Machine Learning-Based Remote Sensing Inversion and Spatiotemporal Characterization of Chl-a Concentration in the Leizhou Peninsula Coastal Waters
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Sampling and Data Processing Procedures
2.3. Remote Sensing Data Acquisition and Preprocessing
2.4. Development of Machine-Learning-Based Algorithmic Models
2.5. Model Performance Evaluation Metrics
3. Results
3.1. Descriptive Statistical Analysis of In-Situ Survey Data
3.2. Machine Learning Inversion Model Performance Evaluation
3.3. Spatiotemporal Distribution of Chl-a Concentration Retrieved in the Study Area
4. Discussion
4.1. Applicability of Machine-Learning-Based Inversion Models
4.2. Spatiotemporal Distribution Characteristics of Chl-a Concentration and Their Driving Factors in the Leizhou Peninsula Waters
4.3. Investigating Chl-a Concentration Frontal Dynamics and Their Driving Factors on Both Sides of the Leizhou Peninsula
5. Conclusions
- Marine survey and analysis: From 2020 to 2024, four field campaigns were conducted in the coastal waters of the Leizhou Peninsula with simultaneous in-situ observations and remote sensing reflectance measurements. Analysis showed that the optical characteristics of the nearshore waters are jointly influenced by Chl-a, CDOM, and suspended matter. The remote sensing reflectance spectra exhibited typical turbid multi-peak and trough structures. Chl-a concentrations were higher in summer and even higher in winter, with significant spatial heterogeneity. These concentrations were coupled with salinity, turbidity, and terrestrial inputs, revealing the sensitive response and spatiotemporal heterogeneity of phytoplankton primary productivity to environmental changes in this area.
- Regarding the machine learning inversion model and its accuracy: The model fitting and performance evaluation results demonstrate that combining spectral bands with machine learning algorithms can effectively improve prediction accuracy, particularly with Gradient Boosting Decision Tree (GBDT). The model achieved a correlation coefficient (R2) of 0.79, RMSE of 0.36, and MAE of 0.30 on the test set, indicating strong applicability and robustness in the coastal waters of the Leizhou Peninsula.
- Spatiotemporal distribution of Chl-a concentration: Using the GBDT algorithm, seasonal maps of Chl-a concentration in the Leizhou Peninsula waters were generated. The spatial distribution showed a clear gradient of “high nearshore, low offshore” and “higher in the east, lower in the west.” Seasonal variation followed the pattern of “low in spring – increasing in summer – stable in autumn – high in winter,” reflecting that the spatiotemporal pattern of phytoplankton biomass results from the combined effects of monsoon, runoff, and tidal-driven nutrient transport and mixed layer evolution.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, D.; Wei, S.; Yu, G.; Luo, Y.; Xu, H.; Chen, Z. Spatiotemporal characteristics and remote sensing estimation of colored dissolved organic matter around the Leizhou Peninsula. J. Oceanol. Limnol. 2023, 41, 1405–1424. [Google Scholar] [CrossRef]
- Fu, D.; Yang, F.; Liang, X.; Luan, H.; Wang, W.; Jiang, C.; Li, X. Spatiotemporal variations and evaluation of key factors of water quality environment in coastal waters of Leizhou Peninsula. J. Guangdong Ocean Univ. 2014, 34, 58–64. [Google Scholar]
- Zheng, Q.; Pan, G.; Zhao, H.; Tian, K. Regulation of winter river input on the nutrient structure of typical tropical bays around Leizhou Peninsula, South China. Ocean Coast. Manag. 2024, 256, 107272. [Google Scholar] [CrossRef]
- Browning, T.J.; Moore, C.M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 2023, 14, 5014. [Google Scholar] [CrossRef]
- Zhang, L.; Leng, S.; Sun, W.; Jing, Z.; Wu, L. Shared voyages drive major breakthroughs in marine science. Chin. Sci. Bull. 2025, 1–10. [Google Scholar]
- Binh, N.A.; Hoa, P.V.; Thao, G.T.P.; Duan, H.D.; Thu, P.M. Evaluation of Chlorophyll-a estimation using Sentinel 3 based on various algorithms in southern coastal Vietnam. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102951. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Hickman, A.E.; Jahn, O.; Henson, S.; Beaulieu, C.; Monier, E. Ocean colour signature of climate change. Nat. Commun. 2019, 10, 578. [Google Scholar] [CrossRef]
- Yao, J.; Yang, L.; Shu, Y.; Zeng, L.; Shi, R.; Chen, J.; Zu, T.; Chen, C. Comparison of summer chlorophyll a concentration in the South China Sea and the Arabian Sea using remote sensing data. Acta Oceanol. Sin. 2017, 36, 61–67. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B.; Jacobs, M.M. Computed relationships between the inherent and apparent optical properties of a flat ho-mogeneous ocean. Appl. Opt. 1975, 14, 417–427. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, S.; Luan, K.; Xu, Y.; Liu, Z.; Cao, T.; Wang, P. Research on the Inversion of Chlorophyll-a Concentration in the Hong Kong Coastal Area Based on Convolutional Neural Networks. J. Mar. Sci. Eng. 2024, 12, 1119. [Google Scholar] [CrossRef]
- Lee, Z.P.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, G.; Yin, X.; Sun, T. Reconstruction of Sea Surface Chlorophyll-a Concentration in the Bohai and Yellow Seas Using LSTM Neural Network. Remote Sens. 2025, 17, 174. [Google Scholar] [CrossRef]
- Yan, Z.; Fang, C.; Song, K.; Wang, X.; Wen, Z.; Shang, Y.; Tao, H.; Lyu, Y. Spatiotemporal variation in biomass abundance of different algal species in Lake Hulun using machine learning and Sentinel-3 images. Sci. Rep. 2025, 15, 2739. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.; Tzortziou, M.; Turner, K.J.; Goes, J.; Grunert, B. Chlorophyll dynamics from Sentinel-3 using an optimized algorithm for enhanced ecological monitoring in complex urban estuarine waters. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103223. [Google Scholar] [CrossRef]
- Ye, X.; Liu, J.; Lin, M.; Ding, J.; Zou, B.; Song, Q. Global ocean chlorophyll-a concentrations derived from COCTS onboard the HY-1C satellite and their preliminary evaluation. IEEE Trans. Geosci. Remote Sens. 2020, 59, 9914–9926. [Google Scholar] [CrossRef]
- Yan, Y.; He, X.; Bai, Y.; Liu, J.; Shanmugame, P.; Zhao, Y.; Zhang, X.; Wang, Z.; Zhang, Y.; Gong, F. Monitoring Dissolved Organic Carbon Concentration and Flux in the Qiantang Riverine System Using Sentinel-2 Satellite Images. Remote Sens. 2024, 16, 4254. [Google Scholar] [CrossRef]
- Yu, G.; Zhong, Y.; Fu, D.; Liu, D.; Xu, H. Study on backscattering properties of water particles and their remote sensing inversion in Zhanjiang Bay. Spectrosc. Spectr. Anal. 2024, 44, 793–799. [Google Scholar]
- Chen, J.; Chen, S.; Fu, R.; Wang, C.; Li, D.; Peng, Y.; Wang, L.; Jiang, H.; Zheng, Q. Remote sensing estimation of chlorophyll-A in case-II waters of coastal areas: Three-band model versus genetic algorithm–artificial neural networks model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3640–3658. [Google Scholar] [CrossRef]
- Zhang, P.; Dai, P.; Zhang, J.; Li, J.; Zhao, H.; Song, Z. Spatiotemporal variation, speciation, and transport flux of TDP in Leizhou Peninsula coastal waters, South China Sea. Mar. Pollut. Bull. 2021, 167, 112284. [Google Scholar] [CrossRef]
- Wei, S. Remote Sensing Monitoring and Pollution Tracing of Colored Dissolved Organic Matter in Coastal Waters of Leizhou Peninsula. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2023. [Google Scholar]
- Zhou, F.; Wu, J.; Chen, F.; Chen, C.; Zhu, Q.; Lao, Q.; Zhou, X.; Lu, X. Using stable isotopes (δ18O and δD) to study the dynamics of upwelling and other oceanic processes in northwestern South China Sea. J. Geophys. Res. Ocean. 2022, 127, e2021JC017972. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, F.; Chen, F.; Zhu, Q.; Meng, Y. Spatial and seasonal variations of chlorophyll a in Zhanjiang Bay, China, and controlling factors. Front. Mar. Sci. 2024, 11, 1329864. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, Y.; Liu, D.; Ding, Y.; Yang, F.; Liang, X.; Huang, Y. Study on coastal water quality evaluation model based on principal component analysis and its application: A case study of Leizhou Peninsula sea area. J. Mar. Sci. 2015, 33, 45–50. [Google Scholar]
- Tang, J.; Tian, G.; Wang, X.; Wang, X.; Song, Q. Water spectral measurement and analysis I: Above-water measurement method. J. Remote Sens. 2004, 8, 37–44. [Google Scholar]
- Yu, G.; Fu, D.; Liu, D.; Liu, B.; Liao, S.; Wang, L.; Zhang, X. Remote sensing estimation of colored dissolved organic matter in Zhanjiang Bay based on neural network model. Mar. Sci. 2018, 9, 73–80. [Google Scholar]
- Kyryliuk, D.; Kratzer, S. Evaluation of Sentinel-3A OLCI products derived using the Case-2 Regional CoastColour processor over the Baltic Sea. Sensors 2019, 19, 3609. [Google Scholar] [CrossRef]
- Bi, S.; Li, Y.; Lü, H.; Zhu, L.; Mou, M.; Lei, S.; Xu, J.; Wen, S.; Ding, X. Estimation of Chlorophyll-a Concentration in Erhai Lake Based on OLCI Data. J. Lake Sci. 2018, 30, 701–712. [Google Scholar]
- Cazzaniga, I.; Zibordi, G.; Melin, F.; Kwiatkowska, E.; Talone, M.; Dessailly, D.; Gossn, J.I.; Muller, D. Evaluation of OLCI Neural Network Radiometric Water Products. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1503405. [Google Scholar] [CrossRef]
- Li, X.; Wei, A.; Jiang, S.; Wang, T.; Ji, Y.; Zhang, Y.; Jiao, X. Inversion effect analysis of chlorophyll a and total suspended solids in the South Yellow Sea based on Sentinel-3 OLCI images and C2RCC algorithm. Environ. Monit. Forewarning 2020, 12, 6–12. [Google Scholar]
- Shan, K.; Ma, C.; Lv, J.; Zhao, D.; Song, Q. Construction of Aerosol Model and Atmospheric Correction in the Coastal Area of Shandong Peninsula. Remote Sens. 2024, 16, 1309. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat Water Clarity Census of Minnesota’s 10,000 Lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Q.; Song, K.; Li, S.; Xu, S.; Yang, Q. Quantitative Inversion of Water Quality Parameters of Chagan Lake Based on Sentinel-3 OLCI. China Environ. Sci. 2023, 43, 2450–2459. [Google Scholar]
- Wu, Z.; Li, J.; Wang, R.; Shi, L.; Miao, S.; Lv, H.; Li, Y. Remote sensing estimation of colored dissolved organic matter (CDOM) concentration in inland lakes based on random forest. J. Lake Sci. 2018, 30, 979–991. [Google Scholar]
- Joshi, N.; Park, J.; Zhao, K.; Londo, A.; Khanal, S. Monitoring harmful algal blooms and water quality using sentinel-3 OLCI satellite imagery with machine learning. Remote Sens. 2024, 16, 2444. [Google Scholar]
- Wen, J.; Yang, J.; Li, Y.; Gao, L. Harmful algal bloom warning based on machine learning in maritime site monitoring. Knowl.-Based Syst. 2022, 245, 108569. [Google Scholar]
- Chusnah, W.N.; Chu, H.J.; Tatas; Jaelani, L.M. Machine-learning-estimation of high-spatiotemporal-resolution chlorophyll-a concentration using multi-satellite imagery. Sustain. Environ. Res. 2023, 33, 11. [Google Scholar]
- Zhu, W.-D.; Kong, Y.-X.; He, N.-Y.; Qiu, Z.-G.; Lu, Z.-G. Prediction and Analysis of Chlorophyll-a Concentration in the Western Waters of Hong Kong Based on BP Neural Network. Sustainability 2023, 15, 10441. [Google Scholar] [CrossRef]
- Yu, G.; Fu, D.; Zhong, Y.; Liu, D.; Qi, Y.; Luo, Y. Remote sensing inversion of colored dissolved organic matter in coastal waters of Zhanjiang. J. Guangdong Ocean Univ. 2021, 41, 55–62. [Google Scholar]
- Mélin, F.; Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar]
- Huang, Y.; Fu, D.; Liu, D.; Yu, G.; Zhang, X.; Lin, D.; Dong, Z. Analysis of surface spectral characteristics and types of Pearl River Estuary waters. Mar. Environ. Sci. 2019, 38, 891–897. [Google Scholar]
- Liu, D.; Fu, D.; Ding, Y.; Zhang, Y.; Wang, W.; Luan, H. Remote sensing monitoring of chlorophyll in Zhanjiang Bay and its adjacent waters based on FY-3A. J. Mar. Sci. 2013, 31, 32–36. [Google Scholar]
- Ye, H.; Li, J.; Li, T.; Shen, Q.; Zhu, J.; Wang, X.; Zhang, F.; Zhang, J.; Zhang, B. Spectral classification of the Yellow Sea and implications for coastal ocean color remote sensing. Remote Sens. 2016, 8, 321. [Google Scholar] [CrossRef]
- Jiang, C.; Liao, S.; Fu, D.; Wang, W.; Li, X.; Liu, D.; Zhang, Y.; Huang, X. Hyperspectral remote sensing inversion of chlorophyll a concentration in Zhanjiang Port waters. J. Guangdong Ocean Univ. 2016, 36, 107–113. [Google Scholar]
- Fu, D.; Huang, Y.; Liu, D.; Liao, S.; Yu, G.; Zhang, X. Analysis of the regional spectral properties in northwestern South China Sea based on an empirical orthogonal function. Acta Oceanol. Sin. 2020, 39, 107–114. [Google Scholar] [CrossRef]
- Li, Y.; Chai, X.; Guo, F.; Sun, X.; Cheng, Z.; Fu, D.; Liu, D. Spatiotemporal Characteristics of the Apparent Optical Spectrum in the Coastal Waters of Leizhou Peninsula and Their Comparative Analysis. Front. Mar. Sci. 2025, 12, 1610901. [Google Scholar] [CrossRef]
- Gao, S.; Wang, H.; Liu, G.; Li, H. Spatio-temporal variability of chlorophyll a and its responses to sea surface temperature, winds and height anomaly in the western South China Sea. Acta Oceanol. Sin. 2013, 32, 48–58. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Ye, X.; Xie, L.; Zeng, F. Spatiotemporal variation of chlorophyll a concentration and its influencing factors in the Beibu Gulf. J. Guangdong Ocean Univ. 2024, 44, 31–39. [Google Scholar]
- Shi, H. Distribution Characteristics and Influencing Factors of Phytoplankton Chlorophyll a in Coastal Waters of Northwestern South China Sea. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2023. [Google Scholar]
- Zhou, M. Spatial and Temporal Distribution of Sea Surface Chlorophyll a and Nutrients and Potential Eutrophication in Zhanjiang Bay in Autumn from 2017 to 2020. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2021. [Google Scholar]
- Ke, G.; Xu, Z.; Zhang, J.; Bian, J.; Liu, T. DeepGBM: A deep learning framework distilled by GBDT for online prediction tasks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 384–394. [Google Scholar]
- Li, L.; Dai, S.; Cao, Z.; Hong, J.; Jiang, S.; Yang, K. Using improved gradient-boosted decision tree algorithm based on Kalman filter (GBDT-KF) in time series prediction. J. Supercomput. 2020, 76, 6887–6900. [Google Scholar] [CrossRef]
- Luo, J.; Quan, Y.; Xu, S. Robust-gbdt: A novel gradient boosting model for noise-robust classification. arXiv 2023, arXiv:2310.05067. [Google Scholar]
- Li, Y.; Jiang, W.; Sun, G. Predicting Environmental Pollution with Gradient Boosting: Application of GBDT Regression Models in Time Series Models. In Proceedings of the 3rd International Conference on Machine Learning, Cloud Computing and Intelligent Mining (MLCCIM2024): Volume 3; Springer Nature: Singapore, 2025; Volume 1328, p. 138. [Google Scholar]
- Ye, Y.; Liu, F.; Zhao, S.; Liang, Z. Ensemble Learning Based on GBDT and CNN for Adoptability Prediction. Comput. Mater. Contin. 2020, 65, 6887–6900. [Google Scholar] [CrossRef]
- Liu, D.; Chao, Q. Study on spatial and temporal distribution of chlorophyll a mass concentration in Beibu Gulf. J. Mar. Sci. 2019, 37, 95–102. [Google Scholar]
- Zhang, X.; Li, S.; Wang, X. Quantitative remote sensing inversion of soil total nitrogen in Suihua City, Heilongjiang Province based on Sentinel-2 satellite images. Trans. Chin. Soc. Agric. Eng. 2023, 39, 144–151. [Google Scholar]
- Liu, J.; Qiu, Z.; Feng, J.; Wong, K.P.; Tsou, J.Y.; Wang, Y.; Zhang, Y. Monitoring Total Suspended Solids and Chlorophyll-a Concentrations in Turbid Waters: A Case Study of the Pearl River Estuary and Coast Using Machine Learning. Remote Sens. 2023, 15, 5559. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Xiao, H.; Ye, J.; Yang, T.; Ma, J.; Liu, D. A CiteSpace-Based Analysis of the Impact of Sea-Level Rise and Tropical Cyclones on Mangroves in the Context of Climate Change. Water 2024, 16, 3662. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Ma, C.; Chen, X.; Li, Q.; Ye, X.; Yu, Z.; Tian, L. Machine learning-based retrieval of chlorophyll-a and total suspended matter from HY-3A CZI: Model development, validation, and application. ISPRS J. Photogramm. Remote Sens. 2025, 227, 613–631. [Google Scholar] [CrossRef]
- Busari, I.; Sahoo, D.; Sudheer, K.; Harmel, R.; Privette, C.; Schlautman, M.; Sawyer, C. Investigating the influence of measurement uncertainty on chlorophyll-a predictions as an indicator of harmful algal blooms in machine learning models. Ecol. Inform. 2024, 82, 102735. [Google Scholar] [CrossRef]
- Ma, A.; Liu, X.; Li, T.; Liu, M. Remote sensing analysis of spatiotemporal characteristics of chlorophyll a concentration in northern South China Sea. Acta Oceanol. Sin. 2013, 35, 98–105. [Google Scholar]
- Zheng, Z.; Jin, H.; Chen, F.; Zhu, Z.; Jia, R.; Zhang, L.; Wang, P. Distribution characteristics and influencing factors of chlorophyll a in Beibu Gulf from August to September 2021. J. Mar. Sci. 2022, 40, 142–152. [Google Scholar]
- Lu, X.; Lao, Q.; Wang, C.; Chen, F.; Cai, H.; Liu, S. The seasonal effect of coastal current and upwelling on the dynamics of dissolved organic matter in the northwestern South China Sea. J. Geophys. Res. Ocean. 2024, 129, e2024JC021064. [Google Scholar] [CrossRef]
- Chen, L. Characteristics of Circulation Structure in Beibu Gulf and Its Impact on Nutrient Distribution in Coastal Waters of Guangxi. Master’s Thesis, Nanning Normal University, Nanning, China, 2024. [Google Scholar]
- Huang, R.; Xie, L.; Li, M.; Wang, L. Observational analysis of seasonal variations of three-dimensional temperature and salinity characteristics in Zhanjiang Bay. Acta Oceanol. Sin. 2021, 43, 46–60. [Google Scholar]
- Lao, Q.; Zhang, S.; Li, Z.; Chen, F.; Zhou, S.; Jin, G.; Huang, P.; Deng, Z.; Chen, C.; Zhu, Q.; et al. Quantification of the seasonal intrusion of water masses and their impact on nutrients in the Beibu Gulf using dual water isotopes. J. Geophys. Res. Ocean. 2022, 127, e2021JC018065. [Google Scholar] [CrossRef]
- Lu, X.; Lao, Q.; Chen, F.; Jin, G.; Chen, C.; Zhu, Q. The impact of typhoons on the biogeochemistry of dissolved organic matter in eutrophic bays in north-western South China Sea. Acta Oceanol. Sin. 2024, 43, 15–31. [Google Scholar] [CrossRef]
- Lin, Y. Study on the Response of Hydrodynamic Environment in Coastal Waters of Western Guangdong to Tropical Cyclones. Master’s Thesis, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China, 2024. [Google Scholar]
- Yang, W.; Guo, X.; Cao, Z.; Su, J.; Guo, L.; Wang, L.; Xu, Y.; Huang, T.; Li, Y.; Xu, Y. Dynamic characteristics and regulatory mechanisms of the carbonate system in the northwestern South China Sea in summer: Combined effects of coastal upwelling, river plume and groundwater input. Sci. China Earth Sci. 2022, 52, 2373–2390. [Google Scholar]
- Hou, D.; Li, A.; Lyu, S.; Dong, J.; Chen, N.; Wang, X. Community structure characteristics of phytoplankton and their environmental influencing factors in coastal waters of eastern Leizhou Peninsula in spring and autumn. South China Fish. Sci. 2025, 21, 55–65. [Google Scholar]
- Lao, Q.; Wu, J.; Chen, F.; Zhou, X.; Li, Z.; Chen, C.; Zhu, Q.; Deng, Z.; Li, J. Increasing intrusion of high salinity water alters the mariculture activities in Zhanjiang Bay during the past two decades identified by dual water isotopes. J. Environ. Manag. 2022, 320, 115815. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, Y.; Shi, H.; Zhao, H.; Gao, H.; Pan, G.; Tian, K. Environmental capacity and fluxes of land-sourced pollutants around the Leizhou Peninsula in the summer. Front. Mar. Sci. 2023, 10, 1280753. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.; Liu, S.; Chen, C.; Lao, Q.; Chen, F. Thermal fronts in coastal waters regulate phytoplankton blooms via acting as barriers: A case study from western Guangdong, China. J. Hydrol. 2024, 636, 131350. [Google Scholar] [CrossRef]
- Lao, Q.; Liu, S.; Wang, C.; Chen, F. Global warming weakens the ocean front and phytoplankton blooms in the Luzon Strait over the past 40 years. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007726. [Google Scholar] [CrossRef]
- Dai, M.; Zhai, W.; Cai, W.-J.; Callahan, J.; Huang, B.; Shang, S.; Huang, T.; Li, X.; Lu, Z.; Chen, W.; et al. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea. Cont. Shelf Res. 2008, 28, 1416–1423. [Google Scholar] [CrossRef]
- Zhao, Q.; Lao, Q.; Wang, C.; Liu, S.; Chen, F. Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary. Remote Sens. 2025, 17, 2165. [Google Scholar] [CrossRef]
- Xu, H.; He, M.; Liao, J.; Zhou, W. Distribution characteristics of size-fractionated Chlorophyll a in the coastal area of the Leizhou Peninsula in winter. Front. Mar. Sci. 2024, 11, 1473950. [Google Scholar] [CrossRef]
- Bai, D.; Chu, H.; Feng, Y.; Wang, L.; Yin, M. The distribution of nutrients and chlorophyll-a in the temperate coast of China: Implications for marine ecological risks in the context of global warming. Front. Mar. Sci. 2025, 12, 1580304. [Google Scholar] [CrossRef]
Band | Centre Wavelength (nm) | Primary Application |
---|---|---|
Oa1 | 400 | Aerosol correction |
Oa2 | 412.5 | Retrieval of CDOM and terrestrial substances |
Oa3 | 442.5 | Chl-a absorption retrieval |
Oa4 | 490 | Retrieval of high Chl-a in inland waters |
Oa5 | 510 | Monitoring of HABs in marine waters |
Oa6 | 560 | Benchmarking of Chl-a retrieval in aquatic systems |
Oa7 | 620 | Retrieval of SPM concentration |
Oa8 | 665 | Inversion of water-quality parameters and phytoplankton |
Oa9 | 673.75 | Utilizing the 665 and 681nm spectral bands |
Oa10 | 681.25 | Provision of Chl-a fluorescence peak information |
Oa11 | 708.25 | Provide fluorescence peak detection baseline values |
Oa12 | 753.75 | Vegetation monitoring |
Oa13 | 761.25 | Aerosol retrieval |
Oa14 | 764.375 | Atmospheric correction |
Oa15 | 767.5 | Terrestrial fluorescence intensity information |
Oa16 | 778.75 | Participation in aerosol correction |
Oa17 | 865 | Cloud detection |
Oa18 | 885 | Water vapor absorption reference and vegetation monitoring |
Oa19 | 900 | Vegetation monitoring |
Oa20 | 940 | Water vapor absorption reference |
Oa21 | 1020 | Participation in aerosol correction |
No. | Band Combination | Correlation Coefficient | No. | Band Combination | Correlation Coefficient |
---|---|---|---|---|---|
1 | B6/B5 | 0.55 | 7 | (B6 + B2)/B3 | 0.58 |
2 | (B2 + B6)/B4 | 0.65 | 8 | (B6 − B5)/B3 | 0.58 |
3 | (B6 + B1)/B3 | 0.60 | 9 | (B6 − B5)/B4 | 0.56 |
4 | (B6 + B1)/B4 | 0.64 | 10 | (B6 − B4)/B3 | 0.56 |
5 | (B6 + B4)/B5 | 0.57 | 11 | (B5 − B6)/B2 | 0.55 |
6 | (B6 + B3)/B4 | 0.59 | 12 | (B5 − B6)/B5 | 0.55 |
Sampling Period | Number | Chl-a (mg/m3) | Temp (°C) | Salinity (PSU) | Turbidity (NTU) | ||||
---|---|---|---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | Range | Mean | ||
Spring | 33 | 0.24–1.03 | 0.57 | 25.68–27.74 | 26.55 | 30.16–33.52 | 32.19 | 0.48–19.59 | 3.99 |
Summer | 35 | 0.06–3.47 | 0.96 | 29.23–32.67 | 31.20 | 25.85–32.60 | 30.93 | 0.24–32.16 | 5.22 |
Autumn | 37 | 0.12–2.53 | 0.81 | 28.61–31.25 | 30.17 | 28.38–33.76 | 31.89 | 0.06–29.63 | 5.86 |
Winter | 30 | 0.73–2.45 | 1.42 | 18.5–21.20 | 20.33 | 31.22–33.69 | 32.74 | 0.48–10.16 | 3.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, X.; Liu, B.; Guo, F.; Chen, Y.; Lin, Y.; Li, Y.; Yu, G.; Fu, D. Machine Learning-Based Remote Sensing Inversion and Spatiotemporal Characterization of Chl-a Concentration in the Leizhou Peninsula Coastal Waters. J. Mar. Sci. Eng. 2025, 13, 1787. https://doi.org/10.3390/jmse13091787
Chai X, Liu B, Guo F, Chen Y, Lin Y, Li Y, Yu G, Fu D. Machine Learning-Based Remote Sensing Inversion and Spatiotemporal Characterization of Chl-a Concentration in the Leizhou Peninsula Coastal Waters. Journal of Marine Science and Engineering. 2025; 13(9):1787. https://doi.org/10.3390/jmse13091787
Chicago/Turabian StyleChai, Xia, Bei Liu, Fengcheng Guo, Yuchen Chen, Ye Lin, Yongze Li, Guo Yu, and Dongyang Fu. 2025. "Machine Learning-Based Remote Sensing Inversion and Spatiotemporal Characterization of Chl-a Concentration in the Leizhou Peninsula Coastal Waters" Journal of Marine Science and Engineering 13, no. 9: 1787. https://doi.org/10.3390/jmse13091787
APA StyleChai, X., Liu, B., Guo, F., Chen, Y., Lin, Y., Li, Y., Yu, G., & Fu, D. (2025). Machine Learning-Based Remote Sensing Inversion and Spatiotemporal Characterization of Chl-a Concentration in the Leizhou Peninsula Coastal Waters. Journal of Marine Science and Engineering, 13(9), 1787. https://doi.org/10.3390/jmse13091787