Origin of Pumice in Sediments from the Middle Okinawa Trough: Constraints from Whole-Rock Geochemical Compositions and Sr-Nd-Pb Isotopes
Abstract
:1. Introduction
2. Geological Setting and Samples
3. Analytical Methods
3.1. Pretreatment of Pumice Samples
3.2. Major and Trace Element Analysis
3.3. Sr-Nd-Pb Isotope Analysis
3.4. Radiocarbon Dating
4. Geochemical Results
4.1. Major and Trace Elements
4.2. Sr-Nd-Pb Isotopes
5. Discussion
5.1. Constraints on Eruption Age
5.2. The origin of S9 Pumice
5.2.1. Fractional Crystallization
5.2.2. Magma Sources of S9 Pumice
5.3. Implications for the Existence of a Millennial-Scale Magma Chamber
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourdon, B.; Sims, K.W.W. U-series Constraints on Intraplate Basaltic Magmatism. Rev. Miner. Geochem. 2003, 52, 215–254. [Google Scholar] [CrossRef]
- McCulloch, M.; Gamble, J.; McCulloch, M. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 1991, 102, 358–374. [Google Scholar] [CrossRef]
- Kessel, R.; Schmidt, M.W.; Ulmer, P.; Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 2005, 437, 724–727. [Google Scholar] [CrossRef]
- Woodhead, J.; Eggins, S.; Gamble, J. High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett. 1993, 114, 491–504. [Google Scholar] [CrossRef]
- Kastens, K.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Emeis, K.-C.; Glaçon, G.; Hasegawa, S.; et al. ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margin and back-arc basin evolution. GSA Bull. 1988, 100, 1140–1156. [Google Scholar] [CrossRef]
- Sdrolias, M.; Müller, R.D. Controls on back-arc basin formation. Geochem. Geophys. Geosyst. 2013, 7, Q04016. [Google Scholar] [CrossRef]
- Ishikawa, M.; Sato, H.; Furukawa, M.; Kimura, M.; Shimamura, K. Report on DELP 1988 Cruises in the Okinawa Trough: Part 6. Petrology of Volcanic Rocks. Bull. Earthq. Res. Inst. Univ. Tokyo 1991, 66, 151–177. [Google Scholar]
- Sibuet, J.-C.; Hsu, S.-K.; Thareau, N.; Le Formal, J.-P.; Liu, C.-S.; Sibuet, J.; Deffontaines, B.; Hsu, S.; Le Formal, J.; Liu, C. Okinawa trough backarc basin: Early tectonic and magmatic evolution. J. Geophys. Res. Space Phys. 1998, 103, 30245–30267. [Google Scholar] [CrossRef] [Green Version]
- Zhai, S.; Chen, L.; Zhang, H.Q. Magmatism and Seafloor Hydrothermal Activities in the Okinawa Trough; Maritime Press: Beijing, China, 2001. [Google Scholar]
- Masaaki, K.; Ichiro, K.; Yuzo, K.; Satoshi, Y.; Ikuo, K.; Hidekazu, T.; Hajimu, K.; Nobuhiro, I.; Hideko, M. Report on DELP 1984 Cruises in the Middle Okinawa Trough: Part V: Topography and Geology of the Central Grabens and Their Vicinity. Bull. Earthq. Res. Inst. Univ. Tokyo 1986, 61, 269–310. [Google Scholar]
- Zeng, Z.; Yu, S.; Wang, X.; Fu, Y.; Yin, X.; Zhang, G.; Wang, X.; Chen, S. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanol. Sin. 2010, 29, 48–61. [Google Scholar] [CrossRef]
- Yan, Q.; Shi, X. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review. Acta Oceanol. Sin. 2014, 33, 1–12. [Google Scholar] [CrossRef]
- Arakawa, Y.; Kurosawa, M.; Takahashi, K.; Kobayashi, Y.; Tsukui, M.; Amakawa, H. Sr-Nd isotopic and chemical characteristics of the silicic magma reservoir of the Aira pyroclastic eruption, southern Kyushu, Japan. J. Volcanol. Geotherm. Res. 1998, 80, 179–194. [Google Scholar] [CrossRef]
- Qin, Y.S.; Zhai, S.K.; Mao, X.Y. Trace element features and its geological significances of pumices from the Okinawa Trough. Oceanol. Limnol. Sin. 1987, 18, 313–319. (In Chinese) [Google Scholar]
- Li, X.; Zeng, Z.; Yang, H.; Yin, X.; Wang, X.; Chen, S.; Ma, Y.; Guo, K. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: Implications for petrogenesis and variable subducted sediment component injection. Geol. J. 2018, 54, 1160–1189. [Google Scholar] [CrossRef]
- Zhai, S.; Gan, X. Study of basalt from the hydrothermal field of the Okinawa Trough. Oceanol. Limnol. Sin. 1995, 26, 115–123, (In Chinese with English Abstract). [Google Scholar]
- Shinjo, R.; Chung, S.-L.; Kato, Y.; Chung, S.; Kimura, M. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. J. Geophys. Res. Space Phys. 1999, 104, 10591–10608. [Google Scholar] [CrossRef]
- Zhai, S.K. The distribution and mineralogical characteristics of the pumice in the Okinawa Trough. Oceanol. Limnol. Sin. 1986, 17, 504–512. [Google Scholar]
- Guo, K.; Shu, Y.; Wang, X.; Liu, Q.; Yin, X.; Chen, S.; Chen, Z.; Zhang, G. Different magma sources and evolutions of white and black pumice from the middle Okinawa Trough: Evidence from major, trace elements and Sr-Nd-Pb isotopes. Geol. J. 2018, 54, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Liao, R.; Huang, P.; Hu, N.; Li, A. Petrological characteristics of black and white pumice from the Okinawa Trough: Implications for magmatic evolution. Mar. Sci. 2016, 40, 121–130, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.X.; Zeng, Z.G.; Yin, X.B.; Qi, H.Y.; Li, H.; Wang, X.Y.; Cheng, S. Experimental study of a pretreatment method for submarine pumice. Mar. Sci. 2017, 41, 64–70, (In Chinese with English Abstract). [Google Scholar]
- Zhai, S.; Chen, L.; Wang, Z.; Gan, X.Q. Primary analysis on pumice magmatism model of the Okinawa Trough. Mar. Geol. Quat. Geol. 1997, 17, 59–66. [Google Scholar]
- Zhang, Y.; Zeng, Z.; Yin, X.; Qi, H.; Chen, S.; Wang, X.; Shu, Y.; Chen, Z.; Li, S. Petrology and mineralogy of pumice from the Iheya North Knoll, Okinawa Trough: Implications for the differentiation of crystal-poor and volatile-rich melts in the magma chamber. Geol. J. 2017, 53, 2732–2745. [Google Scholar] [CrossRef]
- Guo, K.; Zhai, S.; Yu, Z.; Cai, Z.; Zhang, X. Sr-Nd-Pb isotopic geochemistry of phenocrysts in pumice from the central Okinawa Trough. Geol. J. 2016, 51, 368–375. [Google Scholar] [CrossRef]
- Huang, P.; Li, A.; Jiang, H. Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough. Acta Petrol. Sin. 2006, 22, 1703–1712. [Google Scholar]
- Shinjo, R.; Kato, Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos 2000, 54, 117–137. [Google Scholar] [CrossRef]
- Hoang, N.; Uto, K. Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB mantle. Earth Planet. Sci. Lett. 2006, 249, 229–240. [Google Scholar] [CrossRef]
- Kizaki, K. Geology and tectonics of the Ryukyu Islands. Tectonophysics 1986, 125, 193–207. [Google Scholar] [CrossRef]
- Isozaki, Y.; Nishimura, Y. Fusaki Formation, Jurassic subduction-accretion complex on Ishigaki Island, southern Ryukyus and its geologic implication to Late Mesozoic convergent margin of East Asia. Mem. Geol. Soc. Jpn. 1989, 33, 259–275. [Google Scholar]
- Chen, L.; Zhai, S.; Shen, S. The isotopic characteristics and dating of pumice in the Okinawa Trough. Sci. China Ser. B 1993, 23, 324–329. (In Chinese) [Google Scholar]
- Li, W.R.; Yang, Z.S.; Wang, Y.J.; Zhang, B.M. The Petrochemical Features of the Volcanic Rocks in Okinawa Trough and Their Geological Significance. Acta Petrol. Sin. 1997, 13, 538–550, (In Chinese with English Abstract). [Google Scholar]
- Hu, S.; Zeng, Z.; Yin, X.; Zhu, B.; Fang, X.; Qi, H. Characteristic differences of rare earth elements in the sediment cores from Okinawa Trough and their implications for sediment provenance. Mar. Geol. Quat. Geol. 2019, 39, 69–82. [Google Scholar]
- Lee, C.-S.; Shor, G.G., Jr.; Bibee, L.D.; Lu, R.S.; Hilde, T.W.C. Okinawa Trough: Origin of a back-arc basin. Mar. Geol. 1980, 35, 219–241. [Google Scholar] [CrossRef]
- Li, N. On tectonic problems of the Okinawa Trough. Chin. J. Oceanol. Limnol. 2001, 19, 255–264. [Google Scholar]
- Seno, T.; Stein, S.; Gripp, A.E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J. Geophys. Res. Space Phys. 1993, 98, 17941–17948. [Google Scholar] [CrossRef]
- Yamano, M.; Uyeda, S.; Foucher, J.-P.; Sibuet, J.-C. Heat flow anomaly in the middle Okinawa Trough. Tectonophysics 1989, 159, 307–318. [Google Scholar] [CrossRef]
- Shinjo, R.; Woodhead, J.D.; Hergt, J.M. Geochemical variation within the northern Ryukyu Arc: Magma source compositions and geodynamic implications. Contrib. Miner. Pet. 2000, 140, 263–282. [Google Scholar] [CrossRef]
- Honma, H.; Kusakabe, M.; Kagami, H.; Iizumi, S.; Sakai, H.; Kodama, Y.; Kimura, M. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin. Geochem. J. 1991, 25, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Zeng, Z.; Fang, X.; Qi, H.; Yin, X.; Chen, Z.; Li, X.; Zhu, B. Geochemical Study of Detrital Apatite in Sediment from the Southern Okinawa Trough: New Insights into Sediment Provenance. Minerals 2019, 9, 619. [Google Scholar] [CrossRef] [Green Version]
- Nagumo, S.; Kinoshita, H.; Kasahara, J.; Ouchi, T.; Tokuyama, H.; Asanuma, T.; Koresawa, S.; Akiyoshi, H. Report on DELP 1984 Cruises in the Middle Okinawa Trough: Part II: Seismic Structural Studies. Bull. Earthq. Res. Inst. 1986, 61, 167–202. [Google Scholar]
- Jacobsen, S.B.; Wasserburg, G. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 1980, 50, 139–155. [Google Scholar] [CrossRef]
- Chen, F.; Siebel, W.; Satir, M.; Terzioğlu, M.; Saka, K. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int. J. Earth Sci. 2002, 91, 469–481. [Google Scholar] [CrossRef]
- Jiang, T.; Zeng, Z.; Nan, Q.; Zheng, X.; Ma, B. The garin size characteristics of the Core S9 sediments in the northern Okinawa Trough and their paleoclimate response since Holocene. Quat. Sci. 2015, 35, 307–318, (In Chinese with English Abstract). [Google Scholar]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, M.; Uno, H.; Shibata, Y.; Suzuki, R.; Kumamoto, Y.; Yoshida, K.; Sasaki, T.; Suzuki, A.; Kawahata, H. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 259, 432–437. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar]
- Bas, M.J.L.; Maitre, R.W.L.; Streckeisen, A.; Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Pet. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 1993, 21, 825. [Google Scholar] [CrossRef]
- Tatsumi, Y. Formation of the volcanic front in subduction zones. Geophys. Res. Lett. 1986, 13, 717–720. [Google Scholar] [CrossRef]
- Kiminami, K.; Imaoka, T.; Ogura, K.; Kawabata, H.; Ishizuka, H.; Mori, Y. Tectonic implications of Early Miocene OIB magmatism in a near-trench setting: The Outer Zone of SW Japan and the northernmost Ryukyu Islands. J. Asian Earth Sci. 2017, 135, 291–302. [Google Scholar] [CrossRef]
- Kimura, J.I.; Nagahashi, Y.; Satoguchi, Y.; Chang, Q. Origins of felsic magmas in Japanese subduction zone: Geochemical characterizations of tephra from caldera-forming eruptions <5 Ma: Origin of caldera eruptions in Japan. Geochem. Geophys. Geosyst. 2015, 16, 2147–2174. [Google Scholar]
- Shinjo, R.; Hasenaka, T.; Fujimaki, H. Petrology of volcanic rocks from the higashi formation in aguni-jima island, central ryukyus. J. Miner. Pet. Econ. Geol. 1990, 85, 282–297. [Google Scholar] [CrossRef]
- Shinjo, R.; Kato, Y. Petrography of the Ara-dake formation, Kume-jima island, the Ryukyu islands. J. Miner. Pet. Econ. Geol. 1988, 83, 472–485. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S. McDonough Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and source processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Dale, C.; Luguet, A.; MacPherson, C.; Pearson, D.; Hickey-Vargas, R.; Dale, C. Extreme platinum-group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts: Tracing mantle source heterogeneity. Chem. Geol. 2008, 248, 213–238. [Google Scholar] [CrossRef]
- Hickey-Vargas, R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes. J. Geophys. Res. Space Phys. 1998, 103, 20963–20979. [Google Scholar] [CrossRef]
- Shu, Y.; Nielsen, S.G.; Zeng, Z.; Shinjo, R.; Blusztajn, J.; Wang, X.; Chen, S. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes. Geochim. Cosmochim. Acta 2017, 217, 462–491. [Google Scholar] [CrossRef]
- Hauff, F.; Hoernle, K.; Schmidt, A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem. Geophys. Geosyst. 2003, 4, 1–30. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Mahoney, J.B. Nd and Sr isotopic signatures of fine-grained clastic sediments: A case study of western Pacific marginal basins. Sediment. Geol. 2005, 182, 183–199. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical Geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Wang, P.J.; Liu, W.Z.; Wang, S.X.; Song, W.H. 40 Ar/39 Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: Constraints on stratigraphy and basin dynamics. Int. J. Earth Sci. 2002, 91, 331–340. [Google Scholar] [CrossRef]
- Guillou, H.; Garcia, M.O.; Turpin, L. Unspiked K-Ar dating of young volcanic rocks from Loihi and Pitcairn hot spot seamounts. J. Volcanol. Geotherm. Res. 1997, 78, 239–249. [Google Scholar] [CrossRef]
- Condomines, M. Dating recent volcanic rocks through 230Th-238U disequilibrium in accessory minerals: Example of the Puy de Dôme (French Massif Central). Geology 1997, 25, 375. [Google Scholar] [CrossRef]
- Gillot, P.-Y.; Cornette, Y. The Cassignol technique for potassium—Argon dating, precision and accuracy: Examples from the Late Pleistocene to Recent volcanics from southern Italy. Chem. Geol. Isot. Geosci. Sect. 1986, 59, 205–222. [Google Scholar] [CrossRef]
- Vella, D.; Huppert, H.E. The waterlogging of floating objects. J. Fluid Mech. 2007, 585, 245. [Google Scholar] [CrossRef] [Green Version]
- Whitham, A.G.; Sparks, R.S.J. Pumice. Bull. Volcanol. 1986, 48, 209–223. [Google Scholar] [CrossRef]
- Allen, S.; Fiske, R.; Cashman, K. Quenching of steam-charged pumice: Implications for submarine pyroclastic volcanism. Earth Planet. Sci. Lett. 2008, 274, 40–49. [Google Scholar] [CrossRef]
- Blaauw, M.; Heuvelink, G.B.; Mauquoy, D.; Van Der Plicht, J.; Van Geel, B. A numerical approach to 14C wiggle-match dating of organic deposits: Best fits and confidence intervals. Quat. Sci. Rev. 2003, 22, 1485–1500. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zeng, Z.; Yin, X.; Wang, X.; Li, X. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: Constraints from whole-rock geochemistry data and Sr–Nd–Pb–O isotopes. Geol. J. 2019, 54, 316–332. [Google Scholar] [CrossRef] [Green Version]
- Letouzey, J.; Kimura, M. Okinawa Trough genesis: Structure and evolution of a backarc basin developed in a continent. Mar. Pet. Geol. 1985, 2, 111–130. [Google Scholar] [CrossRef]
- Chung, S.-L.; Jahn, B.-M.; Chen, S.-J.; Lee, T.; Chen, C.-H. Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochim. Cosmochim. Acta 1995, 59, 549–555. [Google Scholar] [CrossRef]
- Workman, R.K.; Hart, S.R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 2005, 231, 53–72. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.-L.; Liu, X.-M.; Liu, Y.-S.; Xu, W.-L.; Ling, W.-L.; Ayers, J.; Wang, X.-C.; Wang, Q.-H. Recycling lower continental crust in the North China craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef]
- Hou, Z.; Zheng, Y.; Yang, Z.; Rui, Z.; Zhao, Z.; Jiang, S.; Qu, X.; Sun, Q. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Miner. Depos. 2013, 48, 173–192. [Google Scholar] [CrossRef]
- Hosono, T.; Nakano, T.; Shin, K.; Murakami, H. Assimilation of lower to middle crust by high alumina basalt magma as an explanation for the origin of medium-K volcanic rocks in southern Kyushu, Japan. Lithos 2008, 105, 51–62. [Google Scholar] [CrossRef]
- Hosono, T.; Nakano, T.; Murakami, H. Sr–Nd–Pb isotopic compositions of volcanic rocks around the Hishikari gold deposit, southwest Japan: Implications for the contribution of a felsic lower crust. Chem. Geol. 2003, 201, 19–36. [Google Scholar] [CrossRef]
- Kimura, M. Formation of Okinawa Trough grabens. Mem. Geol. Soc. Jpn. 1983, 22, 141–157. [Google Scholar]
- Nash, D.F. The geological development of the north Okinawa Trough area from Neogene time to recent. J. Jpn. Assoc. Pet. Technol. 1979, 44, 109–119. [Google Scholar] [CrossRef]
- Meng, X.; Du, D.; Wu, J.; Long, J. Sr, Nd isotope geochemistry of volcanic rocks and its geological significance in the Middle Okinawa Trough. Sci. China D Ser. 1999, 29, 367–371. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, B.T.; Chen, P.R.; Ling, H.F. Geochemistry and petrogenesis of the middle Jurassic rhyolite, southern Jiangxi: Trace element and Pb-Nd-Sr isotope geochemical constraints on the upper crustal origin. Acta Petrol. Sin. 2004, 20, 511–520. [Google Scholar]
- Wedepohl, K.H. The composion of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: Enriched components EMI and EMII in subcontinental lithosphere. Earth Planet. Sci. Lett. 1992, 113, 107–128. [Google Scholar] [CrossRef]
- Luhr, J.F.; Carmichael, I.S.E. The Colima Volcanic complex, Mexico. Contrib. Miner. Pet. 1980, 71, 343–372. [Google Scholar] [CrossRef]
- Fujimaki, H. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib. Miner. Pet. 1986, 94, 42–45. [Google Scholar] [CrossRef]
- Bacon, C.R.; Druitt, T.H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Miner. Pet. 1988, 98, 224–256. [Google Scholar] [CrossRef]
- Philpotts, J.A.; Schnetzler, C. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim. Cosmochim. Acta 1970, 34, 307–322. [Google Scholar] [CrossRef]
- McCarthy, J.; Mutter, J.C.; Morton, J.L.; Sleep, N.H.; Thompson, G.A. Relic magma chamber structures preserved within the Mesozoic North Atlantic crust? GSA Bull. 1988, 100, 1423–1436. [Google Scholar] [CrossRef]
- Detrick, R.S.; Buhl, P.; Vera, E.; Mutter, J.; Orcutt, J.; Madsen, J.; Brocher, T. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 1987, 326, 35–41. [Google Scholar] [CrossRef]
- Kent, G.M.; Harding, A.J.; Orcutt, J.A. Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30′ N. Nature 1990, 344, 650–653. [Google Scholar] [CrossRef]
- O’Hara, M.J. Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature 1977, 266, 503–507. [Google Scholar] [CrossRef]
- Einarsson, P.; Bilham, R.; Sigmundsson, F. Magma chamber deflation recorded by the global positioning system: The Hekla 1991 Eruption. Geophys. Res. Lett. 1992, 19, 1483–1486. [Google Scholar]
Sample | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
Depth (cm) | 226–227 | 228–229 | 230–231 | 232–233 | 234–235 | 236–237 |
Major elements (wt.%) | ||||||
SiO2 | 68.57 | 68.1 | 67.86 | 68.88 | 69.37 | 69.18 |
TiO2 | 0.63 | 0.69 | 0.68 | 0.65 | 0.67 | 0.63 |
Al2O3 | 13.17 | 13.21 | 13.29 | 13.08 | 13.29 | 12.92 |
Fe2O3T | 3.53 | 3.81 | 3.67 | 3.53 | 3.6 | 3.31 |
MnO | 0.09 | 0.1 | 0.1 | 0.1 | 0.1 | 0.09 |
MgO | 0.78 | 0.86 | 0.84 | 0.74 | 0.78 | 0.64 |
CaO | 2.57 | 2.73 | 2.61 | 2.51 | 2.55 | 2.28 |
Na2O | 4.02 | 3.99 | 3.98 | 4.05 | 4.06 | 4.06 |
K2O | 2.59 | 2.53 | 2.48 | 2.59 | 2.59 | 2.7 |
P2O5 | 0.1 | 0.11 | 0.1 | 0.1 | 0.1 | 0.08 |
LOI | 3.78 | 3.45 | 4.17 | 3.67 | 2.75 | 3.78 |
Total | 99.82 | 99.58 | 99.77 | 99.9 | 99.85 | 99.68 |
Trace elements (μg/g) | ||||||
Sc | 10.9 | 11.2 | 10.9 | 11.3 | 12.2 | 11.5 |
V | 27 | 30 | 30 | 26 | 38 | 23 |
Cr | 1 | 2 | 1 | 2 | 1 | 2 |
Co | 2.3 | 2.6 | 2.6 | 2.4 | 2.9 | 2.4 |
Rb | 74.2 | 73.8 | 74.8 | 74.7 | 75.7 | 72.9 |
Sr | 151 | 154 | 152.5 | 151.5 | 152.5 | 155 |
Y | 33.6 | 33.5 | 33.9 | 33.6 | 32.8 | 33.1 |
Zr | 201 | 205 | 207 | 204 | 199 | 198 |
Nb | 5.9 | 5.9 | 5.7 | 6 | 6.4 | 6.2 |
Cs | 3.49 | 3.35 | 3.34 | 3.39 | 3.63 | 3.49 |
Ba | 400 | 391 | 399 | 399 | 390 | 394 |
La | 18.2 | 18.3 | 18.4 | 18.6 | 18.4 | 18.6 |
Ce | 40.4 | 39.4 | 40.7 | 40.9 | 41.2 | 40.8 |
Pr | 5.03 | 4.91 | 5.01 | 5.15 | 5.09 | 5.13 |
Nd | 20.8 | 20.1 | 20.4 | 20.8 | 20.7 | 21.2 |
Sm | 5.28 | 4.83 | 4.69 | 5.14 | 4.95 | 4.84 |
Eu | 1.06 | 1.06 | 1.09 | 1.12 | 1.08 | 1.15 |
Gd | 5.38 | 5.18 | 5.38 | 5.4 | 5.07 | 5.31 |
Tb | 0.85 | 0.87 | 0.89 | 0.85 | 0.94 | 0.87 |
Dy | 5.51 | 5.52 | 5.58 | 5.63 | 5.81 | 5.6 |
Ho | 1.25 | 1.23 | 1.24 | 1.28 | 1.31 | 1.24 |
Er | 3.93 | 3.78 | 3.77 | 3.73 | 3.92 | 3.76 |
Tm | 0.57 | 0.56 | 0.56 | 0.57 | 0.59 | 0.59 |
Yb | 3.88 | 3.72 | 3.8 | 3.78 | 3.94 | 3.86 |
Lu | 0.6 | 0.6 | 0.62 | 0.58 | 0.62 | 0.6 |
Hf | 5.6 | 5.6 | 5.5 | 5.7 | 5.7 | 5.8 |
Ta | 0.46 | 0.48 | 0.41 | 0.43 | 0.49 | 0.47 |
Pb | 21.3 | 19.9 | 20.1 | 19.1 | 20.8 | 18.4 |
Th | 7.27 | 6.87 | 6.98 | 7.09 | 7.32 | 7 |
U | 1.99 | 2.15 | 2.08 | 2.08 | 2.16 | 1.96 |
87Sr/86Sr | - | 0.704857 | 0.704799 | 0.704896 | 0.704941 | 0.705015 |
143Nd/144Nd | - | 0.512730 | 0.512732 | 0.512724 | 0.512743 | 0.512736 |
εNd a | - | 1.79 | 1.84 | 1.67 | 2.05 | 1.92 |
206Pb/204Pb | - | 18.4078 | 18.3763 | 18.3207 | 18.4359 | 18.33 |
207Pb/204Pb | - | 15.6219 | 15.6241 | 15.6243 | 15.624 | 15.6215 |
208Pb/204Pb | - | 38.5989 | 38.5719 | 38.5182 | 38.6286 | 38.518 |
Depth (cm) | Material | AMS 14C Age (yr BP) | ±1σ | Calendar Age (cal yr BP) | ±2σ |
---|---|---|---|---|---|
220–221 | Planktonic foraminifera | 9050 a | 30 | 9675 | 142.5 |
229–230 | Planktonic foraminifera | 10750 | 40 | 11972 | 236 |
243–244 | Planktonic foraminifera | 12437 a | 30 | 13877 | 128.5 |
Sample | Depth (cm) | Eruption Ages (Cal. yr BP) | ±2σ |
---|---|---|---|
F1 | 226–227 | 11219 | 214 |
F2 | 228–229 | 11718 | 235 |
F3 | 230–231 | 12220 | 189.5 |
F4 | 232–233 | 12470 | 198 |
F5 | 234–235 | 12708 | 142.5 |
F6 | 236–237 | 12964 | 149.5 |
Elements | Indian MORB a | UCC b | LC c | PSs d |
---|---|---|---|---|
Sr (μg/g) | 7.664 | 333 | 250 | 177.222 |
Nd (μg/g) | 0.581 | 27 | 19.5 | 33.423 |
Pb (μg/g) | 0.018 | 25.46 | 7.55 | 43.545 |
87Sr/86Sr | 0.702987 | 0.72045 | 0.70625 | 0.7122 |
143Nd/144Nd | 0.513048 | 0.511999 | 0.5124 | 0.5123 |
206Pb/204Pb | 18.1047 | 18.637 | 17.98 | 18.462 |
Element | Pl | Opx | Amph | Mt | Ap | Bulk D |
---|---|---|---|---|---|---|
La | 0.19 | 0.031 | 1 | 1.5 | 14.5 | 0.707 |
Ce | 0.111 | 0.028 | 0.899 | 1.3 | 21.1 | 0.697 |
Nd | 0.09 | 0.47 | 1.6 | 1 | 32.8 | 1.054 |
Sm | 0.067 | 0.28 | 2 | 1 | 46 | 1.318 |
Eu | 0.376 | 0.34 | 3.2 | 0.6 | 30.4 | 1.627 |
Gd | 0.063 | 0.039 | 1.72 | 0.3 | 43.9 | 1.12 |
Dy | 0.055 | 0.076 | 1.611 | 1 | 50.7 | 1.223 |
Er | 0.063 | 0.153 | 1.496 | 1 | 37.2 | 1.036 |
Yb | 0.057 | 0.254 | 2.1 | 1 | 15.4 | 0.966 |
Lu | 0.056 | 0.71 | 2.1 | 1 | 13.8 | 0.981 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Zeng, Z.; Hu, S.; Li, X.; Chen, Z.; Chen, S.; Zhu, B. Origin of Pumice in Sediments from the Middle Okinawa Trough: Constraints from Whole-Rock Geochemical Compositions and Sr-Nd-Pb Isotopes. J. Mar. Sci. Eng. 2019, 7, 462. https://doi.org/10.3390/jmse7120462
Fang X, Zeng Z, Hu S, Li X, Chen Z, Chen S, Zhu B. Origin of Pumice in Sediments from the Middle Okinawa Trough: Constraints from Whole-Rock Geochemical Compositions and Sr-Nd-Pb Isotopes. Journal of Marine Science and Engineering. 2019; 7(12):462. https://doi.org/10.3390/jmse7120462
Chicago/Turabian StyleFang, Xue, Zhigang Zeng, Siyi Hu, Xiaohui Li, Zuxing Chen, Shuai Chen, and Bowen Zhu. 2019. "Origin of Pumice in Sediments from the Middle Okinawa Trough: Constraints from Whole-Rock Geochemical Compositions and Sr-Nd-Pb Isotopes" Journal of Marine Science and Engineering 7, no. 12: 462. https://doi.org/10.3390/jmse7120462