Numerical Modeling of Tsunami Amplification and Beachfront Overland Flow in the Ukai Coast of Japan
Abstract
1. Introduction
2. Available Data in the Study Site
2.1. Study Site and Bathymetry Data

2.2. Tsunami Data
3. HEC-RAS Model Simulations of Tsunami Amplification from Iida Bay to the Ukai Coast
3.1. HEC-RAS Mode Description
3.2. HEC-RAS Model Setup and Validation
3.3. Tsunami Wave Shoaling Simulated by HEC-RAS Model
3.3.1. Shoaling in Non-Breaking Wave Region
3.3.2. Tsunami Shoaling in the Surf Zone
3.4. Travel Time from Offshore Boundary in Iida Bay to the Ukai Coastline
4. Modeling Tsunami Overland Flow on Beachfront Ground Using a 2D Wave Dynamic Model
4.1. Model Description
- RANS Equations:
- Turbulence Model:
4.2. Model Setups for Tsunami Overland Flow and Inundation in Ukai Coast
4.3. VOF Wave Model Validation for the Case Study of Ukai
4.4. Effects of Land Covers on Beachfront Tsunami Overland Flow Characteristics in Ukai Coast
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuhi, M.; Umeda, S.; Arita, M.; Ninomiya, J.; Gokon, H.; Arikawa, T.; Baba, T.; Imamura, F.; Kumagai, K.; Kure, S.; et al. Dataset of Post-Event Survey of the 2024 Noto Peninsula Earthquake Tsunami in Japan. Sci. Data 2024, 11, 786. [Google Scholar] [CrossRef]
- Masuda, H.; Sugawara, D.; Cheng, A.-C.; Suppasri, A.; Shigihara, Y.; Kure, S.; Imamura, F. Modeling the 2024 Noto Peninsula Earthquake Tsunami: Implications for Tsunami Sources in the Eastern Margin of the Japan Sea. Geosci. Lett. 2024, 11, 29. [Google Scholar] [CrossRef]
- Pakoksung, K.; Suppasri, A.; Imamura, F. Preliminary Modeling and Analysis of the Tsunami Generated by the 2024 Noto Peninsula Earthquake on 1 January: Wave Characteristics in the Sea of Japan. Ocean Eng. 2024, 307, 118172. [Google Scholar] [CrossRef]
- 2024 Noto Earthquake. Available online: https://en.wikipedia.org/wiki/2024_Noto_earthquake (accessed on 20 April 2024).
- MLIT (Ministry of Land, Infrastructure), Transport and Tourism. Aerially Estimated Tsunami Inundation Area. Available online: https://www.mlit.go.jp/river/bousai/240101_noto/pdf/tsunamishinsui_higai_240202.pdf (accessed on 4 April 2024).
- Heidarzadeh, M.; Ishibe, T.; Gusman, A.R.; Miyazaki, H. Field Surveys of Tsunami Runup and Damage Following the January 2024 Mw 7.5 Noto (Japan Sea) Tsunamigenic Earthquake. Ocean Eng. 2024, 307, 118140. [Google Scholar] [CrossRef]
- Regrets, Sorrow: Residents Had Little Time to Escape Tsunami. Available online: https://www.asahi.com/ajw/articles/15157634 (accessed on 30 April 2024).
- Vantor Open Data Program Available to Users on Discover Platform, Image ID:10300100F2BE1300. Available online: https://vantor.com/company/open-data-program/ (accessed on 5 December 2025).
- Preliminary Earthquake Fault Model of the 2024 Noto Peninsula Earthquake (as of 29 February 2024). Available online: https://www.gsi.go.jp/common/000253939.pdf (accessed on 2 April 2024).
- Fukui, N.; Miyashita, T.; Yasuda, T.; Mori, N. Numerical Analysis of Local Tsunami Heights and Arrival Times of the 2024 Noto Peninsula Tsunami. Coast. Eng. J. 2025, 67, 292–305. [Google Scholar] [CrossRef]
- Takagi, H.; Siddiq, N.L.; Tanako, F.; De La Rosa, D.P.B. Locally Amplified Tsunami in Iida Bay Due to the 2024 Noto Peninsula Earthquake. Ocean Eng. 2024, 307, 118180. [Google Scholar] [CrossRef]
- Mulia, I.E.; Heidarzadeh, M.; Gusman, A.R.; Satake, K.; Fujii, Y.; Sujatmiko, K.A.; Meilano, I.; Windupranata, W. Compounding Impacts of the Earthquake and Submarine Landslide on the Toyama Bay Tsunami during the January 2024 Noto Peninsula Event. Ocean Eng. 2024, 310, 118698. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Matsuba, Y.; Shimozono, T.; Tajima, Y. Nearshore Propagation and Amplification of the Tsunami Following the 2024 Noto Peninsula Earthquake, Japan. Geophys. Res. Lett. 2024, 51, e2024GL110231. [Google Scholar] [CrossRef]
- Knowles, J.; Yeh, H. On Shoaling of Solitary Waves. J. Fluid Mech. 2018, 848, 1073–1097. [Google Scholar] [CrossRef]
- Knowles, J.; Yeh, H. Evolution of Tsunami-like Isolated Waves Shoaling over a Plane Slope. Phys. Fluids 2023, 35, 047120. [Google Scholar] [CrossRef]
- Green’s Law. Available online: https://en.wikipedia.org/wiki/Green%27s_law (accessed on 7 April 2024).
- Xie, P.; Du, Y. CFD Modeling of Nonlinear Tsunami Wave Run-up Dynamics: Analytical Calibration and Estimation Methods. Ocean Eng. 2024, 313, 119495. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Liu, H. Boussinesq Modeling for the Runup of Solitary-like Waves on a Slope and Circular Island. Ocean Eng. 2021, 226, 108742. [Google Scholar] [CrossRef]
- Zhao, X.; Ren, Z.; Liu, H. Propagation Characteristics of Tsunami Waves in Shear Flow Based on the Boussinesq Model with Constant Vorticity. Ocean Eng. 2023, 286, 115543. [Google Scholar] [CrossRef]
- Xie, P.; Chu, V.H. The Forces of Tsunami Waves on a Vertical Wall and on a Structure of Finite Width. Coast. Eng. 2019, 149, 65–80. [Google Scholar] [CrossRef]
- Rajaie, M.; Azimi, A.H.; Nistor, I.; Rennie, C.D. Experimental Investigations on Hydrodynamic Characteristics of Tsunami-Like Hydraulic Bores Impacting a Square Structure. J. Hydraul. Eng. 2022, 148, 04021061. [Google Scholar] [CrossRef]
- Kuiry, S.N.; Ding, Y.; Wang, S.S.Y. Numerical Simulations of Morphological Changes in Barrier Islands Induced by Storm Surges and Waves Using a Supercritical Flow Model. Front. Struct. Civ. Eng. 2014, 8, 57–68. [Google Scholar] [CrossRef]
- Pan, C.; Huang, W. Numerical Modeling of Suspended Sediment Transport Affected by Tidal Bore in Qiantang Estuary. J. Coast. Res. 2010, 26, 1123–1132. [Google Scholar] [CrossRef]
- Pan, C.; Huang, W. Numerical Modeling of Tsunami Wave Run-Up and Effects on Sediment Scour around a Cylindrical Pier. J. Eng. Mech. 2012, 138, 1224–1235. [Google Scholar] [CrossRef]
- FHWA (The Federal Highway Administration). Evaluating Scour at Bridges, HEC-18; Publication Number: HIF-12-003; FHWA: Washington, DC, USA, 2012; p. 340. [Google Scholar]
- Ishii, H.; Takabatake, T.; Esteban, M.; Stolle, J.; Shibayama, T. Experimental and Numerical Investigation on Tsunami Run-up Flow around Coastal Buildings. Coast. Eng. J. 2021, 63, 485–503. [Google Scholar] [CrossRef]
- Harish, S.; Sriram, V.; Schüttrumpf, H.; Sannasiraj, S.A. Tsunami-like Flow Induced Forces on the Structure: Dependence of the Hydrodynamic Force Coefficients on Froude Number and Flow Channel Width in Quasi-Steady Flow Phase. Coast. Eng. 2022, 172, 104078. [Google Scholar] [CrossRef]
- Pasha, G.A.; Tanaka, N. Critical Resistance Affecting Sub- to Super-Critical Transition Flow by Vegetation. J. Earthq. Tsunami 2019, 13, 1950004. [Google Scholar] [CrossRef]
- Esteban, M.; Roubos, J.J.; Iimura, K.; Salet, J.T.; Hofland, B.; Bricker, J.; Ishii, H.; Hamano, G.; Takabatake, T.; Shibayama, T. Effect of Bed Roughness on Tsunami Bore Propagation and Overtopping. Coast. Eng. 2020, 157, 103539. [Google Scholar] [CrossRef]
- Adityawan, M.B.; Rahmasari, P.; Chrysanti, A.; Farid, M.; Yakti, B.P.; Purnama, M.R. Effect of Land Cover on Tsunami Overland Flow Propagation: A Case Study of Painan, West Sumatra, Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 1704. [Google Scholar] [CrossRef]
- Murtaza, N.; Pasha, G.A.; Khan, Z.U.; Alotaibi, S.; Akbar, Z.; Khedher, K.M. Impact of Dyke and Vegetation on Fluid Force and Moment Reduction under Sub and Supercritical Flow Conditions. Phys. Fluids 2024, 36, 105196. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, W. Numerical Modeling of Wave Runup and Forces on an Idealized Beachfront House. Ocean Eng. 2008, 35, 106–116. [Google Scholar] [CrossRef]
- GEBCO (General Bathymetric Chart of the Oceans 2024). Available online: https://download.gebco.net/ (accessed on 15 April 2024).
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; Advanced Series on Ocean Engineering; World Scientific: Singapore, 1991; Volume 2, ISBN 978-981-02-0421-1. [Google Scholar]
- USACE (US Army Corps of Engineers)—Hydrologic Engineering Center: HEC-RAS Documents. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation.aspx (accessed on 20 April 2024).
- Teng, F.; Shen, Q.; Huang, W.; Ginis, I.; Cai, Y. Characteristics of River Flood and Storm Surge Interactions in a Tidal River in Rhode Island, USA. Procedia IUTAM 2017, 25, 60–64. [Google Scholar] [CrossRef]
- Huang, W.; Teng, F.; Ginis, I.; Ullman, D.; Ozguven, E. Rainfall Runoff and Flood Simulations for Hurricane Impacts on Woonasquatucket River, USA. Int. J. Struct. Civ. Eng. Res. 2020, 9, 239–244. [Google Scholar] [CrossRef]
- Pilotti, M.; Milanesi, L.; Bacchi, V.; Tomirotti, M.; Maranzoni, A. Dam-Break Wave Propagation in Alpine Valley with HEC-RAS 2D: Experimental Cancano Test Case. J. Hydraul. Eng. 2020, 146, 05020003. [Google Scholar] [CrossRef]
- Amaliah, R.; Ginting, B.M. Investigating the Capability of HEC-RAS Model for Tsunami Simulation. J. Civ. Eng. Forum 2023, 9, 161–180. [Google Scholar] [CrossRef]
- Borzì, L.; Scala, P.; Distefano, S.; Laksono, F.X.A.T.; Manno, G.; Innangi, S.; Gamberi, F.; Kovács, J.; Ciraolo, G.; Di Stefano, A. Tsunami Propagation and Flooding Maps: An Application for the Island of Lampedusa, Sicily Channel, Italy. Earth Surf. Process. Landf. 2024, 49, 4842–4861. [Google Scholar] [CrossRef]
- Wuppukondur, A.; Baldock, T.E. Physical and Numerical Modelling of Representative Tsunami Waves Propagating and Overtopping in Converging Channels. Coast. Eng. 2022, 174, 104120. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Engineering Manual, EM 1110-2-1100, Part II. In Chapter 1. Water Wave Mechanics; Chapter 3, Estimation of Nearshore Waves; Chapter 4. Sur Zone Hydrodynamics; U.S. Army Corps of Engineers: Washington, DC, USA, 2002. [Google Scholar]
- Sandanbata, O.; Watada, S.; Satake, K.; Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H. Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green’s Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan. Pure Appl. Geophys. 2018, 175, 1371–1385. [Google Scholar] [CrossRef]
- Breaking Tsunami Waves Along India’s Eastern Coast. Available online: https://www.jpl.nasa.gov/images/pia04372-breaking-tsunami-waves-along-indias-eastern-coast/ (accessed on 11 April 2024).
- McCowan, J., VII. On the solitary wave. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 1894, 32, 45–58. [Google Scholar] [CrossRef]
- Robertson, B.; Hall, K.; Zytner, R.; Nistor, I. Breaking Waves: Review of Characteristic Relationships. Coast. Eng. J. 2013, 55, 1350002-1–1350002-40. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, W. Three-Dimensional Numerical Modeling of Solitary Wave Breaking and Force on a Cylinder Pile in a Coastal Surf Zone. J. Eng. Mech. 2015, 141, A4014001. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, H. Numerical Modeling of Dynamic Wave Force Acting on Escambia Bay Bridge Deck during Hurricane Ivan. J. Waterw. Port Coast. Ocean Eng. 2009, 135, 164–175. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, W. Failure Mechanism and Risk Analysis of an Elevated House Damaged during Hurricane Michael by Full-Scale Modeling of Wave-Surge Loads. Ocean Eng. 2024, 300, 117387. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, W.; Chen, Q. Effects of Submersion Depth on Wave Uplift Force Acting on Biloxi Bay Bridge Decks during Hurricane Katrina. Comput. Fluids 2010, 39, 1390–1400. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, W.; Wang, J. Modeling Hurricane Wave Forces Acting on Coastal Bridges by Artificial Neural Networks. J. Mar. Sci. Eng. 2025, 13, 2080. [Google Scholar] [CrossRef]
- Zhu, F.; Dodd, N. Swash zone morphodynamic modelling including sediment entrained by bore-generated turbulence. Adv. Water Resour. 2020, 146, 103756. [Google Scholar] [CrossRef]
- Roberson, J.A.; Cassidy, J.J.; Chaudhry, M.H. Hydraulic Engineering, 2nd ed.; Wiley: Chichester, NY, USA, 1998; ISBN 978-0-471-12466-5. [Google Scholar]
- Tang, J.; Zhao, C.; Shen, Y. Numerical investigation of the effects of coastal vegetation zone width on wave run-up attenuation. Ocean Eng. 2019, 189, 106395. [Google Scholar] [CrossRef]
- Kolukula, S.S.; Murty, P.L.N.; Kumar, T.S.; Pattabhi Ramarao, E.; Ramana Murthy, M.V. Tsunami modelling over global oceans. R. Soc. Open Sci. 2025, 12, 241128. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yin, K.; Ghorbanzadeh, M.; Ozguven, E.; Xu, S.; Vijayan, L. Integrating storm surge modeling with traffic data analysis to evaluate the effectiveness of hurricane evacuation. Front. Struct. Civ. Eng. 2021, 15, 1301–1316. [Google Scholar] [CrossRef]
- Vijayan, L.; Huang, W.; Ma, M.; Ozguven, E.; Ghorbanzadeh, M.; Yang, J.; Yang, Z. Improving the accuracy of hurricane wave modeling in Gulf of Mexico with dynamically-coupled SWAN and ADCIRC. Ocean Eng. 2023, 274, 114044. [Google Scholar] [CrossRef]
- Vijayan, L.; Huang, W.; Ma, M.; Ozguven, E.; Yang, J.; Alisan, O. Rapid simulation of storm surge inundation for hurricane evacuation in Florida by multi-scale nested modeling approach. Int. J. Disaster Risk Reduct. 2023, 99, 104134. [Google Scholar] [CrossRef]
- Ma, M.; Huang, W.; Xu, S.; Yin, K.; Vijayan, L. Improving storm surge predictions in the Gulf of Mexico by enhancing a parametric model of cyclone. Ocean Eng. 2026, 343, 123469. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Huang, W.; Xie, Y. Effects of sea level rise and typhoon intensity on storm surge and waves in Pearl River Estuary. Ocean Eng. 2017, 136, 80–93. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Zhao, Q.; Huang, W.; Yang, K.; Guo, M. Effects of land cover change on atmospheric and storm surge modeling during typhoon event. Ocean Eng. 2020, 199, 106971. [Google Scholar] [CrossRef]
- Rasyif, T.M.; Kato, S.; Syamsidik Okabe, T. Numerical Simulation of Morphological Changes due to the 2004 Tsunami Wave around Banda Aceh, Indonesia. Geosciences 2019, 9, 125. [Google Scholar] [CrossRef]
- Ma, M.; Huang, W.; Jung, S.; Oslon, C.; Yin, K.; Xu, S. Evaluating Vegetation Effects on Wave Attenuation and Dune Erosion during Hurricane. J. Mar. Sci. Eng. 2024, 12, 1326. [Google Scholar] [CrossRef]
- Ma, M.; Huang, W.; Jung, S.; Xu, S.; Vijayan, L. Modeling hurricane wave propagation and attenuation after overtopping sand dunes during storm surge. Ocean Eng. 2024, 292, 116590. [Google Scholar] [CrossRef]
- Ma, M.; Huang, W.; Vijayan, L.; Jung, S. Modeling wave-surge effects on barrier-island breaching in St. Joseph Peninsula during Hurricane Michael. Nat. Hazards 2024, 120, 14199–14226. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Huang, W. Modeling sediment concentration and transport induced by storm surge in Hengmen Eastern Access Channel. Nat. Hazards 2016, 82, 617–642. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Huang, W.; Li, R.; Xiao, H. Modeling beach profile changes by typhoon impacts at Xiamen coast. Nat. Hazards 2019, 95, 783–804. [Google Scholar] [CrossRef]















| Observation (Yuhi et al., 2024 [1]) | Manning n = 0.015 (Asphalt Road Surface) | Manning n = 0.03 (Grass Landcover) | |
|---|---|---|---|
| Maximum Inundation | 3 m | 3.05 m | 2.47 m |
| Absolute Difference | - | 0.05 m | 0.53 m |
| Percentage Difference | - | 1% | 19.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xiao, H.; Liu, R.; Huang, W. Numerical Modeling of Tsunami Amplification and Beachfront Overland Flow in the Ukai Coast of Japan. J. Mar. Sci. Eng. 2026, 14, 193. https://doi.org/10.3390/jmse14020193
Xiao H, Liu R, Huang W. Numerical Modeling of Tsunami Amplification and Beachfront Overland Flow in the Ukai Coast of Japan. Journal of Marine Science and Engineering. 2026; 14(2):193. https://doi.org/10.3390/jmse14020193
Chicago/Turabian StyleXiao, Hong, Rundong Liu, and Wenrui Huang. 2026. "Numerical Modeling of Tsunami Amplification and Beachfront Overland Flow in the Ukai Coast of Japan" Journal of Marine Science and Engineering 14, no. 2: 193. https://doi.org/10.3390/jmse14020193
APA StyleXiao, H., Liu, R., & Huang, W. (2026). Numerical Modeling of Tsunami Amplification and Beachfront Overland Flow in the Ukai Coast of Japan. Journal of Marine Science and Engineering, 14(2), 193. https://doi.org/10.3390/jmse14020193
