google Scholar] [CrossRef]
- Reynolds, C.; Walsby, A. Water-blooms. Biol. Rev. 1975, 50, 437–481. [Google Scholar] [CrossRef]
- Bresciani, M.; Bolpagni, R.; Laini, A.; Matta, E.; Bartoli, M.; Giardino, C. Multitemporal analysis of algal blooms with MERIS images in a deep meromictic lake. Eur. J. Remote Sens. 2013, 46, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Walsby, A.E.; Ng, G.; Dunn, C.; Davis, P.A. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. New Phytol. 2004, 162, 133–145. [Google Scholar] [CrossRef]
- Svejkovsky, J.; Shandley, J. Detection of offshore plankton blooms with AVHRR and SAR imagery. Int. J. Remote Sens. 2001, 22, 471–485. [Google Scholar] [CrossRef]
- Bresciani, M.; Adamo, M.; De Carolis, G.; Matta, E.; Pasquariello, G.; Vaičiūtė, D.; Giardino, C. Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sens. Environ. 2014, 146, 124–135. [Google Scholar] [CrossRef]
- Bartoli, M.; Zilius, M.; Bresciani, M.; Vaičiūtė, D.; Lubiene-Vybernaite, I.; Petkuviene, J.; Giordani, G.; Daunys, D.; Ruginis, T.; Benelli, S.; et al. Drivers of cyanobacterial blooms in a hypertrophic lagoon. Front. Mar. Sci. 2018, 5, 434. [Google Scholar] [CrossRef] [Green Version]
- Bresciani, M.; Giardino, C.; Stroppiana, D.; Pilkaitytė, R.; Zilius, M.; Bartoli, M.; Razinkovas, A. Retrospective analysis of spatial and temporal variability of chlorophyll-a in the Curonian Lagoon. J. Coast. Conserv. 2012, 16, 511–519. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Pilkaityte, R.; Bartoli, M.; Razinkovas, A. In situ measurements and satellite remote sensing of case 2 waters: First results from the Curonian Lagoon. Oceanologia 2010, 52, 197–210. [Google Scholar] [CrossRef]
- Ferrarin, C.; Razinkovas, A.; Gulbinskas, S.; Umgiesser, G.; Bliūdžiutė, L. Erratum to: Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 2010, 652, 397–397. [Google Scholar] [CrossRef] [Green Version]
- Razinkovas, A.; Bliudziute, L.; Erturk, A.; Ferrarin, C.; Lindim, C.; Umgiesser, G.; Zemlys, P. Curonian lagoon: A modelling study-Lithuania. In Modeling Nutrient Loads and Response in River and Estuary Systems; Committee on the Challenges of Modern Society, North Atlantic Treaty Organization: Brussels, Belgium, 2005; pp. 194–222. [Google Scholar]
- Kataržytė, M.; Mėžinė, J.; Vaičiūtė, D.; Liaugaudaitė, S.; Mukauskaitė, K.; Umgiesser, G.; Schernewski, G. Fecal contamination in shallow temperate estuarine lagoon: Source of the pollution and environmental factors. Mar. Pollut. Bull. 2018, 133, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Zilius, M.; Bartoli, M.; Bresciani, M.; Katarzyte, M.; Ruginis, T.; Petkuviene, J.; Lubiene, I.; Giardino, C.; Bukaveckas, P.A.; de Wit, R.; Razinkovas-Baziukas, A. Feedback Mechanisms Between Cyanobacterial Blooms, Transient Hypoxia, and Benthic Phosphorus Regeneration in Shallow Coastal Environments. Estuaries Coasts 2014, 37, 680–694. [Google Scholar] [CrossRef]
- Pilkaitytė, R.; Razinkovas, A. Factors controlling phytoplankton blooms in a temperate estuary: Nutrient limitation and physical forcing. In Marine Biodiversity; Springer: Berlin/Heidelberg, Germany, 2006; pp. 41–48. [Google Scholar]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The curonian lagoon. In Ecology of Baltic Coastal Waters; Springer: Berlin/Heidelberg, Germany, 2008; pp. 197–215. [Google Scholar]
- Wasmund, N.; Nausch, G.; Gerth, M.; Busch, S.; Burmeister, C.; Hansen, R.; Sadkowiak, B. Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change. Mar. Ecol. Prog. Ser. 2019, 622, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mercury, M.; Green, R.; Hook, S.; Oaida, B.; Wu, W.; Gunderson, A.; Chodas, M. Global cloud cover for assessment of optical satellite observation opportunities: A HyspIRI case study. Remote Sens. Environ. 2012, 126, 62–71. [Google Scholar] [CrossRef]
- Vaičiūtė, D.; Bresciani, M.; Bartoli, M.; Giardino, C.; Bučas, M. Spatial and temporal distribution of coloured dissolved organic matter in a hypertrophic freshwater lagoon. J. Limnol. 2015, 74. [Google Scholar] [CrossRef] [Green Version]
- Galkus, A. Vandens cirkuliacija ir erdvine drumstumo dinamika vasara Kuršių marių ir Baltijos jūros Lietuvos akvatorijose [Summer water circulation and spatial turbidity dynamics in the Lithuanian waters of Curonian lagoon and Baltic Sea]. Geogr. Metrašt 2003, 36, 3–16. [Google Scholar]
- Mėžinė, J.; Ferrarin, C.; Vaičiūtė, D.; Idzelytė, R.; Zemlys, P.; Umgiesser, G. Sediment Transport Mechanisms in a Lagoon with High River Discharge and Sediment Loading. Water 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 12 December 2019).
- Cazzaniga, I.; Bresciani, M.; Colombo, R.; Della Bella, V.; Padula, R.; Giardino, C. A comparison of Sentinel-3-OLCI and Sentinel-2-MSI-derived Chlorophyll-a maps for two large Italian lakes. Remote Sens. Lett. 2019, 10, 978–987. [Google Scholar] [CrossRef]
- INFORM. INFORM Prototype/Algorithm Validation Report Update, D5.15. INFORM, 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjZnIq566_mAhW-UhUIHZEoBTUQFjAAegQIBBAC&url=http%3A%2F%2Finform.vgt.vito.be%2Ffiles%2Fdocuments%2FINFORM_D5.15_v1.0.pdf&usg=AOvVaw2S4Q_ofKQQBon-LYcm4a9_ (accessed on 12 December 2019).
- Bentamy, A.; Queffeulou, P.; Quilfen, Y.; Katsaros, K. Ocean surface wind fields estimated from satellite active and passive microwave instruments. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2469–2486. [Google Scholar] [CrossRef]
- Kerbaol, V.; Wind, T.S.O.; Team, C. Improved Bayesian Wind Vector Retrieval Scheme Using ENVISAT ASAR Data: Principles and Validation Results. 2007. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.434.4013 (accessed on 12 December 2019).
- Bresciani, M.; Rossini, M.; Morabito, G.; Matta, E.; Pinardi, M.; Cogliati, S.; Julitta, T.; Colombo, R.; Braga, F.; Giardino, C. Analysis of within-and between-day chlorophyll-a dynamics in Mantua Superior Lake, with a continuous spectroradiometric measurement. Mar. Freshw. Res. 2013, 64, 303–316. [Google Scholar] [CrossRef]
- EOMORES Consortium. D5.3 Final Validation Report. 2020; Under Review. Available online: https://eomores-h2020.eu/results/#deliverables (accessed on 12 December 2019).
- Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 12 December 2019).
- Cao, H.S.; Kong, F.X.; Luo, L.C.; Shi, X.L.; Yang, Z.; Zhang, X.F.; Tao, Y. Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. J. Freshw. Ecol. 2006, 21, 231–238. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Yang, H.; Sun, D.; Yu, Z.; Zhang, Z.; Chen, X.; Xu, L. Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS. Environ. Earth Sci. 2014, 71, 3705–3714. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santi, F.; Luciani, G.; Bresciani, M.; Giardino, C.; Lovergine, F.P.; Pasquariello, G.; Vaiciute, D.; De Carolis, G. Synergistic Use of Synthetic Aperture Radar and Optical Imagery to Monitor Surface Accumulation of Cyanobacteria in the Curonian Lagoon. J. Mar. Sci. Eng. 2019, 7, 461. https://doi.org/10.3390/jmse7120461
De Santi F, Luciani G, Bresciani M, Giardino C, Lovergine FP, Pasquariello G, Vaiciute D, De Carolis G. Synergistic Use of Synthetic Aperture Radar and Optical Imagery to Monitor Surface Accumulation of Cyanobacteria in the Curonian Lagoon. Journal of Marine Science and Engineering. 2019; 7(12):461. https://doi.org/10.3390/jmse7120461
Chicago/Turabian StyleDe Santi, Francesca, Giulia Luciani, Mariano Bresciani, Claudia Giardino, Francesco Paolo Lovergine, Guido Pasquariello, Diana Vaiciute, and Giacomo De Carolis. 2019. "Synergistic Use of Synthetic Aperture Radar and Optical Imagery to Monitor Surface Accumulation of Cyanobacteria in the Curonian Lagoon" Journal of Marine Science and Engineering 7, no. 12: 461. https://doi.org/10.3390/jmse7120461
APA StyleDe Santi, F., Luciani, G., Bresciani, M., Giardino, C., Lovergine, F. P., Pasquariello, G., Vaiciute, D., & De Carolis, G. (2019). Synergistic Use of Synthetic Aperture Radar and Optical Imagery to Monitor Surface Accumulation of Cyanobacteria in the Curonian Lagoon. Journal of Marine Science and Engineering, 7(12), 461. https://doi.org/10.3390/jmse7120461