Calcium-Rich Steel Slag as a Reactive Capping Material: Effects on Hydraulic Conductivity and Nutrient Attenuation in Cohesive Intertidal Sediments
Abstract
1. Introduction
2. Materials and Methods
2.1. Capping Material and Sediment
2.2. Variable Head Permeability Test
2.3. Analysis
3. Results
3.1. Changes in Sediment Hydraulic Conductivity, Water Volume, and Water Content
3.2. Effect of SS on pH and ORP Changes in Sediment
3.3. Effect of SS on Nutrient Release in Pore Water and Effluent
3.3.1. Pore Water and Effluent Concentrations
3.3.2. Effluent Loads and Fluxes
3.4. Effect of SS on Cation Concentrations and SAR Changes in Sediment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SS | Steel Slag |
ORP | Oxidation-Reduction Potential |
DIN | Dissolved Inorganic Nitrogen |
SAR | Sodium Adsorption Ratio |
References
- Dorleon, G.; Rigaud, S.; Techer, I. Sediment quality and ecological risk assessment in Mediterranean harbors of Occitanie, France: Implications for sustainable dredged material management. Mar. Pollut. Bull. 2025, 217, 118097. [Google Scholar] [CrossRef]
- Fox, A.L.; Trefry, J.H. Nutrient fluxes from recent deposits of fine-grained, organic-rich sediments in a Florida estuary. Front. Mar. Sci. 2023, 10, 1305990. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K. Remediation of contaminated intertidal sediment by increasing permeability using active capping material. J. Environ. Manag. 2020, 253, 109769. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.P.; Woo, H.-E.; Yoon, S.; Kim, K. Influence of Oyster Shell Pyrolysis Temperature on Sediment Permeability and Remediation. J. Mar. Sci. Eng. 2023, 11, 934. [Google Scholar] [CrossRef]
- Aliyu, M.K.; Karim, A.T.A.; Chee–Ming, C.; Nda, M. In Situ Remediation of Lead Contaminated Marine Sediment using Bentonite, Kaolin and Sand as Capping Materials. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012078. [Google Scholar]
- Ou, M.-Y.; Ting, Y.; Ch’ng, B.-L.; Chen, C.; Cheng, Y.-H.; Chang, T.-C.; Hsi, H.-C. Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk. Water 2020, 12, 1886. [Google Scholar] [CrossRef]
- Wikström, J.; Forsberg, S.C.; Maciute, A.; Nascimento, F.J.A.; Bonaglia, S.; Gunnarsson, J.S. Thin-layer capping with granular activated carbon and calcium-silicate to remediate organic and metal polluted harbor sediment—A mesocosm study. Sci. Total Environ. 2024, 946, 174263. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.; Cho, Y.; Choo, H.; Jang, J. Experimental and numerical evaluation of sustainable application of steel slag as an alternative to gravel in compaction piles. Case Stud. Constr. Mater. 2024, 21, e03900. [Google Scholar] [CrossRef]
- Gao, W.; Zhou, W.; Lyu, X.; Liu, X.; Su, H.; Li, C.; Wang, H. Comprehensive utilization of steel slag: A review. Powder Technol. 2023, 422, 118449. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.; Asaoka, S.; Lee, I.-C.; Kim, D.S.; Hayakawa, S. Quantitative Measurement on Removal Mechanisms of Phosphate by Class–F Fly Ash. Int. J. Coal Prep. Util. 2020, 40, 892–903. [Google Scholar] [CrossRef]
- Edgar, M.; Hamdan, N.; Morales, D.; Boyer, T.H. Phosphorus removal by steel slag from tile drainage water: Lab and field evaluations. Chemosphere 2022, 307, 135850. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, W.; Gao, F.; Huang, H.; Zhao, L. An overview of resource utilization of steel slag as absorbent material for waste water treatment. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; p. 00017. [Google Scholar]
- Francisca, F.M.; Mozejko, C.A. Hydraulic and mechanical behavior of compacted silts modified by waste steel slag. Geomech. Energy Environ. 2022, 32, 100323. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Zhang, W.; Gao, L.; Zhou, A. A Strength–Permeability Study of Steel Slag–Cement–Bentonite Barrier Walls Effect of Slag Substitution Rate and Bentonite Dosage. Appl. Sci. 2025, 15, 4544. [Google Scholar] [CrossRef]
- Shi, C.; Wang, X.; Zhou, S.; Zuo, X.; Wang, C. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: A review. J. Water Process Eng. 2022, 47, 102666. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Yan, X.; Tu, C.; Yu, Z. Environmental risks for application of iron and steel slags in soils in China: A review. Pedosphere 2021, 31, 28–42. [Google Scholar] [CrossRef]
- Pavlovsky, J.; Seidlerova, J.; Pegrimocova, Z.; Vontorova, J.; Motyka, O.; Michalska, M.; Smutna, K.; Roupcová, P.; Novak, V.; Matejka, V.; et al. Influence of the chemical composition of leachates on the results of ecotoxicity tests for different slag types. J. Environ. Manag. 2024, 366, 121731. [Google Scholar] [CrossRef]
- Amini, Z.; Hatami-Manesh, M.; Aazami, J.; Savabieasfahani, M. Ecological risk assessment of heavy metals (pb, Cd, Cr, Ni, Zn, Fe) and metalloid (as) in surface sediment of Anzali International wetland, Iran. Geol. Ecol. Landsc. 2024, 1–19. [Google Scholar] [CrossRef]
- Lan, T.; Zhang, H.; Li, H. Study on heavy metal leaching from steel slag in coastal soft soil and its environmental impact. Can. Metall. Q. 2024, 1–9. [Google Scholar] [CrossRef]
- Benassi, L.; Alias, C.; Feretti, D.; Gelatti, U.; Piovani, G.; Zerbini, I.; Sorlini, S. Ecotoxicity and genotoxicity of steel slags: Preliminary results. Detritus 2019, 6, 32–38. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, F.; Song, Q.; Deng, Y.; Ye, W.; Ni, J.; Si, X.; Wang, C. A review on the carbonation of steel slag: Properties, mechanism, and application. Materials 2024, 17, 2066. [Google Scholar] [CrossRef]
- ASTM D5856-95; Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter. ASTM International: West Conshohocken, PA, USA, 2007.
- Carroll, D. Ion exchange in clays and other minerals. Geol. Soc. Am. Bull. 1959, 70, 749–779. [Google Scholar] [CrossRef]
- Agmo Hernández, V. An overview of surface forces and the DLVO theory. ChemTexts 2023, 9, 10. [Google Scholar] [CrossRef]
- Zhang, T.; Zhan, X.; He, J.; Feng, H.; Kang, Y. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agric. Water Manag. 2018, 197, 91–99. [Google Scholar] [CrossRef]
- Recillas, S.; Rodríguez-Lugo, V.; Montero, M.; Viquez-Cano, S.; Hernandez, L.; Castano, V. Studies on the precipitation behaviour of calcium phosphate solutions. J. Ceram. Process. Res. 2012, 13, 5–10. [Google Scholar]
- Wang, J.; Bai, Z.; Yang, P. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils. PLoS ONE 2013, 8, e71011. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Su, Y.; Ding, X.; Chen, Y.; Liu, C. Modulation of initial CaO/Al2O3 and SiO2/Al2O3 ratios on the properties of slag/fly ash-based geopolymer stabilized clay: Synergistic effects and stabilization mechanism. Mater. Today Commun. 2025, 47, 113295. [Google Scholar] [CrossRef]
- Su, Y.; Luo, B.; Luo, Z.; Xu, F.; Huang, H.; Long, Z.; Shen, C. Mechanical characteristics and solidification mechanism of slag/fly ash-based geopolymer and cement solidified organic clay: A comparative study. J. Build. Eng. 2023, 71, 106459. [Google Scholar] [CrossRef]
- Zhu, J.f.; Wang, Z.q.; Tao, Y.l.; Ju, L.y.; Yang, H. Macro–micro investigation on stabilization sludge as subgrade filler by the ternary blending of steel slag and fly ash and calcium carbide residue. J. Clean. Prod. 2024, 447, 141496. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Xie, H.; Ji, W.; Huang, X. Study on shear strength characteristics of marine silt modified by steel slag. Adv. Civ. Eng. 2021, 2021, 9647977. [Google Scholar] [CrossRef]
- Nuttle, W.K.; Hemond, H.F.; Stolzenbach, K.D. Mechanisms of water storage in salt marsh sediments: The importance of dilation. Hydrol. Process. 1990, 4, 1–13. [Google Scholar] [CrossRef]
- Roadcap, G.S.; Sanford, R.A.; Jin, Q.; Pardinas, J.R.; Bethke, C.M. Extremely alkaline (pH> 12) ground water hosts diverse microbial community. Groundwater 2006, 44, 511–517. [Google Scholar] [CrossRef]
- Liu, J.; Yu, J.; Si, W.; Ding, G.; Zhang, S.; Gong, D.; Bi, J. Variations in bacterial diversity and community structure in the sediments of an alkaline lake in Inner Mongolia plateau, China. PeerJ 2023, 11, e15909. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.-H.; Nakashita, S.; Lee, I.-C.; Kim, D.-S.; Kim, J.-R.; Hibino, T.; Yamamoto, T.; Asaoka, S.; Kim, K. A pilot study on remediation of muddy tidal flat using porous pile. Mar. Pollut. Bull. 2017, 114, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Okouchi, S.; Suzuki, M.; Sugano, K.; Kagamimori, S.; Ikeda, S. Water desirable for the human body in terms of oxidation-reduction potential (ORP) to pH relationship. J. Food Sci. 2002, 67, 1594–1598. [Google Scholar] [CrossRef]
- Melton, E.D.; Swanner, E.D.; Behrens, S.; Schmidt, C.; Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 2014, 12, 797–808. [Google Scholar] [CrossRef]
- Smriga, S.; Ciccarese, D.; Babbin, A.R. Denitrifying bacteria respond to and shape microscale gradients within particulate matrices. Commun. Biol. 2021, 4, 570. [Google Scholar] [CrossRef]
- Sexstone, A.J.; Revsbech, N.P.; Parkin, T.B.; Tiedje, J.M. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J. 1985, 49, 645–651. [Google Scholar] [CrossRef]
- Wang, L.; Nancollas, G.H. Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 2008, 108, 4628–4669. [Google Scholar] [CrossRef]
- Kim, G.; Jung, W. Role of sand capping in phosphorus release from sediment. KSCE J. Civ. Eng. 2010, 14, 815–821. [Google Scholar] [CrossRef]
- Kim, G.; Jeong, W.; Choi, S.; Khim, J. Sand Capping for Controlling Phosphorus Release from Lake Sediments. Environ. Technol. 2007, 28, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Penn, C.; Huang, C.-h.; Livingston, S.; Yan, J. Using Steel Slag for Dissolved Phosphorus Removal: Insights from a Designed Flow-Through Laboratory Experimental Structure. Water 2020, 12, 1236. [Google Scholar] [CrossRef]
- Langenfeld, N.J.; Kusuma, P.; Wallentine, T.; Criddle, C.S.; Seefeldt, L.C.; Bugbee, B. Optimizing nitrogen fixation and recycling for food production in regenerative life support systems. Front. Astron. Space Sci. 2021, 8, 699688. [Google Scholar] [CrossRef]
- Jha, V.K.; Kameshima, Y.; Nakajima, A.; Okada, K. Hazardous ions uptake behavior of thermally activated steel-making slag. J. Hazard. Mater. 2004, 114, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Shapovalova, A.; Khijniak, T.; Tourova, T.; Muyzer, G.; Sorokin, D. Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles 2008, 12, 619–625. [Google Scholar] [CrossRef]
- Amer, R. Spatial Relationship between Irrigation Water Salinity, Waterlogging, and Cropland Degradation in the Arid and Semi-Arid Environments. Remote Sens. 2021, 13, 1047. [Google Scholar] [CrossRef]
CaO (%) | Fe2O3 (%) | SiO2 (%) | Al2O3 (%) | MgO (%) | P2O5 (%) |
---|---|---|---|---|---|
42.65 | 25.21 | 15.85 | 4.54 | 3.99 | 2.44 |
Parameter | Value | Parameter | Value |
---|---|---|---|
pH | 7.50 | ORP (mV) | −212.5 |
PO4-P (mg/L) | 0.57 | NH3-N (mg/L) | 8.60 |
NO2-N (mg/L) | 0.05 | NO3-N (mg/L) | 0.03 |
Water content (%) | 71.6 | Loss on Ignition (%) | 6.8 |
Phase | Formula | Saturation Index | |
---|---|---|---|
Control | SS50 | ||
hydroxyapatite (HAP) | Ca10(PO4)6(OH)2 | 7.02 | 16.94 |
β-tricalcium phosphate (β-TCP) | Ca3(PO4)2 | 0.01 | 3.64 |
brushite (DCPD) | CaHPO4·2H2O | −1.53 | −4.19 |
Nutrients | Treatment | Effluent Load (mg) | Flux (mg/m2/d) |
---|---|---|---|
PO4-P | Control | 0.039 | 4.98 |
SS25 | 0.024 | 2.99 | |
SS50 | 0.073 | 9.22 | |
NH3-N | Control | 0.520 | 66.18 |
SS25 | 0.362 | 46.08 | |
SS50 | 0.290 | 36.90 | |
NO2-N | Control | 0.004 | 0.50 |
SS25 | 0.003 | 0.42 | |
SS50 | 0.005 | 0.62 | |
NO3-N | Control | 0.011 | 1.41 |
SS25 | 0.005 | 0.66 | |
SS50 | 0.004 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, H.-E.; Afif, V.R.; Park, S.; Patil, M.P.; Jeong, I.; Lee, I.-C.; Kim, J.-O.; Kim, K. Calcium-Rich Steel Slag as a Reactive Capping Material: Effects on Hydraulic Conductivity and Nutrient Attenuation in Cohesive Intertidal Sediments. J. Mar. Sci. Eng. 2025, 13, 1723. https://doi.org/10.3390/jmse13091723
Woo H-E, Afif VR, Park S, Patil MP, Jeong I, Lee I-C, Kim J-O, Kim K. Calcium-Rich Steel Slag as a Reactive Capping Material: Effects on Hydraulic Conductivity and Nutrient Attenuation in Cohesive Intertidal Sediments. Journal of Marine Science and Engineering. 2025; 13(9):1723. https://doi.org/10.3390/jmse13091723
Chicago/Turabian StyleWoo, Hee-Eun, Valianto Rojulun Afif, Seongsik Park, Maheshkumar Prakash Patil, Ilwon Jeong, In-Cheol Lee, Jong-Oh Kim, and Kyunghoi Kim. 2025. "Calcium-Rich Steel Slag as a Reactive Capping Material: Effects on Hydraulic Conductivity and Nutrient Attenuation in Cohesive Intertidal Sediments" Journal of Marine Science and Engineering 13, no. 9: 1723. https://doi.org/10.3390/jmse13091723
APA StyleWoo, H.-E., Afif, V. R., Park, S., Patil, M. P., Jeong, I., Lee, I.-C., Kim, J.-O., & Kim, K. (2025). Calcium-Rich Steel Slag as a Reactive Capping Material: Effects on Hydraulic Conductivity and Nutrient Attenuation in Cohesive Intertidal Sediments. Journal of Marine Science and Engineering, 13(9), 1723. https://doi.org/10.3390/jmse13091723