Calibration and Verification of a Coupled Model for the Coastal and Estuaries in the Mekong River Delta, Vietnam
Abstract
1. Introduction
2. Study Area and Model Setup
2.1. Study Area and Data Collection
2.2. Model Setup
2.3. Model Calibration and Verification
3. Results and Discussion
3.1. Hydrodynamic Model Calibration and Verification
3.2. Wave Spectral Model Calibration and Verification
- -
- The values of RMSE for wave height at the four stations range from 14.70 to 15.64%, with an average of 15.1%. The MAE ranges from 12.10% to 13.51%, with an average of 12.8%.
- -
- The values of RMSE for wave period at the four stations range from 15.10 to 21.24%, with an average of 18.1%. The MAE ranges from 9.42% to 21.26%, with an average of 16.1%.
- -
- The values of RMSE for wave direction at the four stations range from 18.80 to 21.40%, with an average of 20.9%. The MAE ranges from 16.30% to 19.50%, with an average of 17.9%.
- -
- The values of RMSE for wave height at two stations range from 17.34 to 18.66%, with an average of 18.0%. The MAE ranges from 14.32% to 16.51%, with an average of 15.4%.
- -
- The values of RMSE for wave period at two stations range from 15,34 to 17.52%, with an average of 16.4%. The MAE ranges from 13.35% to 15.39%, with an average of 14.4%.
- -
- The values of RMSE for wave direction at two stations range from 20.39 to 21.45%, with an average of 20.9%. The MAE ranges from 18.32% to 19.12%, with an average of 18.7%.
3.3. Mud Transport Model Calibration and Verification
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.V. Morphological Evolution and Back Siltation of Navigation Channel in Dinh An Estuary, Mekong River Delta: Understanding, Modelling and Soluting. Ph.D. Dissertation, Hohai University, Nanjing, China, 2012; p. 181. [Google Scholar]
- An, L.V.; Thanh, N.V.; Van Hai, P.; Lai, T.D. Overview of Coastal Protection Structures in the Mekong River Delta. In Proceedings of the 4th International Conference on Sustainability in Civil Engineering (ICSCE 2022); Hanoi, Vietnam, 25-27 November 2022; Nguyen-Xuan, T., Nguyen-Viet, T., Bui-Tien, T., Nguyen-Quang, T., De Roeck, G., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Singapore, 2024; Volume 344, pp. 377–395. [Google Scholar] [CrossRef]
- Wolanski, E.; Ngoc Huan, N.; Trong Dao, L.; Huu Nhan, N.; Ngoc Thuy, N. Fine-sediment Dynamics in the Mekong River Estuary, Vietnam. Estuar. Coast. Shelf Sci. 1996, 43, 565–582. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Zheng, J.-H.; Zhang, J.-S. Mechanism of back siltation in navigation channel in Dinh An Estuary, Vietnam. Water Sci. Eng. 2013, 6, 178–188. [Google Scholar]
- Tran Anh, D.; Hoang, L.P.; Bui, M.D.; Rutschmann, P. Simulating Future Flows and Salinity Intrusion Using Combined One- and Two-Dimensional Hydrodynamic Modelling—The Case of Hau River, Vietnamese Mekong Delta. Water 2018, 10, 897. [Google Scholar] [CrossRef]
- Thanh, V.Q.; Roelvink, D.; van der Wegen, M.; Reyns, J.; Kernkamp, H.; Van Vinh, G.; Linh, V.T.P. Flooding in the Mekong Delta: The impact of dyke systems on downstream hydrodynamics. Hydrol. Earth Syst. Sci. 2020, 24, 189–212. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Le, V.-A. Fluid mud properties and nautical depth estimation: A case study in navigation channel of Duyen Hai Port, Vietnam. Ocean. Eng. 2023, 284, 115163. [Google Scholar] [CrossRef]
- Tu, L.X.; Thanh, V.Q.; Reyns, J.; Van, S.P.; Anh, D.T.; Dang, T.D.; Roelvink, D. Sediment transport and morphodynamical modeling on the estuaries and coastal zone of the Vietnamese Mekong Delta. Cont. Shelf Res. 2019, 186, 64–76. [Google Scholar] [CrossRef]
- Thanh, N.V.; Jinhai, Z.; Hau, L.P. Influence of reservoirs on morphological evolution of Red River, Vietnam. In Proceedings of the 8th National Conference on Sediment Basic Theoretical Research, Beijing, China, 22–25 April 2025; Hohai University Press: Nanjing, China, 2011. [Google Scholar]
- Letrung, T.; Li, Q.; Li, Y.; Vukien, T.; Nguyenthai, Q. Morphology Evolution of Cuadai Estuary, Mekong River, Southern Vietnam. J. Hydraul. Eng. 2013, 18, 1122–1132. [Google Scholar] [CrossRef]
- Anikiyev, V.V.; Zaytsev, O.V.; Trinh, T.H.; Savil’Yeva, I.I.; Starodubtsev, Y.; Shumilin, Y.N. Variation in the time-space distribution of suspended matter in the coastal zone of the Mekong River. Oceanology 1986, 26, 725–729. [Google Scholar]
- Manh, N.V.; Dung, N.V.; Hung, N.N.; Merz, B.; Apel, H. Large-scale suspended sediment transport and sediment deposition in the Mekong Delta. Hydrol. Earth Syst. Sci. 2014, 18, 3033–3053. [Google Scholar] [CrossRef]
- Duy Vinh, V.; Ouillon, S.; Van Thao, N.; Ngoc Tien, N. Numerical Simulations of Suspended Sediment Dynamics Due to Seasonal Forcing in the Mekong Coastal Area. Water 2016, 8, 255. [Google Scholar] [CrossRef]
- Le Xuan, T.; Ba, H.T.; Thanh, V.Q.; Wright, D.P.; Hasan Tanim, A.; Tran Anh, D. Evaluation of coastal protection strategies and proposing multiple lines of defense under climate change in the Mekong Delta for sustainable shoreline protection. Ocean. Coast. Manag. 2022, 228, 106301. [Google Scholar] [CrossRef]
- Trieu, N.A. Assessing the Effects of Upstream Dam Developments on Sediment Distribution in the Lower Mekong Delta, Vietnam. J. Water Resour. Prot. 2017, 9, 822–840. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, C.; Fan, D.; Xing, W.; Qin, R.; Zou, Q. Spatio-Temporal Variation in Suspended Sediment during Typhoon Ampil under Wave–Current Interactions in the Yangtze River Estuary. Water 2024, 16, 1783. [Google Scholar] [CrossRef]
- Chen, X. Simulating hydrodynamics in a spring-fed estuary using a three-dimensional unstructured Cartesian grid model. Estuar. Coast. Shelf Sci. 2012, 115, 246–259. [Google Scholar] [CrossRef]
- Le Xuan, T.; Nguyen Cong, P.; Vo Quoc, T.; Tran, Q.Q.; Wright, D.P.; Tran Anh, D. Multi-scale modelling for hydrodynamic and morphological changes of breakwater in coastal Mekong Delta in Vietnam. J. Coast. Conserv. 2022, 26, 18. [Google Scholar] [CrossRef]
- PORTCOAST. Feasibility Project of Waterway for Heavy-Tonnages Ships to Enter the Hau River; Final Report in Project Management Unit of Waterway; Vietnam Ministry of Transport: Hochiminh City, Vietnam, 2006. [Google Scholar]
- Loi, T.D. Report on Numerical Modelling in The project of Dredging and Recovering Products of Dinh An—Hau River Navigation Channel to Meet the Needs of Ships with a Capacity of 10,000 Tons or More; Portcoast Consultant Corporation: Hanoi, Vietnam, 2024. [Google Scholar]
- Nguyen, V.T.; Nguyen, A.D.; Le, V.A. Optimization of Countermeasures to Stable and Protect Navigation Channels in Dinh An Estuary and Coastal of Tra Vinh Province, Vietnam. J. ETA Marit. Sci. 2024, 12, 2–13. [Google Scholar] [CrossRef]
- An, L.V.; Thanh, N.V.; Yasuyuki, N.; Bo, N.V. Investigation of fluid mud in Duyen Hai port, Tra Vinh province. Transp. Commun. Sci. J. 2020, 71, 553–567. [Google Scholar] [CrossRef]
- Thanh, L.T. Morphological Processes of the Tien River Estuaries, Mekong River, Vietnam. Ph.D. Dissertation, Hohai University, Nanjing, China, 2012; p. 187. [Google Scholar]
- DHI. MIKE 21&3 Flow Model FM, Hydrodynamic and Transport Modulem, Scientific Documentation; DHI Water&Environment: Hørsholm, Denmark, 2009; p. 56. [Google Scholar]
- DHI. Spectral Wave Module, Scientific Documentation; DHI Water&Environment: Hørsholm, Denmark, 2009. [Google Scholar]
- DHI. MIKE 21&3 Flow Model FM, Mud Transport Module, Scientific Documentation; D. Water&Environment, Ed.; DHI: Hørsholm, Denmark, 2009; p. 46. [Google Scholar]
- Hsu, M.H.; Kuo, A.Y.; Kuo, J.T.; Liu, W.C. Procedure to Calibrate and Verify Numerical Models of Estuarine Hydrodynamics. J. Hydraul. Eng. 1999, 125, 162–182. [Google Scholar] [CrossRef]
- Williams, J.J.; Esteves, L.S. Guidance on Setup, Calibration, and Validation of Hydrodynamic, Wave, and Sediment Models for Shelf Seas and Estuaries. Adv. Civ. Eng. 2017, 2017, 5251902. [Google Scholar] [CrossRef]
- Soulsby, R. Dynamics of Marine Sands: A manual for Practical Applications; Thomas Telford: London, UK, 1997. [Google Scholar]
- Nguyen, D.D. Influence of Quan Chanh Bo Navigation Channel on Hydrodynamic and Sediment Transport in Dinh An Estuary. Master’s Thesis, University of Liège, Liège, Belgium, Water Resources University, Ho Chi Minh City, Vietnam, 2014; p. 105. [Google Scholar]
- Ruessink, B.G.; Walstra, D.J.R.; Southgate, H.N. Calibration and verification of a parametric wave model on barred beaches. Coast. Eng. J. 2003, 48, 139–149. [Google Scholar] [CrossRef]
- SIWRR. Investigation of Morphological Evolution of Neashore Zone in the South-Central and South Provinces of Viet Nam; Southern Institute of Water Resources Research (SIWRR): Ho Chi Minh City, Vietnam, 2003. [Google Scholar]
- Nguyen, V.T.; Vu, M.T.; Zhang, C. Numerical Investigation of Hydrodynamics and Cohesive Sediment Transport in Cua Lo and Cua Hoi Estuaries, Vietnam. J. Mar. Sci. Eng. 2021, 9, 1258. [Google Scholar] [CrossRef]
- Sultana, R.; Hsu, K.L.; Li, J.; Sorooshian, S. Evaluating the Utah Energy Balance (UEB) snow model in the Noah land-surface model. Hydrol. Earth Syst. Sci. 2014, 18, 3553–3570. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885−900. [Google Scholar] [CrossRef]
- Vu, M.T.; Lacroix, Y.; Nguyen, V.T. Investigating the impacts of the regression of Posidonia oceanica on hydrodynamics and sediment transport in Giens Gulf. Ocean. Eng. 2017, 146, 70–86. [Google Scholar] [CrossRef]
- Lumborg, U.; Windelin, A. Hydrography and cohesive sediment modelling: Application to the Rømø Dyb tidal area. J. Mar. Syst. 2003, 38, 287–303. [Google Scholar] [CrossRef]
- Krone, R.B. Flume Studies of the Transport of Sediment in Estuarine Shoaling Processes; Final Report to SanFrancisco District US Army Corps of Engineers, Washington DC; University of California: Berkeley, CA, USA, 1962. [Google Scholar]
- Mehta, A.J.; Partheniades, E. An investigation of the depo-sitional properties of flocculated fine sediments. J. Hydraul. Res. 1975, 12, 361–381. [Google Scholar] [CrossRef]
- An, T.V. Study the Solutions to Stabilized Bed of Channel in Dinh An Estuary Service to Waterway Transport; States Level Project, No. 2003/19; Vietnam Ministry of Science and Technology: Hanoi, Vietnam, 2005. (In Vietnamese) [Google Scholar]
- PORTCOAST; NIPPON KOEI; DHI. Modelling Report, Project of Waterway for Heavy-Tonnages Ships to Enter the Hau River; Project Management Unit of Waterway, Vietnam Ministry of Transport: Hanoi, Vietnam, 2009. (In Vietnamese) [Google Scholar]
- Parchure, T.M.; Mehta, A.J. Erosion of soft cohesive sediment deposits. J. Hydraul. Eng. ASCE 1985, 111, 1308–1326. [Google Scholar] [CrossRef]
- van Rijn, L.C. Transport of Cohesive Materials; Delft Hydraulics H: Delft, The Netherlands, 1989; Volume 461, pp. 12.1–12.27. [Google Scholar]



















| Name | Location | Observed Variables/Measurement Duration | |
|---|---|---|---|
| Ben Trai | 106.0131° E | 9.8466° N | Water level/6–24 May 2004; 12–18 September 2017; 4–19 June 2024 Salinity/6–9 May 2004; 20–23 May 2004 |
| Dai Ngai | 106.0045° E | 9.8010° N | |
| My Thanh | 106.1917° E | 9.4510° N | |
| Tra Vinh | 106.3501° E | 10.0012° N | |
| T4 | 106.2431° E | 9.4773° N | Current/22–24 May 2004 SSC/22–24 May 2004 |
| T5 | 106.3002° E | 9.3955° N | |
| T6 | 106.3425° E | 9.3300° N | |
| T7 | 106.3222° E | 9.2737° N | |
| BT | 106.7834° E | 10.2103° N | Wave/current/SSC (14–18 September 2017) |
| TV | 106.6853° E | 9.5013° N | Wave/current/SSC (14–18 September 2017) |
| BL | 105.7733° E | 9.2075 N | Wave/current/SSC (20–24 September 2017) |
| W7 | 106.5011° E | 9.5000° N | Wave (12–18 September 2017) [22] |
| S0 | 106.4896 E | 9.4312° N | Wave/Current/(7–17 June 2024) |
| S1 | 106.4922° E | 9°27′24.55″ N | Wave/Current/SSC (7–17 June 2024) |
| S2 | 106.5722° E | 9.5277° N | Current, SSC (7–17 June 2024) |
| S3 | 106.3231° E | 9.6111° N | Current, SSC (7–17 June 2024) |
| Layer | Thickness (mm) | Density (kg/m3) | E (kg/m2/s) | τce (N/m2) | a |
|---|---|---|---|---|---|
| 1st layer | 0–5 | 122 | 5 × 10−7 | 0.07 | 4 |
| 2nd layer | 0–50 | 300 | 5 × 10−7 | 0.25 | 4 |
| 3rd layer | 0–50 | 450 | 5 × 10−7 | 0.45 | 4 |
| 4th layer | 500 | 550 | 5 × 10−7 | 1.80 | 1 |
| Station | RMSE | Difference (%) | MAE | Difference (%) |
|---|---|---|---|---|
| Calibration (6–24 May 2004) | ||||
| Water level at Ben Trai (m) | 0.14 | 4.0 | 0.11 | 3.1 |
| Water level at Dai Ngai (m) | 0.19 | 8.0 | 0.22 | 5.7 |
| Water level at My Thanh (m) | 0.15 | 4.8 | 0.14 | 2.9 |
| Water level at Tra Vinh (m) | 0.20 | 6.2 | 0.23 | 5.5 |
| Average | 5.8 | 4.3 | ||
| First Verification (12–18 September 2017) | ||||
| Water level at Ben Trai (m) | 0.12 | 3.9 | 0.09 | 2.7 |
| Water level at Dai Ngai (m) | 0.26 | 7.2 | 0.20 | 5.1 |
| Water level at My Thanh (m) | 0.12 | 4.1 | 0.11 | 2.8 |
| Water level at Tra Vinh (m) | 0.23 | 6.3 | 0.15 | 5.0 |
| Average | 5.4 | 3.9 | ||
| Second Verification (4–19 June 2024) | ||||
| Water level at Ben Trai (m) | 0.11 | 3.1 | 0.09 | 2.5 |
| Water level at Dai Ngai (m) | 0.20 | 5.7 | 0.20 | 5.0 |
| Water level at My Thanh (m) | 0.10 | 3.6 | 0.10 | 1.6 |
| Water level at Tra Vinh (m) | 0.19 | 5.1 | 0.12 | 4.1 |
| Average | 4.4 | 3.3 | ||
| Station | RMSE | Difference (%) | MAE | Difference (%) |
|---|---|---|---|---|
| Calibration (6–24 May 2004) | ||||
| Salinity at Ben Trai (PSU) | 1.20 | 21.4 | 1.12 | 18.8 |
| Salinity at Dai Ngai (PSU) | 1.22 | 18.4 | 0.92 | 13.6 |
| Salinity at My Thanh (PSU) | 0.63 | 14.3 | 0.51 | 11.7 |
| Salinity at Tra Vinh (PSU) | 1.20 | 20.8 | 1.08 | 15.2 |
| Average | 18.1 | 14.9 | ||
| Station | RMSE | Difference (%) | MAE | Difference (%) |
|---|---|---|---|---|
| Calibration (6–24 May 2004) | ||||
| Current speed at T4 | 0.09 | 21.5 | 0.08 | 17.6 |
| Current speed at T5 | 0.08 | 19.4 | 0.07 | 15.7 |
| Current speed at T6 | 0.17 | 17.5 | 0.13 | 13.4 |
| Current speed at T7 | 0.17 | 19.2 | 0.14 | 15.1 |
| Average | 19.4 | 15.5 | ||
| Current direction at T4 | 65.52 | 26.0 | 31.84 | 12.7 |
| Current direction at T5 | 29.49 | 12.5 | 19.43 | 8.2 |
| Current direction at T6 | 49.26 | 23.7 | 29.97 | 14.4 |
| Current direction at T7 | 44.31 | 20.8 | 33.39 | 15.6 |
| Average | 20.8 | 12.7 | ||
| First Verification (12–18 September 2017) | ||||
| Current speed at BT(m/s) | 0.16 | 18.8 | 0.18 | 13.6 |
| Current speed at TV (m/s) | 0.12 | 17.6 | 0.10 | 13.2 |
| Current speed at BL (m/s) | 0.14 | 19.5 | 0.17 | 21.6 |
| Current speed at W7 (m/s) | 0.11 | 17.2 | 0.10 | 13.0 |
| Average | 18.5 | 19.4 | ||
| Current direction at BT (°) | 45.8 | 21.4 | 54.4 | 24.3 |
| Current direction at TV (°) | 36.2 | 17.9 | 16.5 | 23.2 |
| Current direction at BL (°) | 41.2 | 23.4 | 50.7 | 25.7 |
| Current direction at W7 (°) | 35.4 | 17.3 | 16.5 | 8.4 |
| Average | 20.0 | 240 | ||
| Second Verification (4–19 June 2024) | ||||
| Current speed at S0 (m/s) | 0.11 | 17.5 | 0.14 | 19.6 |
| Current speed at S1 (m/s) | 0.12 | 18.2 | 0.15 | 24.2 |
| Current speed at S2 (m/s) | 0.15 | 18.8 | 0.18 | 21.5 |
| Current speed at S3 (m/s) | 0.13 | 19.3 | 0.16 | 22.4 |
| Average | 18.5 | 21.9 | ||
| Current direction at S0 (m/s) | 55.4 | 27.8 | 75.6 | 32.4 |
| Current direction at S1 (m/s) | 41.5 | 26.3 | 55.3 | 28.5 |
| Current direction at S2 (m/s) | 38.4 | 19.7 | 45.8 | 23.7 |
| Current direction at S3 (m/s) | 32.4 | 18.6 | 45.4 | 22.6 |
| Average | 23.1 | 26.8 | ||
| Station | RMSE | Difference (%) | MAE | Difference (%) |
|---|---|---|---|---|
| Calibration (6–24 May 2004) | ||||
| Wave height at W7 | 0.065 | 21.35 | 0.073 | 18.51 |
| Wave period at W7 | 0.850 | 24.54 | 0.652 | 19.25 |
| Wave direction at W7 | 56.510 | 29.14 | 48.672 | 22.65 |
| First verification (12–18 September 2017) | ||||
| Wave height at BT | 0.065 | 15.35 | 0.073 | 13.51 |
| Wave height at TV | 0.072 | 15.64 | 0.082 | 12.12 |
| Wave height at BL | 0.067 | 14.72 | 0.075 | 13.35 |
| Wave height at W7 | 0.050 | 14.70 | 0.080 | 12.10 |
| Average | 15.1 | 12.8 | ||
| Wave period at BL (°) | 0.610 | 15.74 | 0.705 | 13.22 |
| Wave period at TV (°) | 0.722 | 21.24 | 0.745 | 21.26 |
| Wave period at BT (°) | 0.484 | 20.36 | 0.524 | 20.33 |
| Wave period at W7 (°) | 0.320 | 15.10 | 0.600 | 9.42 |
| Average | 18.1 | 16.1 | ||
| Wave direction at BL (°) | 41.2 | 21.4 | 50.7 | 18.7 |
| Wave direction at TV (°) | 36.2 | 19.9 | 16.5 | 17.2 |
| Wave direction at BT (°) | 45.8 | 20.4 | 54.4 | 19.5 |
| Wave direction at W7 (°) | 62.6 | 18.8 | 68.5 | 16.3 |
| Average | 20.1 | 17.9 | ||
| Second verification (4–19 June 2024) | ||||
| Wave height at S0 | 0.063 | 18.66 | 0.047 | 16.51 |
| Wave height at S1 | 0.057 | 17.34 | 0.032 | 14.32 |
| Average | 18.0 | 15.4 | ||
| Wave period at S0 (°) | 0.656 | 15.34 | 0.457 | 13.35 |
| Wave period at S1 (°) | 0.843 | 17.52 | 0.727 | 15.39 |
| Average | 16.4 | 14.4 | ||
| Wave direction at S0 (°) | 56.2 | 20.39 | 51.5 | 18.32 |
| Wave direction at S1 (°) | 65.8 | 21.45 | 54.4 | 19.12 |
| Average | 20.9 | 18.7 | ||
| Station | RMSE | Difference (%) | MAE | Difference (%) |
|---|---|---|---|---|
| First run of the calibration (6–24 May 2004) | ||||
| SSC at T4 | 0.031 | 34.80 | 0.028 | 32.55 |
| SSC at T5 | 0.036 | 33.14 | 0.034 | 29.21 |
| SSC at T6 | 0.071 | 35.43 | 0.063 | 30.77 |
| SSC at T7 | 0.080 | 25.15 | 0.063 | 19.08 |
| Average | 32.1 | 27.9 | ||
| Second run of the calibration (6–24 May 2004) | ||||
| SSC at T4 | 0.028 | 29.28 | 0.024 | 27.35 |
| SSC at T5 | 0.031 | 28.43 | 0.029 | 26.52 |
| SSC at T6 | 0.066 | 32.43 | 0.060 | 29.34 |
| SSC at T7 | 0.076 | 23.62 | 0.060 | 17.28 |
| Average | 28.4 | 25.1 | ||
| First verification (12–18 September 2017) | ||||
| SSC at BL | 0.033 | 28.34 | 0.027 | 23.23 |
| SSC at TV | 0.025 | 31.26 | 0.021 | 31.36 |
| SSC at BT | 0.023 | 24.38 | 0.020 | 20.43 |
| Average | 28.0 | 25.0 | ||
| Second verification (4–19 June 2024) | ||||
| SSC at S1 | 0.030 | 26.34 | 0.022 | 22.51 |
| SSC at S2 | 0.021 | 29.62 | 0.019 | 25.16 |
| SSC at S3 | 0.019 | 22.12 | 0.016 | 19.24 |
| Average | 26.0 | 22.5 | ||
| Layer | Density (kg/m3) | τce (N/m2) | Ti kg·m−2·s−1) | E kg·m−2·s−1) | α (mN−1) | Initial Thickness (mm) |
|---|---|---|---|---|---|---|
| 1 | 122.0 | 0.008 to 0.07 | 5 × 10−7 | 4.0 | 0–5 * | |
| 2 | 300.0 | 0.05 to 0.28 | 5 × 10−7 | 5 × 10−7 | 4.0 | 0–50 * |
| 3 | 450.0 | 0.05 to 0.48 | 2 × 10−7 | 5 × 10−7 | 4.0 | 0–50 * |
| 4 | 550.0 | 1.80 | 1 × 10−8 | 5 × 10−7 | 1.0 | 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Trinh Dinh, L.; Viet, T.N. Calibration and Verification of a Coupled Model for the Coastal and Estuaries in the Mekong River Delta, Vietnam. J. Mar. Sci. Eng. 2026, 14, 157. https://doi.org/10.3390/jmse14020157
Trinh Dinh L, Viet TN. Calibration and Verification of a Coupled Model for the Coastal and Estuaries in the Mekong River Delta, Vietnam. Journal of Marine Science and Engineering. 2026; 14(2):157. https://doi.org/10.3390/jmse14020157
Chicago/Turabian StyleTrinh Dinh, Lai, and Thanh Nguyen Viet. 2026. "Calibration and Verification of a Coupled Model for the Coastal and Estuaries in the Mekong River Delta, Vietnam" Journal of Marine Science and Engineering 14, no. 2: 157. https://doi.org/10.3390/jmse14020157
APA StyleTrinh Dinh, L., & Viet, T. N. (2026). Calibration and Verification of a Coupled Model for the Coastal and Estuaries in the Mekong River Delta, Vietnam. Journal of Marine Science and Engineering, 14(2), 157. https://doi.org/10.3390/jmse14020157

