Stabilization of Floating Offshore Wind Turbines with a Passive Stability-Enhancing Skirted Trapezoidal Platform
Abstract
1. Introduction
2. Literature Review
3. Governing Equations and Boundary Conditions
3.1. Governing Equations
3.2. Boundary Conditions of the Potential Flow
4. Optimize the Barge Geometry
4.1. Verification
4.2. Optimization Procedure
4.3. Moonpool Geometry
4.4. Geometry of Platform
4.5. Length of Skirt
4.6. Inclination of the Outer Walls
5. Sensitivity Analysis
5.1. Location of the Skirt
5.2. Moonpool Area
5.3. Comparison Between the Pervious Study and Proposed Platforms
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, A.D.; Hansen, L.H. Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy 2007, 10, 81–97. [Google Scholar] [CrossRef]
- Saghi, H.; Zi, G. Pitch motion reduction of a barge-type floating offshore wind turbine substructure using a bidirectional tuned liquid damper. Ocean. Eng. 2024, 304, 117717. [Google Scholar] [CrossRef]
- Saghi, H.; Ma, C.; Zi, G. Bidirectional tuned liquid dampers for stabilizing floating offshore wind turbine substructures. Ocean. Eng. 2024, 309, 118553. [Google Scholar] [CrossRef]
- Saghi, R.; Li, Z.; Ning, D. Preliminary investigation of the effects of a trapezoidal moonpool on the hydrodynamic performance of the Barge-Type FOWT substructures for potential OWC integration. Ocean. Eng. 2025, 322, 120532. [Google Scholar] [CrossRef]
- Ojo, A.; Collu, M.; Coraddu, A. Geometric design parameterization and optimization of spar floating offshore wind turbine substructure. Ocean. Eng. 2025, 332, 121378. [Google Scholar] [CrossRef]
- Ahn, H.; Shin, H. Experimental and numerical analysis of a 10 MW floating offshore wind turbine in regular waves. Energies 2020, 13, 2608. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Matha, D. Dynamics of offshore floating wind turbines—Analysis of three concepts. Wind Energy 2011, 14, 557–569. [Google Scholar] [CrossRef]
- Han, D.; Li, X.; Wang, W.; Su, X. Dynamic modeling and vibration control of barge offshore wind turbine using tuned liquid column damper in floating platform. Ocean. Eng. 2023, 276, 114299. [Google Scholar] [CrossRef]
- Ding, Q.; Li, C.; Cheng, S.; Hao, W.; Huang, Z.; Yu, W. Study on TMD Control on Stability Improvement of Barge-Supported Floating Offshore Wind Turbine Based on the Multi-Island Genetic Algorithm. China Ocean. Eng. 2019, 33, 309–321. [Google Scholar] [CrossRef]
- Jia, W.; Liu, Q.; Lglesias, G.; Miao, W.; Yue, M.; Yang, Y.; Li, C. Investigation of barge-type FOWT in the context of concurrent and cascading failures within the mooring systems. Renew. Energy 2024, 224, 120119. [Google Scholar] [CrossRef]
- Chen, M.; Yang, L.; Sun, X.; Pan, J.; Zhang, K.; Lin, L.; Yun, Q.; Chen, Z. Dynamic Analysis of a Barge-Type Floating Wind Turbine Subjected to Failure of the Mooring System. J. Mar. Sci. Eng. 2024, 12, 617. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Wang, F.; Ye, J. Numerical studies on CALM buoy motion responses and the effect of buoy geometry cum skirt dimensions with its hydrodynamic waves-current interactions. Ocean. Eng. 2022, 244, l110378. [Google Scholar] [CrossRef]
- Faltinsen, O. Hydrodynamics of High-Speed Marine Vehicles; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, S.; Guo, X.; Tian, F.; Han, X.; Shi, W.; Li, X. Initial Design of a Novel Barge-Type Floating Offshore Wind Turbine in Shallow Water. J. Mar. Sci. Eng. 2023, 11, 464. [Google Scholar] [CrossRef]
- Jonkman, J.; Buhl, M. Loads analysis of a floating offshore wind turbine using fully coupled simulation. In Proceedings of the WindPower 2007 Conference & Exhibition, Los Angeles, CA, USA, 3–6 June 2007. [Google Scholar]
- Kosasih, K.M.A.; Niizato, H.; Okubo, S.; Mitani, S.; Suzuki, H. Wave tank experiment and coupled simulation analysis of barge-type offshore wind turbine. In Proceedings of the 29th International Society Offshore and Polar Engineering Conference (ISOPE-2019), Hawaii, HI, USA, 16–21 June 2019; Volume 1, pp. 390–397. [Google Scholar]
- Lee, S. Dynamic Response Analysis of Spar Buoy Floating Wind Turbine Systems; MIT: Cambridge, MA, USA, 2008. [Google Scholar]
- Jonkman, J.M. Dynamics of offshore floating wind turbines-model development and verification. Wind Energy 2009, 12, 459–492. [Google Scholar] [CrossRef]
- Laura, C.S.; Vicente, D.C. Life-cycle cost analysis of floating offshore wind farms. Renew. Energy 2014, 66, 41–48. [Google Scholar] [CrossRef]
- James, R.; Ros, M.C. Floating offshore wind: Market and technology review. Carbon Trust 2015, 439, 6. [Google Scholar]
- Jang, H.K.; Kim, H.C.; Kim, M.H.; Kim, K.H. Coupled dynamic analysis for multi-unit floating offshore wind turbine in maximum operational and survival conditions. In Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2015), St. John’s, NL, Canada, 31 May 31–5 June 2015; Volume 9, p. V009T09A070. [Google Scholar] [CrossRef]
- Kang, H.; Kim, M.H.; Kim, K.H.; Hong, K. Hydroelastic analysis of multi-unit floating offshore wind turbine platform (MUFOWT). In Proceedings of the 27th International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017; pp. 554–560. [Google Scholar]
- Bae, Y.H.; Kim, M.H. The dynamic coupling effects of a MUFOWT (multiple unit floating offshore wind turbine) with partially broken blade. J. Ocean. Wind. Energy 2015, 2, 89–97. [Google Scholar] [CrossRef]
- Bashetty, S.; Ozcelik, S. Design and Stability Analysis of an Offshore Floating Multi-Turbine Platform. In Proceedings of the 2020 IEEE Green Technologies Conference (GreenTech), Oklahoma City, OK, USA, 1–3 April 2020; Volume 2020, pp. 184–189. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhao, H.; Li, X.; Shi, W. Hydrodynamic Responses of a Barge-Type Floating Offshore Wind Turbine Integrated with an Aquaculture Cage. J. Mar. Sci. Eng. 2022, 10, 854. [Google Scholar] [CrossRef]
- Newman, J. Marine Hydrodynamics, 40th ed.; The MIT Press: Cambridge, MA, USA, 2017; p. 418. [Google Scholar]
- Saghi, R.; Hirdaris, S.; Saghi, H. The influence of flexible fluid structure interactions on sway induced tank sloshing dynamics. Eng. Anal. Bound. Elem. 2021, 131, 206–217. [Google Scholar] [CrossRef]
- Chuang, T.C.; Yang, W.H.; Yang, R.Y. Experimental and numerical study of a barge-type FOWT platform under wind and wave load. Ocean. Eng. 2021, 230, 109015. [Google Scholar] [CrossRef]
- Wehausen, J.V.; Laitone, E.V. Surface waves. In Fluid Dynamics/Strömungsmechanik; Springer: Berlin/Heidelberg, Germany, 1960; pp. 446–778. [Google Scholar]
- Wang, C.Y. Exact solutions of the steady-state Navier-Stokes equations. Annu. Rev. Fluid Mech. 1991, 23, 159–177. [Google Scholar] [CrossRef]
- Ertekin, R.C.; Riggs, H.R.; Che, X.L.; Du, S.X. Efficient methods for hydroelastic analysis of very large floating structures. J. Ship Res. 1993, 37, 58–76. [Google Scholar] [CrossRef]
- Vijayakumar, G.; Selvam, P. Hydrodynamic Analysis of Barge Floater with Moonpool for 5 Mw Wind Turbine Using Wamit. In Proceedings of the International Conference on Marine Technology, Kuala Terengganu, Malaysia, 20–22 October 2012; pp. 20–22. [Google Scholar]
- Technologies, N. HYDRAN-XR, Hydrodynamic Response Analysis with Integrated Structural Finite Element Analysis, version 20.1; Technical report; NumSoft Technologies: Prescott, AZ, USA, 2020. [Google Scholar]
- Sun, S.Y.; Li, Y.; Cui, J.; Liu, Y. Effects of covers on dynamic response of a barge-type wind turbine with four moonpools. Ocean. Eng. 2025, 338, 121987. [Google Scholar] [CrossRef]
- Li, Y.; Sun, S.Y.; Cui, J. Hydrodynamic-aerodynamic performance of a barge-type floating offshore wind turbine with four moonpools and moorings. Front. Energy Res. 2025, 13, 1581732. [Google Scholar] [CrossRef]
- Aalbers, A.B. The water motions in a moonpool. Ocean. Eng. 1984, 11, 557–579. [Google Scholar] [CrossRef]
- Molin, B. On the piston and sloshing modes in moonpools. J. Fluid Mech. 2001, 430, 27–50. [Google Scholar] [CrossRef]
- Faltinsen, O.M.; Rognebakke, O.F.; Timokha, A.N. Two-dimensional resonant piston-like sloshing in a moonpool. J. Fluid Mech. 2007, 575, 359–397. [Google Scholar] [CrossRef]
- Gong, S.; Gao, J.; Yan, M.; Song, Z.; Shi, H. Effects of floater motion on wave loads during steady-state gap resonance occurring between two non-identical boxes. Ocean. Eng. 2025, 323, 120649. [Google Scholar] [CrossRef]
- Gong, S.; Gao, J.; Song, Z.; Shi, H.; Liu, Y. Hydrodynamics of fluid resonance in a narrow gap between two boxes with different breadths. Ocean. Eng. 2024, 311, 118986. [Google Scholar] [CrossRef]
- Mi, C.L.; Gao, J.L.; Song, Z.W.; Yan, M.Y. Gap Resonance Between a Stationary Box and a Vertical Wall Induced by Transient Focused Wave Groups. China Ocean. Eng. 2025, 39, 441–454. [Google Scholar] [CrossRef]
- Mi, C.; Gao, J.; Song, Z.; Liu, Y. Hydrodynamic wave forces on two side-by-side barges subjected to nonlinear focused wave groups. Ocean Eng. 2025, 317, 120056. [Google Scholar] [CrossRef]
- Katafuchi, M.; Suzuki, H.; Higuchi, Y.; Houtani, H.; Malta, E.B.; Gonçalves, R.T. Wave Response of a Monocolumn Platform with a Skirt Using CFD and Experimental Approaches. J. Mar. Sci. Eng. 2022, 10, 1276. [Google Scholar] [CrossRef]
- Kosasih, K.M.A.; Suzuki, H.; Niizato, H.; Okubo, S. Demonstration experiment and numerical simulation analysis of full-scale barge-type floating offshore wind turbine. J. Mar. Sci. Eng. 2020, 8, 880. [Google Scholar] [CrossRef]
- Bezunartea-Barrio, A.; Fernandez-Ruano, S.; Maron-Loureiro, A.; Molinelli-Fernandez, E.; Moreno-Buron, F.; Oria-Escudero, J.; Rios-Tubio, J.; Soriano-Gomez, C.; Valea-Peces, A.; Lopez-Pavon, C.; et al. Scale effects on heave plates for semi-submersible floating offshore wind turbines: Case study with a solid plain plate. J. Offshore Mech. Arct. Eng. 2020, 142, 031105. [Google Scholar] [CrossRef]
Items | Value | Unit |
---|---|---|
Outer dimensions of the barge | m3 | |
Dimensions of the moonpool | m3 | |
Draft | 4 | m |
Mass of the barge including ballast | 5,452,000 | kg |
Center of gravity from the keel | 11 | m |
Roll/pitch inertia about CM | 729,000 | ton m2 |
Yaw inertia about CM | 145,390 | ton m2 |
Water depth | 15 | m |
Mass of barge including wind turbine and ballast | 6150 | ton |
Items | Value | Unit | |
---|---|---|---|
Size | m3 | ||
Moonpool | m3 | ||
Draft | D | 10 | m |
Displacement | 32,000 | m3 | |
Center of gravity | −0.37 | m | |
0 | m | ||
−4.86 | m | ||
Mass moment of | kg · m2 | ||
inertia | kg · m2 | ||
kg · m2 |
Cases | c (m) | d (m) |
---|---|---|
12 | 0 | 60 |
13 | 6 | 48.60 |
14 | 12 | 38.35 |
15 | 18 | 29.18 |
16 | 24 | 20.93 |
17 | 30 | 13.48 |
18 | 36 | 6.689 |
19 | 42.42 | 0 |
Cases | a (m) | b (m) |
---|---|---|
1 | 0.00 | 20 |
2 | 1.00 | 18.05 |
3 | 2.00 | 16.20 |
4 | 3.00 | 14.44 |
5 | 4.00 | 12.78 |
6 | 5.00 | 11.21 |
7 | 6.00 | 9.725 |
8 | 8.00 | 6.978 |
9 | 10.00 | 4.495 |
10 | 12.00 | 2.230 |
11 | 14.14 | 0 |
Cases | a (m) | b (m) | Area (m2) |
---|---|---|---|
20 | 3 | 9.6 | 225.36 |
21 | 3.25 | 10.4 | 264.48 |
22 | 3.5 | 11.2 | 306.74 |
23 | 3.75 | 12 | 352.12 |
24 | 4 | 12.8 | 400.64 |
25 | 4.25 | 13.6 | 452.28 |
26 | 4.5 | 14.4 | 507.06 |
27 | 4.75 | 15.2 | 564.96 |
28 | 5 | 16 | 626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Saghi, H.; Jeon, I.; Zi, G. Stabilization of Floating Offshore Wind Turbines with a Passive Stability-Enhancing Skirted Trapezoidal Platform. J. Mar. Sci. Eng. 2025, 13, 1658. https://doi.org/10.3390/jmse13091658
Kim H, Saghi H, Jeon I, Zi G. Stabilization of Floating Offshore Wind Turbines with a Passive Stability-Enhancing Skirted Trapezoidal Platform. Journal of Marine Science and Engineering. 2025; 13(9):1658. https://doi.org/10.3390/jmse13091658
Chicago/Turabian StyleKim, Hanbyeol, Hassan Saghi, Injae Jeon, and Goangseup Zi. 2025. "Stabilization of Floating Offshore Wind Turbines with a Passive Stability-Enhancing Skirted Trapezoidal Platform" Journal of Marine Science and Engineering 13, no. 9: 1658. https://doi.org/10.3390/jmse13091658
APA StyleKim, H., Saghi, H., Jeon, I., & Zi, G. (2025). Stabilization of Floating Offshore Wind Turbines with a Passive Stability-Enhancing Skirted Trapezoidal Platform. Journal of Marine Science and Engineering, 13(9), 1658. https://doi.org/10.3390/jmse13091658