Forecasting Lithium Demand for Electric Ship Batteries in China’s Inland Shipping Under Decarbonization Scenarios
Abstract
1. Introduction
2. Methods
2.1. Research Framework
2.2. Calculation of the Penetration of AESs
2.3. Construction of Dynamic MFA Model
2.3.1. AES Layer
2.3.2. Battery Layer
2.3.3. Lithium Layer
3. Scenarios and Assumptions
3.1. Scenario Settings
3.2. Parameters Related to Vessel
3.3. Parameters Related to Battery
4. Results
4.1. AES
4.2. Battery
4.3. Lithium
5. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Maritime Organization (IMO). 2023 IMO Strategy on Reduction of GHG Emissions from Ships. 2023. Available online: https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx (accessed on 1 January 2025).
- Hu, M.; Dong, Y. China’s shipping emissions governance: Status and prospects under the dual carbon goal. Front. Mar. Sci. 2024, 11, 1405312. [Google Scholar] [CrossRef]
- Skjong, E.; Volden, R.; Rodskar, E.; Molinas, M.; Johansen, T.A.; Cunningham, J. Past, Present, and Future Challenges of the Marine Vessel’s Electrical Power System. IEEE Trans. Transp. Electrification 2016, 2, 522–537. [Google Scholar] [CrossRef]
- International Renewable Energy Agency IRENA. A Pathway to Decarbonise the Shipping Sector by 2050. 2021. Available online: https://www.irena.org/Publications/2021/Oct/A-Pathway-to-Decarbonise-the-Shipping-Sector-by-2050#:~:text=This%20report%20explores%20the%20options%20and%20actions%20needed,realistic%20pathway%20to%20reach%20the%201.5%C2%B0C%20climate%20goal (accessed on 1 January 2025).
- Hache, E.; Seck, G.S.; Simoen, M.; Bonnet, C.; Carcanague, S. Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport. Appl. Energy 2019, 240, 6–25. [Google Scholar] [CrossRef]
- Habib, K.; Hansdottir, S.T.; Habib, H. Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 2020, 154, 104603. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Liu, J.; Hao, Y.; Tang, Y.; Li, Y. The impacts of critical metal shortage on China’s electric vehicle industry development and countermeasure policies. Energy 2022, 248, 123646. [Google Scholar] [CrossRef]
- Kim, S.; Jeon, H. Comparative Analysis on AC and DC Distribution Systems for Electric Propulsion Ship. J. Mar. Sci. Eng. 2022, 10, 559. [Google Scholar] [CrossRef]
- Xuan, H.; Liu, Q.; Wang, L.; Yang, L. Decision-Making on the Selection of Clean Energy Technology for Green Ships Based on the Rough Set and TOPSIS Method. J. Mar. Sci. Eng. 2022, 10, 579. [Google Scholar] [CrossRef]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 1234567890. [Google Scholar] [CrossRef]
- Maisel, F.; Neef, C.; Marscheider-Weidemann, F.; Nissen, N.F. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour. Conserv. Recycl. 2023, 192, 106920. [Google Scholar] [CrossRef]
- Lu, Y.; Peng, T.; Zhu, L.; Shao, T.; Pan, X. China’s road transport decarbonization pathways and critical battery mineral demand under carbon neutrality. Transp. Res. Part D Transp. Environ. 2023, 124, 103927. [Google Scholar] [CrossRef]
- Woodley, L.; See, C.Y.; Cook, P.; Yeo, M.; Palmer, D.S.; Huh, L.; Wang, S.; Nunes, A. Climate impacts of critical mineral supply chain bottlenecks for electric vehicle deployment. Nat. Commun. 2024, 15, 6813. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.B. Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. Ecol. Econ. 2006, 59, 142–156. [Google Scholar] [CrossRef]
- Shafique, M.; Rafiq, M.; Azam, A.; Luo, X. Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resour. Conserv. Recycl. 2022, 178, 106061. [Google Scholar] [CrossRef]
- Dong, Z.; Hao, H.; Sun, X.; Xun, D.; Dou, H.; Geng, J.; Liu, Z. Projecting future critical material demand and recycling from China’s electric passenger vehicles considering vehicle segment heterogeneity. Resour. Conserv. Recycl. 2024, 207, 107691. [Google Scholar] [CrossRef]
- Perčić, M.; Vladimir, N.; Fan, A.; Jovanović, I. Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads. J. Mar. Sci. Eng. 2022, 10, 613. [Google Scholar] [CrossRef]
- Jiang, L.; Ji, Y.; Yi, Y.; Li, K. Research on the application of new energy pure battery powered ships in the Yangtze River. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 022046. [Google Scholar] [CrossRef]
- China Classification Society (CCS). Rules for Battery-Powered Ships. 2023. Available online: https://www.ccs.org.cn/ccswz/articleDetail?id=202303281051791179 (accessed on 1 January 2025).
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Benveniste, G.; Rallo, H.; Casals, L.C.; Merino, A.; Amante, B. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. J. Environ. Manag. 2018, 226, 1–12. [Google Scholar] [CrossRef]
- Zhu, W.P. Economic benefit evaluation of 500 tonnage new energy pure electric ship in inland river. Transp. Enterp. Manag. 2018, 33, 72–74. [Google Scholar]
- China Waterborne Transport Research Institute. Study on Medium- and Long-Term Low-Carbon Development Pathways for China’s Inland Waterway Shipping. February 2023. Available online: https://theicct.org/wp-content/uploads/2023/02/marine-china-inland-shipping-CH-feb23-updatedvf.pdf (accessed on 1 January 2025).
- Peng, X.; Yi, W.; Zhang, H.; He, K.; Liu, H. The carbon emission reduction roadmap and policy of inland river ships in the yangtze river basin. J. Clean. Prod. 2025, 495, 145056. [Google Scholar] [CrossRef]
- Ellingsen, L.A.; Majeau-Bettez, G.; Singh, B.; Srivastava, A.K.; Valøen, L.O.; Strømman, A.H. Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. J. Ind. Ecol. 2014, 18, 113–124. [Google Scholar] [CrossRef]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Gaines, L. Profitable Recycling of Low-Cobalt Lithium-Ion Batteries Will Depend on New Process Developments. One Earth 2019, 1, 413–415. [Google Scholar] [CrossRef]
- Xu, P.; Tan, D.H.S.; Jiao, B.; Gao, H.; Yu, X.; Chen, Z. A Materials Perspective on Direct Recycling of Lithium-Ion Batteries: Principles, Challenges and Opportunities. Adv. Funct. Mater. 2023, 33, 2213168. [Google Scholar] [CrossRef]
- Hu, X.; Deng, X.; Wang, F.; Deng, Z.; Lin, X.; Teodorescu, R.; Pecht, M.G. A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proc. IEEE 2022, 110, 735–753. [Google Scholar] [CrossRef]
- Ahmed, S.; Verhulst, E.; Boks, C. Sustainable Business Models for the Second Use of Electric Vehicles Lithium-ion Batteries in an Ecosystem Context: A Review. In Proceedings of the 5th PLATE Conference, Espoo, Finland, 31 May–2 June 2023. [Google Scholar]
- Hao, H.; Qiao, Q.; Liu, Z.; Zhao, F. Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case. Resour. Conserv. Recycl. 2017, 122, 114–125. [Google Scholar] [CrossRef]
- Yu, W.; Guo, Y.; Shang, Z.; Zhang, Y.; Xu, S. A review on comprehensive recycling of spent power lithium-ion battery in China. eTransportation 2022, 11, 100155. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Pan, X.; Wang, H.; Wang, L.; Chen, W. Decarbonization of China’s transportation sector: In light of national mitigation toward the Paris Agreement goals. Energy 2018, 155, 853–864. [Google Scholar] [CrossRef]
- Liu, F.; Mauzerall, D.L.; Zhao, F.; Hao, H. Deployment of fuel cell vehicles in China: Greenhouse gas emission reductions from converting the heavy-duty truck fleet from diesel and natural gas to hydrogen. Int. J. Hydrogen Energy 2021, 46, 17982–17997. [Google Scholar] [CrossRef]
- Cho, H.J.; Ünalan, S.; Meng, Z. Economic Benefits of Building Zero-Emission Capable Vessels in East Asia; International Council on Clean Transportation: Washington, DC, USA, 2024. [Google Scholar]
- Energy Storage News. CATL Batteries Energise Powin’s New ‘Long Duration, Long Life’ Li-Ion Systems. 2020. Available online: https://www.energy-storage.news/news/catlbatteries-energise-powins-new-long-duration-long-life-li-ion-systems (accessed on 1 January 2025).
- EVBox. How Long Do Electric Car Batteries Last? 2023. Available online: https://blog.evbox.com/ev-battery-longevity (accessed on 1 January 2025).
- Battery 2030+. Roadmap Towards a European Research Initiative on Batteries. March 2020. Available online: https://battery2030.eu/wp-content/uploads/2021/08/c_860904-l_1-k_roadmap-27-march.pdf (accessed on 1 January 2025).
- Zhang, H.; Huang, J.; Hu, R.; Zhou, D.; Khan, H.U.R.; Ma, C. Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies. Energy 2020, 206, 118178. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- IEA. World Energy Outlook 2022. 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 1 January 2025).
- Zincir, B.A.; Arslanoglu, Y. Comparative Life Cycle Assessment of Alternative Marine Fuels. Fuel 2024, 358, 129995. [Google Scholar] [CrossRef]
- Pan, X.; Wang, L.; Chen, W.; du Pont, Y.R.; Clarke, L.; Yang, L.; Wang, H.; Lu, X.; He, J. Decarbonizing China’s energy system to support the Paris climate goals. Sci. Bull. 2022, 67, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- General Energies. PM120E Solution. Available online: https://generalenergies.com/solutions/solution-pm120e/ (accessed on 1 January 2025).
- 2022 World EV & ES Battery Conference. Perspectives on Advanced Power Cell Technologies for Carbon Neutrality. 2022. Available online: https://www.crunchbase.com/event/2021-global-intelligent-mobility-conference (accessed on 1 January 2025).
- Ponrouch, A.; Palacín, M.R. Post-Li batteries: Promises and challenges. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180297. [Google Scholar] [CrossRef]
- MIIT. Policy Document Repository of the Ministry of Industry and Information Technology. 2023. Available online: https://www.miit.gov.cn/search/wjfb.html?websiteid=110000000000000&tnqh_x0026;pg=&tnqh_x0026;p=&tnqh_x0026;tpl=14&tnqh_x0026;category=51&tnqh_x0026;q= (accessed on 1 January 2025).
- Sun, X.; Ouyang, M.; Hao, H. Surging lithium price will not impede the electric vehicle boom. Joule 2022, 6, 1738–1742. [Google Scholar] [CrossRef]
- Dou, H.; Hao, H. The greenhouse gas emissions reduction co-benefit of end-of-life electric vehicle battery treatment strategies. Carbon Footprints 2023, 3, N-A. [Google Scholar] [CrossRef]
- Battery 2030+. Inventing the Sustainable Batteries of the Future: Research Needs and Future Actions. 2022. Available online: https://battery2030.eu/wp-content/uploads/2022/07/BATTERY-2030-Roadmap_Revision_FINAL.pdf (accessed on 1 January 2025).
- Makwarimba, C.P.; Tang, M.; Peng, Y.; Lu, S.; Zheng, L.; Zhao, Z.; Zhen, A.-G. Assessment of recycling methods and processes for lithium-ion batteries. iScience 2022, 25, 104321. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS); U.S. Department of the Interior. Mineral Commodity Summaries 2022. 2022. Available online: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022.pdf (accessed on 1 January 2025).
- Santos, P.M.B.; Santos, T.A. Short Sea Shipping in the Age of Sustainability, Autonomous Navigation and Digitalization. J. Mar. Sci. Eng. 2024, 12, 252. [Google Scholar] [CrossRef]
- Jeon, T.-Y.; Lee, C.-M.; Hur, J.-J. A Study on the Control Solution of Ship’s Central Fresh Water-Cooling System for Efficient Energy Control Based on Merchant Training Ship. J. Mar. Sci. Eng. 2022, 10, 679. [Google Scholar] [CrossRef]
Year | SSB | |||
---|---|---|---|---|
LFP | Li-Sulfur | Li-Air | ASSB | |
2020 | 0.09 | - | - | - |
2030 | 0.08 | 0.28 | 0.26 | 0.18 |
2040 | 0.08 | 0.26 | 0.24 | 0.16 |
2050 | 0.08 | 0.24 | 0.22 | 0.14 |
2060 | 0.08 | 0.22 | 0.20 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Dai, L. Forecasting Lithium Demand for Electric Ship Batteries in China’s Inland Shipping Under Decarbonization Scenarios. J. Mar. Sci. Eng. 2025, 13, 1676. https://doi.org/10.3390/jmse13091676
Zhang L, Dai L. Forecasting Lithium Demand for Electric Ship Batteries in China’s Inland Shipping Under Decarbonization Scenarios. Journal of Marine Science and Engineering. 2025; 13(9):1676. https://doi.org/10.3390/jmse13091676
Chicago/Turabian StyleZhang, Lei, and Lei Dai. 2025. "Forecasting Lithium Demand for Electric Ship Batteries in China’s Inland Shipping Under Decarbonization Scenarios" Journal of Marine Science and Engineering 13, no. 9: 1676. https://doi.org/10.3390/jmse13091676
APA StyleZhang, L., & Dai, L. (2025). Forecasting Lithium Demand for Electric Ship Batteries in China’s Inland Shipping Under Decarbonization Scenarios. Journal of Marine Science and Engineering, 13(9), 1676. https://doi.org/10.3390/jmse13091676