Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test
Abstract
1. Introduction
2. Finite Element Analyses Details
2.1. Constitutive Model and Interface Properties
2.2. Geometric Model and Boundary Conditions
2.3. Analysis Procedure
2.4. Verification
3. Analyses of Numerical Results
3.1. Evolution of Soil Failure Mechanisms
3.2. Effect of Dimensionless Strength su0/γ′D on Bearing Factor and Critical Depths
3.3. Effect of Slope Parameter λ on Bearing Factor and Critical Depths
3.4. Effect of Sensitivity St on Bearing Factor and Critical Depths
3.5. Effect of Ductility Parameter ξ95 on Bearing Factor and Critical Depths
3.6. Estimation of the Critical Penetration Depths
3.7. Estimation of the Softening Correction Factor βsT
3.8. Estimation of the Shallow Bearing Factor
4. Back-Analysis Procedure for Estimating Soil Strength Parameters
4.1. Framework for Back-Analysis Procedure
4.2. Validation of the Back-Analysis Procedure
4.3. Application of the Back-Analysis Procedure
5. Conclusions
- (1)
- The slope parameter λ exerts considerable influence on the T-bar resistance factors and failure mechanisms. As λ decreases, the disturbed zone of the soil during T-bar penetration expands significantly, and correspondingly, the penetration resistance decreases;
- (2)
- Empirical formulas are established to estimate the critical penetration depths, accounting for the effects of the dimensionless strength and strain-softening parameters;
- (3)
- A back-analysis procedure is developed to estimate strength parameters by using resistance profiles from initial T-bar penetration tests in marine clay. The reliability of this procedure is validated through a series of numerical tests.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
su0, su | Intact and current undrained shear strength of clay |
ξ | Accumulated plastic shear strain |
ξ95 | The specific value of ξ for the clay to undergo 95% remolding |
ξT-bar | Accumulated plastic strain during the first penetration of T-bar |
δrem | Strength ratio of clay between the fully remolded and intact state |
St | Soil sensitivity |
λ | Slope parameter of the enhanced strain-softening model |
qin, qext | Net resistance in the initial penetration and first extraction phase |
qrem | Net resistance in the fully remolded state |
E | Young’s modulus |
v | Poisson’s ratio |
μ | Coulomb friction coefficient |
α | Roughness factor |
τmax | Limiting shear stress on the interface |
K0 | Coefficient of lateral earth pressure |
γ′ | Submerged unit weight of clay |
D, L | Diameter and length of the T-bar |
A | Cross-sectional area of the T-bar |
F, Fnet | Total and net penetration resistance of T-bar |
Fb | Buoyant force |
F0, Fs | Deep penetration resistance without and with effects of strain softening |
d, w | Penetration depth and normalized penetration depth |
dcavity, wcavity | Trapped cavity depth and normalized trapped cavity depth |
ddeep, wdeep | Full-flow depth and normalized full-flow depth |
NT-bar | T-bar bearing factor |
NT,deep, NT,deep,s | Deep bearing factor without and with effects of strain softening |
NT,shallow | Shallow bearing factor considering strain softening |
NT,correct | Shallow bearing factor of non-softening clay |
NT,s | T-bar bearing factor of strain-softening soil |
βsT | Softening correction factor |
n | Fitting parameter |
References
- Einav, I.; Randolph, M.F. Combining upper bound and strain path methods for evaluating penetration resistance. Int. J. Numer. Methods Eng. 2005, 63, 1991–2016. [Google Scholar] [CrossRef]
- Pinkert, S.; Klar, A. Enhanced Strain-Softening Model from Cyclic Full-Flow Penetration Tests. J. Geotech. Geoenviron. Eng. 2016, 142, 04015087. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Q.; Yu, L.; Ren, Y. Optimized strain softening model for marine clay from cyclic full-flow penetration and extraction tests. Ocean Eng. 2020, 218, 108255. [Google Scholar] [CrossRef]
- Randolph, M.F.; Houlsby, G.T. The limiting pressure on a circular pile loaded laterally in cohesive soil. Géotechnique 1984, 34, 613–623. [Google Scholar] [CrossRef]
- Martin, C.M.; Randolph, M.F. Upper-bound analysis of lateral pile capacity in cohesive soil. Géotechnique 2006, 56, 141–145. [Google Scholar] [CrossRef]
- White, D.J.; Gaudin, C.; Boylan, N.; Zhou, H. Interpretation of T-bar penetrometer tests at shallow embedment and in very soft soils. Can. Geotech. J. 2010, 47, 218–229. [Google Scholar] [CrossRef]
- Tho, K.K.; Leung, C.F.; Chow, Y.K.; Palmer, A.C. Deep cavity flow mechanism of pipe penetration in clay. Can. Geotech. J. 2012, 49, 59–69. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Hossain, M.S.; Zhou, M. Effect of trapped cavity mechanism on interpretation of T-bar penetrometer data in uniform clay. J. Geotech. Geoenviron. Eng. 2020, 146, 04020078. [Google Scholar] [CrossRef]
- Randolph, M.F.; Andersen, K.H. Numerical Analysis of T-Bar Penetration in Soft Clay. Int. J. Geomech. 2006, 6, 411–420. [Google Scholar] [CrossRef]
- Fan, Q.; Luan, M.; Liu, Z. Numerical simulation of penetration resistance of T-bar penetrometer in soft clay. Rock Soil Mech. 2009, 30, 2850–2854. [Google Scholar] [CrossRef]
- Zhou, H.; Randolph, M.F. Resistance of full-flow penetrometers in rate-dependent and strain-softening clay. Géotechnique 2009, 59, 79–86. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Han, C.; Wang, X. Estimation of intact undrained shear strength of clay using full-flow penetrometers. Comput. Geotech. 2019, 115, 103161. [Google Scholar] [CrossRef]
- Chen, X.; Han, C.; Liu, J.; Hu, Y. Interpreting strength parameters of strain-softening clay from shallow to deep embedment using ball and T-bar penetrometers. Comput. Geotech. 2021, 138, 104331. [Google Scholar] [CrossRef]
- Yafrate, N.J.; DeJong, J.T.; DeGroot, D.J.; Randolph, M.F. Evaluation of remolded shear strength and sensitivity of soft clay using full-flow penetrometers. J. Geotech. Geoenviron. Eng. 2009, 135, 1179–1189. [Google Scholar] [CrossRef]
- Zhou, H.; Randolph, M.F. Numerical investigations into cycling of full-flow penetrometers in soft clay. Géotechnique 2009, 59, 801–812. [Google Scholar] [CrossRef]
- Han, Y.; Yu, L.; Yang, Q. Strain softening parameters estimation of soft clay by T-bar penetrometers. Appl. Ocean Res. 2020, 97, 102094. [Google Scholar] [CrossRef]
- Han, Y.; Yu, L.; Wang, Z.; Yang, Q.; Hu, Y. A novel T-bar test method ensuring full-flow mechanism in stiffer clay. Géotechnique 2024, 74, 1460–1474. [Google Scholar] [CrossRef]
- Han, Y.; Cheng, L.; Yu, L.; Yang, Q.; Ren, Y. Boundary effect on the soil strength estimation from T-bar penetration tests. Appl. Ocean Res. 2024, 150, 104107. [Google Scholar] [CrossRef]
- Tho, K.K.; Leung, C.F.; Chow, Y.K.; Swaddiwudhipong, S. Eulerian Finite-Element Technique for Analysis of Jack-Up Spudcan Penetration. Int. J. Geomech. 2012, 12, 64–73. [Google Scholar] [CrossRef]
- Ke, L.; Gao, Y.; Fei, K.; Gu, Y.; Ji, J. Determination of depth-dependent undrained shear strength of structured marine clays based on large deformation finite element analysis of T-bar penetrations. Comput. Geotech. 2024, 176, 106758. [Google Scholar] [CrossRef]
- Liu, F.; Cheng, P.; Luo, Y.; Yi, J.; Chen, X.; Peng, Y.; Hu, J.; Chu, Y. Large-deformation study of T-bar penetration in spatially variable sediments. Appl. Ocean Res. 2024, 150, 104105. [Google Scholar] [CrossRef]
- Ullah, S.N.; Noor, E.; Khuda, S.; Fook Hou, L.; Suntharavadivel, T.; Albermani, F. Deep Undrained Bearing Capacity of Rectangular Foundations in Uniform Strength Clay. J. Geotech. Geoenviron. Eng. 2020, 146, 04020105. [Google Scholar] [CrossRef]
- Wang, Y.; Hossain, M.S.; Hu, Y. Interpretation of T-Bar Penetration Data in Two-Layer Clays. Int. J. Geomech. 2023, 23, 04023195. [Google Scholar] [CrossRef]
Group | su0/γ′D | λ | St | ξ95 | Notes |
---|---|---|---|---|---|
1 | 1.0/3.0/4.8/9.6 | 0.667 | 5 | 15 | Effect of dimensionless strength on critical depths |
2 | 3 | 0.5/0.667/0.8/1.0 | 10 | 10 | Effect of slope parameter on critical depths |
3 | 3 | 1.0 | 1/2/5/10 | 15 | Effect of sensitivity on critical depths |
4 | 3 | 0.667 | 5 | 10/15/20/30 | Effect of ductility parameter on critical depths |
5 | 3 | 0.5/0.667/0.8/1.0 | 2/3/5/10 | 10/15/20/30/40 | Effect of strain-softening parameters on softening correction factor |
6 | 0.3/4.8 | 1.0 | 3/5/10/20 | 15 | Additional cases for fitting formulas of wcavity and wdeep |
α (= δrem) | λ | |||
---|---|---|---|---|
0.5 | 0.667 | 0.8 | 1 | |
0.1 | 0.910 | 1.200 | 1.605 | 2.289 |
0.2 | 0.992 | 1.305 | 1.638 | 2.203 |
0.3 | 0.713 | 1.147 | 1.391 | 1.831 |
0.5 | 0.824 | 1.228 | 1.569 | 2.108 |
Case | su0/γ′D | St | λ | ξ95 |
---|---|---|---|---|
1 | 3.13 (3) | 2.35 (2) | 0.82 (0.8) | 12.05 (15) |
2 | 4.62 (4.8) | 6.24 (5) | 0.8 (0.667) | 15.58 (15) |
Test Case | Input Parameters | Back-Analyzed Parameters | |||
---|---|---|---|---|---|
su/γ’D-St-λ-ξ95 | su/γ’D | St | λ | ξ95 | |
1 | 3-2-0.8-15 | 3.13 | 2.35 | 0.82 | 12.05 |
2 | 3-3-1-15 | 3.21 | 3.56 | 0.99 | 14.87 |
3 | 3-2-0.5-15 | 2.84 | 2.01 | 0.58 | 12.53 |
4 | 3-2-0.667-20 | 3.04 | 2.31 | 0.8 | 16.5 |
5 | 3-5-0.667-15 | 3.17 | 4.99 | 0.75 | 12.71 |
6 | 3-5-0.667-20 | 3.08 | 4.97 | 0.68 | 15.62 |
7 | 3-10-0.667-10 | 2.95 | 9.25 | 0.5 | 10.85 |
8 | 4.8-5-0.667-15 | 4.62 | 6.24 | 0.80 | 15.58 |
9 | 9.6-5-0.667-15 | 9.00 | 5.63 | 0.71 | 19.63 |
10 | 1-3-0.667-10 | 1.05 | 2.67 | 0.52 | 10.11 |
11 | 1-3-1-10 | 1.06 | 3.57 | 0.85 | 10.37 |
12 | 1-3-1-40 | 0.96 | 2.84 | 1 | 40 |
13 | 3-10-0.5-10 | 2.8 | 10 | 0.63 | 10 |
14 | 3-10-0.8-10 | 3.20 | 10 | 0.63 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Q.; Lin, Z.; Sun, M.; Han, Y.; Yin, R. Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test. J. Mar. Sci. Eng. 2025, 13, 1648. https://doi.org/10.3390/jmse13091648
Fan Q, Lin Z, Sun M, Han Y, Yin R. Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test. Journal of Marine Science and Engineering. 2025; 13(9):1648. https://doi.org/10.3390/jmse13091648
Chicago/Turabian StyleFan, Qinglai, Zhaoxia Lin, Mengmeng Sun, Yunrui Han, and Ruiying Yin. 2025. "Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test" Journal of Marine Science and Engineering 13, no. 9: 1648. https://doi.org/10.3390/jmse13091648
APA StyleFan, Q., Lin, Z., Sun, M., Han, Y., & Yin, R. (2025). Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test. Journal of Marine Science and Engineering, 13(9), 1648. https://doi.org/10.3390/jmse13091648