Effects of Salinity on Bubble Cloud Characteristics
Abstract
:1. Introduction
2. Background
3. Experiment
3.1. Bubble Cloud Formation
3.2. Cloud Records and Image Processing
3.3. Experimental Conditions
4. Results
4.1. Surface Tension Dependence on Salinity
4.2. Bubble Cloud Characteritics
5. Discussion
5.1. Salinity Influence on Bubble Clouds
5.2. Implications for Air-Sea Interaction Studies
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thorpe, S.A. On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer. Philos. Trans. R. Soc. Lond. 1982, A304, 155–210. [Google Scholar] [CrossRef]
- Thorpe, S.A. Bubble clouds and the dynamics of the upper ocean. Q. J. R. Meteorol. Soc. 1992, 118, 1–22. [Google Scholar] [CrossRef]
- Thorpe, S.A. Dynamical processes of transfer at the sea surface. Prog. Oceanogr. 1995, 35, 315–352. [Google Scholar] [CrossRef]
- Blenkinsopp, C.E.; Chaplin, J.R. Void fraction measurements in breaking waves. Proc. R. Soc. A 2007, 463, 3151–3170. [Google Scholar] [CrossRef]
- Blenkinsopp, C.E.; Chaplin, J.R. Void fraction measurements and scale effects in breaking waves in freshwater and seawater. Coast. Eng. 2011, 58, 417–428. [Google Scholar] [CrossRef]
- Leifer, I.; de Leeuw, G. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles. J. Geophys. Res. 2006, 111, C06020. [Google Scholar] [CrossRef]
- Leifer, I.; Caulliez, G.; de Leeuw, G. Bubbles generated from wind steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics. J. Geophys. Res. 2006, 111, C06021. [Google Scholar] [CrossRef]
- Wu, J. Bubbles in the near-surface ocean: A general description. J. Geophys. Res. 1988, 93, 587–590. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Huq, P. Characteristics of bubble clouds at various wind speeds. J. Geophys. Res. 2012, 117, C03036. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Huq, P. Effects of Salinity on Surface Lifetime of Large Individual Bubbles. J. Mar. Sci. Eng. 2017, 5, 41. [Google Scholar] [CrossRef]
- Lewis, E.R.; Schwartz, S.E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review; American Geophysical Union: Washington, DC, USA, 2004. [Google Scholar]
- Deane, G.B. Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Am. 1997, 102, 2671–2689. [Google Scholar] [CrossRef]
- Callaghan, A.H.; Deane, G.B.; Stokes, M.D. Laboratory air-entraining breaking waves: Imaging visible foam signatures to estimate energy dissipation. Geophys. Res. Lett. 2016, 43. [Google Scholar] [CrossRef]
- Deane, G.B.; Stokes, M.D. Scale dependence of bubble creation mechanisms in breaking waves. Nature 2002, 418, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.C. The role of salt in whitecap persistence. Deep Sea Res. 1975, 22, 653–657. [Google Scholar] [CrossRef]
- Struthwolf, M.; Blanchard, D.C. The residence time of air bubbles <400 µm diameter at the surface of distilled water and seawater. Tellus 1984, 36B, 294–299. [Google Scholar] [CrossRef]
- Callaghan, A.H.; Deane, G.B.; Stokes, M.D. Two regimes of laboratory Whitecap foam decay: Bubble-plume controlled and surfactant stabilized. J. Phys. Oceanogr. 2013, 43, 1114–1126. [Google Scholar] [CrossRef]
- Monahan, E.M. Sea Spray and Its Relationship to Low Elevation Wind Speed. Ph.D. Thesis, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, 1966. [Google Scholar]
- Cartmill, J.; Su, M.-Y. Bubble-size distribution under salt-water and fresh-water breaking waves. Dyn. Atmos. Oceans 1993, 20, 25–31. [Google Scholar] [CrossRef]
- Carey, W.M.; Fitzgerald, J.W.; Monahan, E.C.; Wang, Q. Measurement of the sound produced by a tipping trough with fresh and salt water. J. Acoust. Soc. Am. 1993, 93, 3178–3192. [Google Scholar] [CrossRef]
- Monahan, E.C.; Wang, Q.; Wang, X.; Wilson, M.B. Air entrainment by breaking waves: A laboratory assessment. AER Technol. 1994, 187, 21–26. [Google Scholar]
- Monahan, E.M. Comments on “Bubbles produced by salt breaking waves in fresh and water”. J. Phys. Oceanogr. 2001, 31, 1931–1932. [Google Scholar] [CrossRef]
- De Leeuw, G.; Andreas, E.L.; Anguelova, M.D.; Fairall, C.W.; Lewis, E.R.; O’Dowd, C.; Schulz, M.; Schwartz, S.E. Production flux of sea spray aerosol. Rev. Geophys. 2011, 49, RG2001. [Google Scholar] [CrossRef]
- Monahan, E.C.; Lu, M. Acoustically relevant bubble assemblages and their dependence on meteorological parameters. IEEE J. Ocean. Eng. 1990, 15, 340–349. [Google Scholar] [CrossRef]
- Wu, J. Bubbles in the near-surface ocean: Their various structures. J. Phys. Oceanogr. 1994, 24, 1955–1965. [Google Scholar] [CrossRef]
- Bell, T.G.; Landwehr, S.; Miller, S.D.; de Bruyn, W.J.; Callaghan, A.H.; Scanlon, B.; Ward, B.; Yang, M.; Saltzman, E.S. Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds. Atmos. Chem. Phys. 2017, 17, 9019–9033. [Google Scholar] [CrossRef]
- Chattoraj, D.K.; Birdi, K.S. Adsorption and the Gibbs Surface Excess; Plenum Publishing Company: New York, NY, USA, 1984. [Google Scholar]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, 3rd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Monahan, E.M.; Zietlow, C.R. Laboratory comparisons of fresh-water and salt-water whitecaps. J. Geophys. Res. 1969, 74, 6961–6966. [Google Scholar] [CrossRef]
- Bin, A.K. Gas entrainment by plunging liquid jets. Chem. Eng. Sci. 1993, 48, 3585–3630. [Google Scholar] [CrossRef]
- Kiger, K.T.; Duncan, J.H. Air-Entrainment Mechanisms in Plunging Jets and Breaking Waves. Annu. Rev. Fluid Mech. 2012, 44, 563–596. [Google Scholar] [CrossRef]
- Fuentes, E.; Coe, H.; Green, D.; de Leeuw, G.; McFiggans, G. Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Tech. 2010, 3, 141–162. [Google Scholar] [CrossRef]
- Koga, M. Bubble entrainment in breaking wind waves. Tellus 1982, 34, 481–489. [Google Scholar] [CrossRef]
- Salter, M.E.; Nilsson, E.D.; Butcher, A.; Bilde, M. On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. J. Geophys. Res. Atmos. 2014, 119, 9052–9072. [Google Scholar] [CrossRef]
- Detsch, R.; Sharma, R.N. The critical angle for gas bubble entrainment by plunging liquid jet. Chem. Eng. J. 1990, 44, 157–166. [Google Scholar] [CrossRef]
- Chanson, H.; Aoki, S.; Maruyama, M. Unsteady air bubble entrainment and detrainment at a plunging breaker: Dominant time scales and similarity of water level variations. Coast. Eng. 2002, 46, 139–157. [Google Scholar] [CrossRef]
- Bonmarin, P. Geometric properties of deep-water breaking waves. J. Fluid Mech. 1989, 209, 405–433. [Google Scholar] [CrossRef]
- Blenkinsopp, C.E.; Chaplin, J.R. Bubble size measurements in breaking waves using optical fiber phase detection probes. IEEE J. Ocean. Eng. 2010, 35, 388–401. [Google Scholar] [CrossRef]
- Hwang, P.A.; Poon, Y.-K.; Wu, J. Temperature effects on generation and entrainment of bubbles induced by a water jet. J. Phys. Oceanogr. 1991, 21, 1602–1605. [Google Scholar] [CrossRef]
Supply Tank | Receiving Tank | ||||||
---|---|---|---|---|---|---|---|
S psu | T °C | S psu | T °C | γ0 mN m−1 | γ mN m−1 | σγ mN m−1 | ∆γ mN m−1 |
1 | 17.4 | 1 | 17.4 | 73.16 | 73.08 | 2.45 * | 0.08 |
6.5 | 17.3 | 6 | 17.4 | 73.27 | 74.22 | 3.81 ** | -0.95 |
13 | 17.3 | 13 | 17.4 | 73.42 | 74.12 | 3.81 ** | -0.70 |
19 | 17.3 | 19 | 17.3 | 73.57 | 72.39 | 3.72 ** | 1.18 |
25 | 17.3 | 25 | 17.3 | 73.70 | 73.44 | 1.56 * | 0.26 |
31 | 17.3 | 32 | 17.2 | 73.87 | 73.76 | 3.79 ** | 0.11 |
38 | 17.2 | 38 | 17.2 | 74.00 | 69.51 | 6.90 * | 4.49 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anguelova, M.D.; Huq, P. Effects of Salinity on Bubble Cloud Characteristics. J. Mar. Sci. Eng. 2018, 6, 1. https://doi.org/10.3390/jmse6010001
Anguelova MD, Huq P. Effects of Salinity on Bubble Cloud Characteristics. Journal of Marine Science and Engineering. 2018; 6(1):1. https://doi.org/10.3390/jmse6010001
Chicago/Turabian StyleAnguelova, Magdalena D., and Pablo Huq. 2018. "Effects of Salinity on Bubble Cloud Characteristics" Journal of Marine Science and Engineering 6, no. 1: 1. https://doi.org/10.3390/jmse6010001
APA StyleAnguelova, M. D., & Huq, P. (2018). Effects of Salinity on Bubble Cloud Characteristics. Journal of Marine Science and Engineering, 6(1), 1. https://doi.org/10.3390/jmse6010001