Larval Dispersal and Connectivity of Bathymodiolus azoricus (Cosel & Comtet, 1999) at the Mid-Atlantic Ridge: Implications for Spatial Management of Hydrothermal Vent Communities
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setup
2.2.1. Hydrodynamic Mode
- Tidal data from the FES2012 global tidal model;
- Atmospheric forcing from the Global Forecast System (GFS);
- Open boundary conditions (OBCs) from MERCATOR-OCEAN (PSY2V4; [58]).
Domain Level | Bathymetry Data (Source) | Type | Dimension (dx/dy) | Spacial Resolution (dx/dy) | Time Step (seconds) | Period Simulated |
---|---|---|---|---|---|---|
Level 1 | EMODnet + Gebco | 2-D barotropic | 300 × 200 | 6 km × 6 km | 120 | 2011–2013 |
Level 2 | EMODnet | 3-D baroclinic | 113 × 92 | 6 km × 6 km | 120 | 2011–2013 |
2.2.2. Bathymetric Data
2.2.3. Validations Results
2.3. Biophysical Modelling System
2.4. The Vent Mussel
Biological Trait | Model Parameterization (B. azoricus) | Reference |
---|---|---|
Spawning time | A large proportion of the animals recovered in early February 2003 were releasing eggs and motile sperms; the same happened when animals were kept in captivity for one year February | [42,45] |
Spawning location | Central coordinates of each vent field (Menez Gwen, Lucky Strike, Rainbow) | [33,34] |
Spawning depth | Mean depth of each vent field | |
Egg diameter | Mean diameter of Gigantidas childressi eggs collected in the Gulf of Mexico 69.15 ± 2.36 µm | [71] |
Egg density | Calculated Based on Mytilus edulis | [80] |
Blastula density | Calculated Based on Mytilus edulis | [80] |
Trochophore density | Calculated Based on Mytilus edulis | [80] |
D veliger density | Calculated Based on mussel (Mytilus edulis) parameters | [79,81] |
Competent larvae density | Calculated Based on mussel (Mytilus edulis) parameters | [79,81] |
Planktonic larval duration | Based on calculations for Gigantidas childressi from the Gulf of mexico; also from the difference between spawning time and observation of competent B. azoricus larvae. 90 and 240 days | [41,42,43,70,71] |
Larval swimming velocity | Based on Mytilus data and temperature dependent | [80,82] |
Larval Mortality | Based on the PLD as calculated by the model | [64] |
Settlement habitat | Inside the designated MPA for each hydrothermal vent field, that also include the satellite hydrothermal vents | [35] |
Parameter | Adopted Values |
---|---|
Hydrodynamic model | MOHID |
High resolution (6 km) days | 10 years |
Depth of emissions | bottom depth at location |
Location (Lat, Long, water depth) | |
Menez Gwen hydrothermal vent field | 37.850° N, 32.517, 840 m |
Lucky Strike hydrothermal vent field | 37.283° N, 32.283º W, 1700 m |
Rainbow hydrothermal vent field | 36.217° N, 33,900 W, 2300 m |
Date of emission | 15 January–15 February |
Number of larvae emitted | 8000 (31 + 1) × 250 |
Number of development stages | 4 |
Turbulence | yes |
3. Results
3.1. Connectivity Matrices
3.1.1. The Settlement/Potential Connectivity Matrix
3.1.2. Back Tracking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaines, S.D. Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol. Lett. 2001, 4, 144–150. [Google Scholar] [CrossRef]
- Cowen, R.K.; Gawarkiewicz, G.; Pineda, J.; Thorrold, S.R.; Werner, F.E. Population connectivity in marine systems an overview. Oceanography 2007, 20, 14–21. [Google Scholar] [CrossRef]
- Cowen, R.K.; Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 2009, 1, 443–466. [Google Scholar] [CrossRef]
- Young, C.M.; He, R.; Emlet, R.B.; Li, Y.; Qian, H.; Arellano, S.M.; Van Gaest, A.; Bennett, K.C.; Wolf, M.; Smart, T.I.; et al. Dispersal of deep-sea larvae from the Intra-American Seas: Simulations of trajectories using ocean models. Integr. Comp. Biol. 2012, 52, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.P.; Srinivasan, M.; Almany, G.R. Population connectivity and conservation of marine biodiversity. Oceanography 2007, 20, 100–111. [Google Scholar] [CrossRef]
- Pineda, J. Linking larval settlement to larval transport: Assumptions, potentials, and pitfalls. Oceanogr. East. Pac. 2000, 1, 84–105. [Google Scholar]
- Strathmann, R.R. What controls the type of larval development? Summary statement for the evolution session. Bull. Mar. Sci. 1986, 39, 616–622. [Google Scholar]
- Mitarai, S.; Watanabe, H.; Nakajima, Y.; Shchepetkin, A.F.; McWilliams, J.C. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proc. Natl. Acad. Sci. USA 2016, 113, 2976–2981. [Google Scholar] [CrossRef]
- Pineda, J.; Hare, J.A.; Sponaugle, S.U. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 2007, 20, 22–39. [Google Scholar] [CrossRef]
- Boschen-Rose, R.E.; Colaço, A. Northern Mid-Atlantic Ridge Hydrothermal Habitats: A Systematic Review of Knowledge Status for Environmental Management. Front. Mar. Sci. 2021, 8, 657358. [Google Scholar] [CrossRef]
- Gollner, S.; Colaço, A.; Gebruk, A.; Halpin, P.; Higgs, N.; Menini, E.; Mestre, N.C.; Qian, P.Y.; Sarrazin, J.; Szafranski, K.; et al. Application of scientific criteria for identifying hydrothermal ecosystems in need of protectionS. J. Mar. Policy 2021, 132, 104641. [Google Scholar] [CrossRef]
- Mullineaux, L.S.; Metaxas, A.; Beaulieu, S.E.; Bright, M.; Gollner, S.; Grupe, B.M.; Herrera, S.; Kellner, J.B.; Levin, L.A.; Mitarai, S.; et al. Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework. Front. Mar. Sci. 2018, 5, 49. [Google Scholar] [CrossRef]
- Breusing, C.; Vrijenhoek, R.C.; Reusch, T.B.H. Widespread introgression in deep-sea hydrothermal vent mussels. BMC Evol. Biol. 2017, 17, 13. [Google Scholar] [CrossRef]
- Teixeira, S.; Serrão, E.A.; Arnaud-Haond, S. Panmixia in a fragmented and unstable environment: The hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic Ridge. PLoS ONE 2012, 7, e38521. [Google Scholar] [CrossRef]
- Vrijenhoek, R.C. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol. Ecol. 2010, 19, 4391–4411. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Sun, J.; Xu, Q.; Qian, P.Y. Structure and connectivity of hydrothermal vent communities along the mid-ocean ridges in the West Indian Ocean: A review. Front. Mar. Sci. 2021, 8, 744874. [Google Scholar] [CrossRef]
- Breusing, C.; Johnson, S.B.; Mitarai, S.; Beinart, R.A.; Tunnicliffe, V. Differential patterns of connectivity in Western Pacific hydrothermal vent metapopulations: A comparison of biophysical and genetic models. Evol. Appl. 2023, 16, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, T.; Fukumori, H.; Warén, A.; Kano, Y. Population connectivity of hydrothermal-vent limpets along the northern Mid-Atlantic Ridge (Gastropoda: Neritimorpha: Phenacolepadidae). J. Mar. Biol. Assoc. UK 2019, 99, 179–185. [Google Scholar] [CrossRef]
- Brunner, O.; Chen, C.; Giguère, T.; Kawagucci, S.; Tunnicliffe, V.; Watanabe, H.K.; Mitarai, S. Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific. Ecol. Evol. 2022, 12, e9612. [Google Scholar] [CrossRef]
- Smith, C.R.; Levin, L.A.; Koslow, A.; Tyler, P.A.; Glover, A.G. The near future of the deep-sea floor ecosystems. In Aquatic Ecosystems: Trends and Global Prospects; Polunin, N.V.C., Ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 334–352. [Google Scholar]
- Ramirez-Llodra, E.; Rogers, A.D. An Ecosystem View of Anthropogenic Impacts in the Deep Ocean. In Volume 2: Marine Ecology; CRC Press: Boca Raton, FL, USA, 2025; pp. 201–228. [Google Scholar]
- Danovaro, R.; Snelgrove, P.V.; Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 2014, 29, 465–475. [Google Scholar] [CrossRef]
- Burgess, S.C.; Baskett, M.L.; Grosberg, R.K.; Morgan, S.G.; Strathmann, R.R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol. Rev. 2016, 91, 867–882. [Google Scholar] [CrossRef]
- Chesson, P. Recruitment limitation: A theoretical perspective. Aust. J. Ecol. 1998, 23, 234–240. [Google Scholar] [CrossRef]
- Underwood, A.J.; Fairweather, P.G. Supply-side ecology and benthic marine assemblages. Trends Ecol. Evol. 1989, 4, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.K.; Sewell, M.A.; Byrne, M. Revisiting the larval dispersal black box in the Anthropocene. ICES J. Mar. Sci. 2018, 75, 1841–1848. [Google Scholar] [CrossRef]
- Jollivet, D.; Portanier, E.; Matabos, M. Connecting the Vents: Using Genetics to Understand Ecosystem Connectivity Along the Mid-Atlantic Ridge; iAtlantic Science Brief: Edinburgh, Scotland, 2024. [Google Scholar]
- Breusing, C.; Biastoch, A.; Drews, A.; Metaxas, A.; Jollivet, D.; Vrijenhoek, R.C.; Bayer, T.; Melzner, F.; Sayavedra, L.; Petersen, J.M.; et al. Biophysical and population genetic models predict the presence of “phantom” stepping stones connecting Mid-Atlantic Ridge vent ecosystems. Curr. Biol. 2016, 26, 2257–2267. [Google Scholar] [CrossRef]
- Yearsley, J.M.; Salmanidou, D.M.; Carlsson, J.; Burns, D.; Van Dover, C.L. Biophysical models of persistent connectivity and barriers on the northern Mid-Atlantic Ridge. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 180, 104819. [Google Scholar] [CrossRef]
- Escartin, J.; Andreani, M.; The Arc-en-Sub Science Party. Diversity and dynamics of ultramafic-hosted hydrothermal activity at mid-ocean ridges: First results from the Arc-en-Sub oceano-graphic cruise, Rainbow Massif, 36°14’N MAR. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. EGU23-13265. [Google Scholar] [CrossRef]
- Baco, A.R.; Etter, R.J.; Ribeiro, P.A.; Von der Heyden, S.; Beerli, P.; Kinlan, B.P. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 2016, 25, 3276–3298. [Google Scholar] [CrossRef]
- Colaço, A.; Desbruyères, D.; Comtet, T.; Alayse, A.M. Ecology of the Menez Gwen hydrothermal vent field (Mid-Atlantic Ridge/Azores Triple Junction). Cah. Biol. Mar. 1998, 39, 237–240. [Google Scholar]
- Desbruyères, D.; Biscoito, M.; Caprais, J.C.; Colaco, A.; Comtet, T.; Crassous, P.; Fouquet, Y.; Khripounoff, A.; Le Bris, N.; Olu, K.; et al. Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep Sea Res. Part I 2001, 48, 1325–1346. [Google Scholar] [CrossRef]
- Decreto Legislativo Regional n.° 14/2024/A de 24 de dezembro de 2024. Segunda alteração ao Decreto Legislativo Regional n.° 28/2011/A, de 11 de novembro, alterado e republicado pelo Decreto Legislativo Regional n.° 13/2016/A, de 19 de julho, que estrutura o Parque Marinho dos Açores. Available online: https://diariodarepublica.pt/dr/detalhe/decreto-legislativo-regional/14-2024-901147128 (accessed on 15 July 2024).
- Hennicke, J.; Blanchard, S.; Chaniotis, P.; Cornick, L.; Hauswirth, M.; Schellekens, T.; Vonk, S.; Werner, T. Report and Assessment of the Status of the OSPAR Network of Marine Protected Areas in 2021; OSPAR Commision: London, UK, 2022. [Google Scholar]
- Morato, T.; Juliano, M.; Pham, C.K.; Carreiro-Silva, M.; Martins, I.; Colaço, A. Modelling the dispersion of Seafloor Massive Sulphide mining plumes in the Mid Atlantic Ridge around the Azores. Front. Mar. Sci. 2022, 9, 910940. [Google Scholar] [CrossRef]
- Sibuet, M.; Olu, K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res. 1998, 45, 517–567. [Google Scholar] [CrossRef]
- Tunnicliffe, V.; McArthur, A.G.; McHugh, D. A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv. Mar. Biol. 1998, 34, 353–442. [Google Scholar]
- Van Dover, C.L.; Humphris, S.E.; Fornari, D.; Cavanaugh, C.M.; Collier, R.; Goffredi, S.K.; Hashimoto, J.; Liley, M.D.; Reysenbach, A.L.; Shank, T.M.; et al. Biogeography and ecological setting of Indian Ocean Hydrothermal Vents. Science 2001, 294, 818–823. [Google Scholar] [CrossRef]
- Tyler, P.A.; Young, C.M. Reproduction and dispersal at vents and cold seeps. J. Mar. Biol. Assoc. UK 1999, 79, 193–208. [Google Scholar] [CrossRef]
- Comtet, T.; Desbruyères, D. Population structure and recruitment in mytilid bivalves from the Lucky Strike and Menez Gwen hydrothermal vent fields (37 degrees 17′ N and 37 degrees 50′ N on the Mid-Atlantic Ridge). Mar. Ecol. Prog. Ser. 1998, 163, 165–177. [Google Scholar] [CrossRef]
- Dixon, D.; Lowe, D.; Miller., P.; Villemin, G.; Colaço, A.; Serrão-Santos, R.; Dixon, L. Evidence for seasonal reproduction in the Atlantic vent mussel Bathymodiolus azoricus, and an apparent link to the timing of photosynthetic primary production. J. Mar. Biol. Assoc. UK 2006, 86, 1363–1371. [Google Scholar] [CrossRef]
- Colaço, A.; Martins, I.; Laranjo, M.; Pires, L.; Leal, C.; Prieto, C.; Costa, V.; Lopes, H.; Rosa, D.; Dando, P.R.; et al. Annual spawning of the hydrothermal vent mussel, Bathymodiolus azoricus, under controlled aquarium conditions at atmospheric pressure. J. Exp. Mar. Biol. Ecol. 2006, 333, 166–171. [Google Scholar] [CrossRef]
- Thomson, R.E.; Subbotina, M.M.; Anisimov, M.V. Numerical simulation of mean currents and water property anomalies at Endeavour Ridge: Hydrothermal versus topographic forcing. J. Geophys. Res. 2009, 114, 9020. [Google Scholar] [CrossRef]
- McGillicuddy, D.J.; Lavelle, J.W.; Thurnherr, A.M.; Kosnyrev, V.K.; Mullineaux, L.S. Larval dispersion along an axially symmetric mid-ocean ridge. Deep Sea Res. Part I 2010, 57, 880–892. [Google Scholar] [CrossRef]
- Ross, R.E.; Nimmo-Smith, W.A.M.; Howell, K. Towards ‘ecological coherence’: Assessing larval dispersal within a network of existing marine protected areas. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 126, 128–138. [Google Scholar] [CrossRef]
- Cosel, R.V.; Comtet, T.; Krylova, E.M. Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents on the Azores Triple Junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge. Veliger 1999, 42, 218–248. [Google Scholar]
- Fouquet, Y.; Ondréas, H.; Charlou, J.L.; Donval, J.P.; Radford-Knoery, J.; Costa, I.; Lourenço, N.; Tivey, M.K. Atlantic lava lakes and hot vents. Nature 1995, 377, 201. [Google Scholar] [CrossRef]
- Fouquet, Y.; Charlou, J.L.; Costa, I.; Donval, J.P.; Radford-Knoery, J.; Pellé, H.; Ondréas, H.; Lourenço, N.; Ségonzac, M.; Kingston Tivey, M. A detailed study of the Lucky Strike hydrothermal vent site and discovery of a new hydrothermal site: Menez Gwen; Preliminary results of the DIVA 1 cruise (2–29 May). InterRidge News 1994, 3, 14–17. [Google Scholar]
- Charlou, J.L.; Donval, J.P.; Douville, E.; Knoery, J.; Fouquet, Y.; Bougault, H.; Jean Baptiste, P.; Stievenard, M.; German, C. High methane flux between 15ºN and the Azores Triple Junction, Mid-Atlantic Ridge. Hydrothermal and serpentinization processes. EOS 1997, 78, 46. [Google Scholar]
- Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Jean-Baptiste, P.; Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 14′ N, MAR). Chem. Geol. 2002, 191, 345–359. [Google Scholar] [CrossRef]
- Douville, E.; Charlou, J.L.; Oelkers, E.H.; Bienvenu, P.; Colon, C.J.; Donval, J.P.; Fouquet, Y.; Prieur, D.; Appriou, P. The rainbow vent fluids (36 14′ N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 2002, 184, 37–48. [Google Scholar] [CrossRef]
- Marcon, Y.; Sahling, H.; Borowski, C.; dos Santos Ferreira, C.; Thal, J.; Bohrmann, G. Megafaunal distribution and assessment of total methane and sulfide consumption by mussel beds at Menez Gwen hydrothermal vent, based on geo-referenced photomosaics. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2013, 75, 93–109. [Google Scholar] [CrossRef]
- Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.M.; Ballu, V. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls. Earth Planet. Sci. Lett. 2015, 431, 173–185. [Google Scholar] [CrossRef]
- North, E.W.; Adams, E.E.; Schlag, Z.; Sherwood, C.R.; He, R.; Hyun, K.H.; Socolofsky, S.A. Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach. In Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise; Liu, Y., Macfadyen, A., Ji, Z.-G., Weisberg, R.H., Eds.; AGU: Washington, DC, USA, 2011; Volume 195, pp. 217–226. [Google Scholar] [CrossRef]
- Mateus, M.; Neves, R. Ocean Modelling for Coastal Management—Case Studies With MOHID; IST Press: Lisbon, Portugal, 2013; 265p, ISBN 978-989-8481-24-5. [Google Scholar]
- Neves, R. THE MOHID CONCEPT. In Ocean Modelling for Coastal Management—Case Studies with MOHID; Mateus, M., Neves, R., Eds.; IST Press: Lisbon, Portugal, 2013; pp. 1–11. [Google Scholar]
- Drillet, Y.; Bourdallé-Badie, R.; Siefridt, L.; Le Provost, C. Meddies in the Mercator North Atlantic and Mediterranean Sea eddy-resolving model. J. Geophys. Res. Oceans 2005, 110, 03016. [Google Scholar] [CrossRef]
- Riflet, G.; Juliano, M.; Fernandes, L.; Leitão, P.C.; Neves, R. Operational Ocean forecasting of the Portuguese waters. In Mercator Ocean Quarterly Newsletter; Mercator Ocean International: Toulouse, France, 2008; pp. 20–32. [Google Scholar]
- Fernandes, L.; Montero, P.; Garcia, C.; Neves, R.; Obaton, D.; Pérez-Muñuzuri, V.; Juliano, M.F.; Ayensa, G. Building a polycentric structure for the Atlantic Arc—EASY project. In Proceedings of the 5th EuroGOOS Conference, Exeter, UK, 20–22 May 2008. [Google Scholar]
- Juliano, M.; Neves, R.; Rodrigues, P.P.G.W.; Junior, J.L.; Fernandes, R. Aplicação da Plataforma MOHID para simulação computacional de deriva oceânica de petróleo na bacia de campos—RJ. Bol. Do Obs. Ambient. Alberto Ribeiro Lamego 2012, 6, 161–172. [Google Scholar]
- Mateus, M.; Riflet, G.; Chambel, P.; Fernandes, L.; Fernandes, R.; Juliano, M.; Campuzano, F.; de Pablo, H.; Neves, R. An operational model for the West Iberian coast: Products and services. Ocean. Sci. 2012, 8, 713–732. [Google Scholar] [CrossRef]
- Werner, F.E.; Cowen, R.K.; Paris, C.B. Coupled biological and physical models: Present capabilities and necessary developments for future studies of population connectivity. Oceanography 2007, 20, 54–69. [Google Scholar] [CrossRef]
- Paris, C.B.; Helgers, J.; Van Sebille, E.; Srinivasan, A. Connectivity Modeling System: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ. Model. Softw. 2013, 42, 47–54. [Google Scholar] [CrossRef]
- Paris, C.B.; Cowen, R.K.; Claro, R.; Lindeman, K.C. Larval transport pathways from Cuban snapper (Lutjanidae) spawning aggregations based on biophysical modeling. Mar. Ecol. Prog. Ser. 2005, 296, 93–106. [Google Scholar] [CrossRef]
- Laurent, C.; Querin, S.; Solidoro, C.; Canu, D.M. Modelling marine particle dynamics with LTRANS-Zlev: Implementation and validation. Environ. Model. Softw. 2020, 125, 104621. [Google Scholar] [CrossRef]
- Schlag, Z.R.; North, E.W. Lagrangian TRANSport Model (LTRANS v. 2) Users Guide; University of Maryland Center for Environmental Science (UMCES): Cambridge, MD, USA, 2012. [Google Scholar]
- Wood, S.; Paris, C.B.; Ridgwell, A.; Hendy, E.J. Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Glob. Ecol. Biogeogr. 2014, 23, 1–11. [Google Scholar] [CrossRef]
- Kough, A.S.; Paris, C.B.; Butler, M.J., IV. Larval Connectivity and the International Management of Fisheries. PLoS ONE 2013, 8, e64970. [Google Scholar] [CrossRef]
- Comtet, T.; Jollivet, D.; Khripounoff, A.; Segonzac, M.; Dixon, D.R. Molecular and morphological identification of settlement-stage vent mussel larvae, Bathymodiolus azoricus (Bivalvia: Mytilidae), preserved in situ at active vent fields on the Mid-Atlantic Ridge. Limnol. Oceanog. 2000, 45, 1655–1661. [Google Scholar]
- Arellano, S.M.; Young, C.M. Spawning, development, and the duration of larval life in a deep-sea cold-seep mussel. Biol. Bull. 2009, 216, 149–162. [Google Scholar] [CrossRef]
- Le Pennec, M.; Beninger, P.G. Aspects of the reproductive strategy of bivalves from reducing-ecosystem. Cah. Biol. Mar. 1997, 38, 132–133. [Google Scholar]
- Le Pennec, M.; Beninger, P.G. Reproductive characteristics and strategies of reducing-system bivalves. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2000, 126, 1–16. [Google Scholar] [CrossRef]
- Portanier, E.; Nicolle, A.; Rath, W.; Monnet, L.; Le Goff, G.; Le Port, A.-S.; Daguin-Thiébaut, C.; Morrison, C.L.; Cunha, M.R.; Betters, M.; et al. Coupling large-spatial scale larval dispersal modelling with barcoding to refine the amphi-Atlantic connectivity hypothesis in deep-sea seep mussels. Front. Mar. Sci. 2023, 10, 1122124. [Google Scholar] [CrossRef]
- Eckelbarger, K.J.; Young, C.M. Ultrastructure of gametogenesis in a chemosynthetic mytilid bivalve (Bathymodiolus childressi) from a bathyal, methane seep environment (northern Gulf of Mexico). Mar. Biol. 1999, 135, 635–646. [Google Scholar] [CrossRef]
- Siegel, D.; Kinlan, B.; Gaylord, B.; Gaines, S. Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 2003, 260, 83–96. [Google Scholar] [CrossRef]
- Widdows, J. Physiological ecology of mussel larvae. Aquaculture 1991, 94, 147–163. [Google Scholar] [CrossRef]
- McVeigh, D.M.; Eggleston, D.B.; Todd, A.C.; Young, C.M.; He, R. The influence of larval migration and dispersal depth on potential larval trajectories of a deep-sea bivalve. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2017, 127, 57–64. [Google Scholar] [CrossRef]
- Troost, K.; Veldhuizen, R.; Stamhuis, E.J.; Wolff, W.J. Can bivalve veligers escape from feeding currents of adult bivalves? J. Exp. Mar. Biol. Ecol. 2008, 358, 185–196. [Google Scholar] [CrossRef]
- Sprung, M. Physiological energetics of mussel larvae(Mytilus edulis). I. Shell growth and biomass. Mar. Ecol. Prog. Ser. 1984, 17, 283–293. [Google Scholar] [CrossRef]
- Fuchs, H. Mussel larval responses to turbulence are unaltered by larval age or light conditions. Limnol. Oceanogr. Fluids Environ. 2011, 1, 120–134. [Google Scholar] [CrossRef]
- Schwalb, A.N.; Ackerman, J.D. Settling velocities of juvenile Lampsilini mussels (Mollusca:Unionidae): The influence of behavior. J. N. Am. Benthol. Soc. 2011, 30, 702–709. [Google Scholar] [CrossRef]
- Bradbury, I.R.; Laurel, B.; Snelgrove, P.V.; Bentzen, P.; Campana, S.E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B. 2008, 275, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, J.; Portail, M.; Legrand, E.; Cathalot, C.; Laes, A.; Lahaye, N.; Sarradin, P.M.; Husson, B. Endogenous versus exogenous factors: What matters for vent mussel communities? Deep. Sea Res. Part I Oceanogr. Res. Pap. 2020, 160, 103260. [Google Scholar] [CrossRef]
- Sinclair, M. Marine Populations: An Essay on Population Regulation and Speciation; Washington Sea Grant Program: Seattle, WA, USA, 1988; p. 252. [Google Scholar]
- Sponaugle, S.; Cowen, R.K.; Shanks, A.L.; Morgan, S.G.; Leis, J.; Pineda, J.; Boehlert, G.; Kingsford, M.J.; Lindeman, K.; Grimes, C.; et al. Predicting self-recruitment in marine populations: Biophysical correlates and mechanisms. Bull. Mar. Sci. 2002, 49, 341–375. [Google Scholar]
- Metaxas, A. Behaviour in flow: Perspectives on the distribution and dispersion of meroplanktonic larvae in the water column. Can. J. Fish. Aquat. Sci. 2001, 58, 86–98. [Google Scholar] [CrossRef]
- Morgan, S.G. Behaviorally mediated larval transport in upwelling systems. Adv. Oceanogr. 2014, 2014, 364214. [Google Scholar] [CrossRef]
- Arellano, S.M.; Van Gaest, A.L.; Johnson, S.B.; Vrijenhoek, R.C.; Young, C.M. Larvae from deep-sea methane seeps disperse in surface waters. Proc. R. Soc. B 2014, 281, 20133276. [Google Scholar] [CrossRef]
- Yahagi, T.; Kayama Watanabe, H.; Kojima, S.; Kano, Y. Do larvae from deep-sea hydrothermal vents disperse in surface waters? Ecology 2017, 98, 1524–1534. [Google Scholar] [CrossRef]
- Zardus, J.D.; Etter, R.J.; Chase, M.R.; Rex, M.A.; Boyle, E.E. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol. Ecol. 2006, 15, 639–651. [Google Scholar] [CrossRef]
- Yorisue, T.; Kado, R.; Watanabe, H.; Høeg, J.T.; Inoue, K.; Kojima, S.; Chan, B.K.K. Influence of water temperature on the larval development of neoverruca sp. and Shinkailepas seepiophila—Implication for larval dispersal and settlement in the vent and seep environments. Deep Sea Res. Part I 2013, 71, 33–37. [Google Scholar] [CrossRef]
- Arellano, S.M.; Young, C.M. Temperature and salinity tolerances of embryos and larvae of the deep-sea mytilid mussel ‘Bathymodiolus’ childressi. Mar. Biol. 2011, 158, 2481–2493. [Google Scholar] [CrossRef]
- Yahagi, T.; Chen, C.; Kawagucci, S. What we know, what we can know, and what we will never know about the larval dispersal process at deep-sea chemosynthetic ecosystems. Oceanography 2019, 28, 97–125. [Google Scholar] [CrossRef]
- Teixeira, S.; Cambon-Bonavita, M.; Serrão, E.A.; Desbruyéres, D.; Arnaud-Haond, S. Recent population expansion and connectivity in the hydrothermal shrimp Rimicaris exoculata along the Mid-Atlantic Ridge. J. Biogeogr. 2011, 38, 564–574. [Google Scholar] [CrossRef]
- Teixeira, S.; Olu, K.; Decker, C.; Cunha, R.L.; Fuchs, S.; Hourdez, S.; Serrão, E.A.; Arnaud-Haond, S. High connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt: Efficient dispersal mechanisms or questionable endemism? Mol. Ecol. 2013, 22, 4663–4680. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, K.; Petersen, J.M.; Dubilier, N.; Borowski, C. Genetic connectivity between north and south Mid- Atlantic Ridge chemosynthetic bivalves and their symbionts. PLoS ONE 2012, 7, e39994. [Google Scholar] [CrossRef] [PubMed]
- Nnamchi, H.C.; Farneti, R.; Keenlyside, N.S.; Kucharski, F.; Latif, M.; Reintges, A.; Martin, T. Pan-Atlantic decadal climate oscillation linked to ocean circulation. Commun. Earth Environ. 2023, 4, 121. [Google Scholar] [CrossRef]
- Delworth, T.L.; Zeng, F.; Zhang, L.; Zhang, R.; Vecchi, G.A.; Yang, X. The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Clim. 2017, 30, 3789–3805. [Google Scholar] [CrossRef]
- Kinlan, B.P.; Gaines, S.D. Propagule dispersal in marine and terrestrial environments: A community perspective. Ecology 2003, 84, 2007–2020. [Google Scholar] [CrossRef]
- Etter, R.J.; Bower, A.S. Dispersal and population connectivity in the deep North Atlantic estimated from physical transport processes. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2015, 104, 159–172. [Google Scholar] [CrossRef]
- Levin, L.A.; Baco, A.R.; Bowden, D.A.; Colaco, A.; Cordes, E.E.; Cunha, M.R.; Demopoulos, A.W.J.; Gobin, J.; Grupe, B.M.; Le, J.; et al. Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence. Front. Mar. Sci. 2016, 3, 72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colaço, A.; Juliano, M. Larval Dispersal and Connectivity of Bathymodiolus azoricus (Cosel & Comtet, 1999) at the Mid-Atlantic Ridge: Implications for Spatial Management of Hydrothermal Vent Communities. J. Mar. Sci. Eng. 2025, 13, 1642. https://doi.org/10.3390/jmse13091642
Colaço A, Juliano M. Larval Dispersal and Connectivity of Bathymodiolus azoricus (Cosel & Comtet, 1999) at the Mid-Atlantic Ridge: Implications for Spatial Management of Hydrothermal Vent Communities. Journal of Marine Science and Engineering. 2025; 13(9):1642. https://doi.org/10.3390/jmse13091642
Chicago/Turabian StyleColaço, Ana, and Manuela Juliano. 2025. "Larval Dispersal and Connectivity of Bathymodiolus azoricus (Cosel & Comtet, 1999) at the Mid-Atlantic Ridge: Implications for Spatial Management of Hydrothermal Vent Communities" Journal of Marine Science and Engineering 13, no. 9: 1642. https://doi.org/10.3390/jmse13091642
APA StyleColaço, A., & Juliano, M. (2025). Larval Dispersal and Connectivity of Bathymodiolus azoricus (Cosel & Comtet, 1999) at the Mid-Atlantic Ridge: Implications for Spatial Management of Hydrothermal Vent Communities. Journal of Marine Science and Engineering, 13(9), 1642. https://doi.org/10.3390/jmse13091642