Up-to-Date Scoping Review of Object Detection Methods for Macro Marine Debris
Abstract
1. Introduction
1.1. Research Gap
1.2. Research Questions
2. Methods and Materials
2.1. Identification
2.2. Screening and Eligibility
2.3. Data Charting Process
3. Database Acquisition for Macro Marine Debris
3.1. Complexity
- Collection: To collect a comprehensive underwater footage set, scuba divers or underwater rovers are often used, both of which are expensive and cannot comprehensively cover the vast size of the ocean.
- Underwater: The underwater world (particularly marine) comes with a plethora of issues, including a huge array of biodiversity and challenging conditions (depth, light, visibility)—with depth, the conditions rapidly change too. Underwater imagery is frequently characterized by low contrast, haze, poor lighting, and color distortion; these can collectively impair object detection performance and may lead to domain shifts when models are applied to different deployment environments.
- Debris: Trash can signify any human-made object; not only are the shapes and sizes infinite, but properties degrade and alter after time in the salt water.
3.2. Benchmark Databases
4. Advanced Techniques in Macro-Debris Identification
4.1. VGG-16 for Debris Classification
4.2. Mask R-CNN for Instance Segmentation
4.3. YOLO-Based Models
4.4. Innovations in Macro-Debris Detection
5. Findings
- Problem 1: The datasets currently available are limited in diversity and fail to represent the complexity of the marine environment.
- Problem 2: There is a lack of consistency within data reporting; therefore, assessing and evaluating the results is subjective and therefore inconclusive.
5.1. Cross Analysis of Metadata
Ref. | Model | Data Format | Performance | Processing Specs | |
---|---|---|---|---|---|
[76] | VGG-16 | 12,000 | val acc 86% | Intel Xeon (2.40 GHz) NVIDIA Quadro K4200. | |
2019 | [46] | TinyYOLO; YOLOv2; SSD; Faster RCNN | 5720 | Faster RCNN mAP: 81% | NVIDIA GTX 1080; Embedded GPU (NVIDIA Jetson TX2); CPU (Intel i3-6100U) |
[39] | YOLOv3 | 189 (debris); 8036 (bio) | mAP 77.2%; 69.6% | Intel Core i7-7800X 350 GHz, 40 GB RAM, NVIDIA GTX 1080 | |
2020 | [57] | VGG16 | 32,000 | 90% val acc | Intel Xeon E5-2630 v3 (2.40 GHz) 48 GB RAM NVIDIA Quadro K4200 28.6 GB |
[51] | RetinaNet (Resnet50 backbone and FPN) | 369 | mAP 81% | - | |
[58] | YOLOV5; YOLACT++ | 1650 | AP 92.4%; 69.6% | NVIDIA Tesla K80 | |
[72] | ResNet50-YOLOv3 | 10,000 | mAP 83.4% | NVIDIA GeForce GTX 1080Ti 11 GB | |
2021 | [48] | Mask RCNN | 7212 | mAP 59.2%; 65.2% | Intel Xeon Silver 4110 @2.10 GHz. GeForce RTX 2080Ti. |
[71] | Shuffle-Xception | 13,914 | 0.95 F1 average | Intel Xeon W-2133 3.60 GHz, 31.7 GB RAM. NVIDIA GeForce GTX 1080Ti | |
[66] | YOLOv3 | 300 | mAP 98.15% | - | |
[74] | YOLOv5 | 2050 | mAP 89.4% | NVIDIA Tesla K4 (Google Colab) | |
2022 | [59] | VGG-16; Custom CNN | 1744 | 95%; 89% acc | Dell Inspiron i7-7700HQ CPU 2.8 GHz, 16 GB RAM, NVIDIA GeForce GTX 1050ti |
[61] | Mask R-CNN | 1223 | mAP 60% | Intel Core i7-8700 CPU@3.20 GHz, 16 GB RAM, NVIDIA GeForce RTX 2070 6 GB | |
[62] | Mask R-CNN | 1223 | mAP Instance 63.5%; Material 65.2% | - | |
2023 | [65] | YOLOv5 MobileNetv3 backbone | 7212 | mAP 67% | Intel Xeon Silver 4210R CPU@2.20 GHz NVIDIA GeForce RTX * 2090Ti GPU |
[64] | YOLOTrashCan | 7212 | mAP 58.66%; 65.01% | AMD Ryzen 7 3700X, Nvidia TITAN RTX 24 GB, 48 GB RAM | |
[63] | YOLOv8 | 7212 | mAP 71% | Tesla P100 GPU | |
2024 | [67] | YOLOv8 modified | 7212 | mAP 72% | NVIDIA GeForce RTX 3090 24 GB |
[73] | CBAM (enhanced YOLOv7 and attention backbone) | 321 | mAP@50: 76%; 72% | Google Colab | |
[69] | YOLO-MES | 6283 | 95.8% acc | Intel Core i9-11900 CPU@2.50 GHz, 64 GB RAM, NVIDIA GeForce RTX A4000 | |
2025 | [77] | SFD-YOLO (enhanced YOLOv8) | 294 | mAP 91.2% | NVIDIA GeForce RTX 4090 64 GB RAM |
[78] | YOLOv12 | 5130 | mAP@50:84%; mAP@50–95:70% | - | |
[68] | YOLOv5, YOLOv7, YOLOv8 | 10,000 | mAP 96% | Tesla T4 GPU |
5.2. Benchmark Dataset Integration
Dataset | Studies | Classes | Images |
---|---|---|---|
TrashCan 1.0 | 6 | 22 | 7212 |
Trash-ICRA19 | 1 | 3 | 5720 |
JAMSTEC | 5 | - | - |
CleanSea Set | 2 | 19 | 1223 |
TrashCan 1.0 | |||||
---|---|---|---|---|---|
Citation | Usage | Architecture | GPU | CPU | Outcome (mAP) |
[48] | D | Mask RCNN | NVIDIA GeForce RTX 2080Ti | Intel(R) Xeon(R) Silver 4110@2.10 GHz | 59.2% 65.2% |
[65] | D | YOLOv5s (MobileNetv3 backbone) | NVIDIA GeForce RTX * 2090Ti | Intel(R) Xeon(R) Silver 4210R@2.20 GHz | 67% |
[64] | D | YOLOTrashCan | NVIDIA TITAN RTX | AMD Ryzen 7 3700X | 58.66% 65.01% |
[63] | D | YOLOv8 | NVIDIA Tesla P100 | - | 71% |
[67] | D | YOLOv8 modified | NVIDIA GeForce RTX 3090 | - | 66.7% 72% |
[77] | P | SFD-YOLO (enhanced YOLOv8) | NVIDIA Ge-Force RTX 4090 | - | 91.2% |
5.3. TrashCan 1.0 Comparative Results
5.4. Highest Mean Average Precision Scores
5.5. Hardware Specifications for Underwater Object Detection
6. Discussion and Outcomes
6.1. RQ1: A Suitable Underwater Dataset
6.2. RQ2: Robust Model Architecture
6.3. RQ3: Proposed Framework
7. Conclusions
- Assembling and publishing a large, diverse, open benchmark dataset that spans a range of depths, lighting conditions, turbidity, geographic regions, and debris types.
- Establishing standardized data collection and annotation protocols to reduce inter-study variability.
- Systematically reporting data-centric metrics, including dataset size, class distribution, instance counts, density metrics and available calibration or uncertainty measures, to facilitate meaningful comparisons.
- Developing domain-adaptation and transfer-learning approaches to reduce performance gaps when models are applied to different datasets and environments.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, C.J.; Moore, S.L.; Leecaster, M.K.; Weisberg, S.B. A comparison of plastic and plankton in the North Pacific Central Gyre. Mar. Pollut. Bull. 2001, 42, 1297–1300. [Google Scholar] [CrossRef]
- Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 2001, 35, 318–324. [Google Scholar] [CrossRef]
- Talsness, C.E.; Andrade, A.J.M.; Kuriyama, S.N.; Taylor, J.A.; vom Saal, F.S. Components of plastic: Experimental studies in animals and relevance for human health. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2079–2096. [Google Scholar] [CrossRef]
- Ryan, P.G.; Connell, A.D.; Gardner, B.D. Plastic ingestion and PCBs in seabirds: Is there a relationship? Mar. Pollut. Bull. 1988, 19, 174–176. [Google Scholar] [CrossRef]
- Lee, K.T.; Tanabe, S.; Koh, C.H. Contamination of Polychlorinated Biphenyls (PCBs) in Sediments from Kyeonggi Bay and Nearby Areas, Korea. Mar. Pollut. Bull. 2001, 42, 273–279. [Google Scholar] [CrossRef]
- Oberdörster, E.; Cheek, A.O. Gender benders at the beach: Endocrine disruption in marine and estuarine organisms. Environ. Toxicol. Chem. 2001, 20, 23–36. [Google Scholar] [CrossRef]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Rahman, M.; Brazel, C. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. [Google Scholar] [CrossRef]
- Plot, V.; Georges, J.-Y. Plastic Debris in a Nesting Leatherback Turtle in French Guiana. Chelonian Conserv. Biol. 2010, 9, 267–270. [Google Scholar] [CrossRef]
- Stelfox, M.; Hudgins, J.; Sweet, M. A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs. Mar. Pollut. Bull. 2016, 111, 6–17. [Google Scholar] [CrossRef]
- McAdam, R. Plastic in the ocean: How much is out there? Significance 2017, 14, 24–27. [Google Scholar] [CrossRef]
- Boerger, C.M.; Lattin, G.L.; Moore, S.L.; Moore, C.J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 2010, 60, 2275–2278. [Google Scholar] [CrossRef]
- Bugoni, L.; Krause, L.; Petry, M.V. Marine debris and human impacts on sea turtles in southern Brazil. Mar. Pollut. Bull. 2001, 42, 1330–1334. [Google Scholar] [CrossRef]
- Tomás, J.; Guitart, R.; Mateo, R.; Raga, J.A. Marine debris ingestion in loggerhead sea turtles, Caretta caretta, from the Western Mediterranean. Mar. Pollut. Bull. 2002, 44, 211–216. [Google Scholar] [CrossRef]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Pawar, P.; Shirgaonkar, S.; Patil, R.B. Plastic marine debris: Sources, distribution and impacts on coastal and ocean biodiversity. PENCIL Publ. Biol. Sci. (Oceanogr.) 2016, 3, 40–54. [Google Scholar]
- Kühn, S.; van Franeker, J.A. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 2020, 151, 110858. [Google Scholar] [CrossRef]
- Allen, R.; Jarvis, D.; Sayer, S.; Mills, C. Entanglement of grey seals Halichoerus grypus at a haul out site in Cornwall, UK. Mar. Pollut. Bull. 2012, 64, 2815–2819. [Google Scholar] [CrossRef]
- Sharma, S.; Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. 2017, 24, 21530–21547. [Google Scholar] [CrossRef]
- Quayle, D.V. Plastics in the Marine Environment: Problems and Solutions. Chem. Ecol. 1992, 6, 69–78. [Google Scholar] [CrossRef]
- Laist, D.W. Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. In Marine Debris; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Goldberg, E.D. Plasticizing the seafloor: An overview. Environ. Technol. 1997, 18, 195–201. [Google Scholar] [CrossRef]
- Chiappone, M.; Dienes, H.; Swanson, D.W.; Miller, S.L. Impacts of lost fishing gear on coral reef sessile invertebrates in the Florida Keys National Marine Sanctuary. Biol. Conserv. 2005, 121, 221–230. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Viehman, S.; vander Pluym, J.L.; Schellinger, J. Characterization of marine debris in North Carolina salt marshes. Mar. Pollut. Bull. 2011, 62, 2771–2779. [Google Scholar] [CrossRef]
- Eriksson, C.; Burton, H.; Fitch, S.; Schulz, M.; van den Hoff, J. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Mar. Pollut. Bull. 2013, 66, 199–208. [Google Scholar] [CrossRef]
- Daniel, D.B.; Ashraf, P.M.; Thomas, S.N. Microplastics in the edible and inedible tissues of pelagic fishes sold for human consumption in Kerala, India. Environ. Pollut. 2020, 266, 115365. [Google Scholar] [CrossRef]
- Daniel, D.B.; Ashraf, P.M.; Thomas, S.N.; Thomson, K.T. Microplastics in the edible tissues of shellfishes sold for human consumption. Chemosphere 2021, 264, 128554. [Google Scholar] [CrossRef]
- Danopoulos, E.; Jenner, L.C.; Twiddy, M.; Rotchell, J.M. Microplastic contamination of seafood intended for human consumption: A systematic review and meta-analysis. Environ. Health Perspect. 2020, 128, 126002. [Google Scholar] [CrossRef]
- Dong, X.; Liu, X.; Hou, Q.; Wang, Z. From natural environment to animal tissues: A review of microplastics(nanoplastics) translocation and hazards studies. Sci. Total Environ. 2023, 855, 158686. [Google Scholar] [CrossRef]
- Lai, H.; Liu, X.; Qu, M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomaterials 2022, 12, 1298. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.W. Marine debris and northern fur seals: A case study. Mar. Pollut. Bull. 1987, 18, 326–335. [Google Scholar] [CrossRef]
- Coleman, F.; Wehle, D. Plastic Pollution: A worldwide oceanic problem. Parks 1984, 9, 9–12. [Google Scholar]
- Day, R.H. The Occurrence and Characteristics of Plastic Pollution in Alaska’s Marine Birds. Master’s Thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 1980. [Google Scholar]
- PADI. AWARE: Marine Debris Program. Available online: https://www.padi.com/aware/marine-debris (accessed on 6 August 2025).
- NOAA. A Guide to Plastic in the Ocean. Available online: https://oceanservice.noaa.gov/hazards/marinedebris/plastics-in-the-ocean.html (accessed on 6 August 2025).
- Watanabe, J.-I.; Shao, Y.; Miura, N. Underwater and airborne monitoring of marine ecosystems and debris. J. Appl. Remote Sens. 2019, 13, 044509. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Condor Ferries: Marine & Ocean Pollution Statistics & Facts 2023. Available online: https://www.condorferries.co.uk/Marine-Ocean-Pollution-Statistics-Facts (accessed on 6 August 2025).
- JAMSTEC. JAMSTEC OFES (Ocean General Circulation Model for the Earth Simulator) Dataset; JAMSTEC: Kochi, Japan, 2009. [Google Scholar]
- Condon, R.; Lucas, C. JeDI: The Jellyfish Database Initiative; University of Southampton Institutional: Hampshire, UK, 2015. [Google Scholar]
- Fulton, M.; Hong, J.; Sattar, J. Trash-ICRA19: A Bounding Box Labeled Dataset of Underwater Trash; University Digital Conservancy; University of Minnesota: Minneapolis, MN, USA, 2020. [Google Scholar]
- Fulton, M.; Hong, J.; Islam, M.J.; Sattar, J. Robotic Detection of Marine Litter Using Deep Visual Detection Models. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5752–5758. [Google Scholar]
- Hong, J.; Fulton, M.S.; Sattar, J. TrashCan 1.0 An Instance-Segmentation Labeled Dataset of Trash Observations; University of Minnesota Press: Minneapolis, MN, USA, 2020. [Google Scholar]
- Deng, H.; Ergu, D.; Liu, F.; Ma, B.; Cai, Y. An embeddable algorithm for automatic garbage detection based on complex marine environment. Sensors 2021, 21, 6391. [Google Scholar] [CrossRef]
- Proença, P.F.; Simões, P. TACO: Trash Annotations in Context for Litter Detection. arXiv 2020, arXiv:2003.06975. [Google Scholar]
- Proença, P.F. TACO Dataset. 2025. Available online: http://www.tacodataset.org/ (accessed on 18 August 2025).
- Panwar, H.; Gupta, P.K.; Siddiqui, M.K.; Morales-Menendez, R.; Bhardwaj, P.; Sharma, S.; Sarker, I.H. AquaVision: Automating the detection of waste in water bodies using deep transfer learning. Case Stud. Chem. Environ. Eng. 2020, 2, 100026. [Google Scholar] [CrossRef]
- Đuraš, A.; Wolf, B.J.; Ilioudi, A.; Palunko, I.; De Schutter, B. A Dataset for Detection and Segmentation of Underwater Marine Debris in Shallow Waters. Sci. Data 2024, 11, 921. [Google Scholar] [CrossRef]
- Kikaki, K.; Kakogeorgiou, I.; Mikeli, P.; Raitsos, D.E.; Karantzalos, K. MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS ONE 2022, 17, e0262247. [Google Scholar] [CrossRef]
- Barrelet, C.; Chaumont, M.; Subsol, G.; Creuze, V.; Gouttefarde, M. From TrashCan to UNO: Deriving an Underwater Image Dataset to Get a More Consistent and Balanced Version. Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges, Montreal, QC, Canada, 21–25 August 2022. [Google Scholar]
- Liu, J.; Wu, D.; Hellevik, C.C.; Wang, H. PlastOPol: A Collaborative Data-driven Solution for Marine Litter Detection and Monitoring. In Proceedings of the 2023 IEEE International Conference on Industrial Technology (ICIT), Orlando, FL, USA, 4–6 April 2023; pp. 1–6. [Google Scholar]
- Tata, G.; Royer, S.J.; Poirion, O.; Lowe, J. DeepPlastic: A Novel Approach to Detecting Epipelagic Bound Plastic Using Deep Visual Models. arXiv 2021, arXiv:2105.01882. [Google Scholar]
- Kylili, K.; Hadjistassou, C.; Artusi, A. An intelligent way for discerning plastics at the shorelines and the seas. Environ. Sci. Pollut. Res. 2020, 27, 42631–42643. [Google Scholar] [CrossRef] [PubMed]
- Kylili, K.; Artusi, A.; Hadjistassou, C. A new paradigm for estimating the prevalence of plastic litter in the marine environment. Mar. Pollut. Bull. 2021, 173, 113127. [Google Scholar] [CrossRef] [PubMed]
- Moorton, Z.; Kurt, Z.; Woo, W.L. Is the use of deep learning an appropriate means to locate debris in the ocean without harming aquatic wildlife? Mar. Pollut. Bull. 2022, 181, 113853. [Google Scholar] [CrossRef] [PubMed]
- ImageNet. Available online: https://image-net.org/ (accessed on 1 August 2025).
- Sánchez-Ferrer, A.; Gallego, A.J.; Valero-Mas, J.J.; Calvo-Zaragoza, J. The CleanSea Set: A Benchmark Corpus for Underwater Debris Detection and Recognition. In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13256. [Google Scholar] [CrossRef]
- Sánchez-Ferrer, A.; Valero-Mas, J.J.; Gallego, A.J.; Calvo-Zaragoza, J. An experimental study on marine debris location and recognition using object detection. Pattern Recognit. Lett. 2023, 168, 154–161. [Google Scholar] [CrossRef]
- Jain, R.; Zaware, S.; Kacholia, N.; Bhalala, H.; Jagtap, O. Advancing Underwater Trash Detection: Harnessing Mask R-CNN, YOLOv8, EfficientDet-D0 and YOLACT. In Proceedings of the 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024), Coimbatore, India, 10–12 July 2024. [Google Scholar]
- Zhou, W.; Zheng, F.; Yin, G.; Pang, Y.; Yi, J. YOLOTrashCan: A deep learning marine debris detection network. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y. Marine debris detection model based on the improved YOLOv5. In Proceedings of the 2023 3rd International Conference on Neural Networks, Information and Communication Engineering, NNICE, Guangzhou, China, 24–26 February 2023; pp. 725–728. [Google Scholar]
- Hipolito, J.C.; Sarraga Alon, A.; Amorado, R.V.; Fernando, M.G.Z.; de Chavez, P.I.C. Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach. In Proceedings of the 19th IEEE Student Conference on Research and Development: Sustainable Engineering and Technology towards Industry Revolution, SCOReD, Kota Kinabalu, Malaysia, 23–25 November 2021; pp. 82–86. [Google Scholar]
- Jiang, W.; Yang, L.; Bu, Y. Research on the Identification and Classification of Marine Debris Based on Improved YOLOv8. J. Mar. Sci. Eng. 2024, 12, 1748. [Google Scholar] [CrossRef]
- Walia, J.S.; Haridass, K.; Pavithra, L.K. Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis. IEEE Access 2025, 13, 88917–88929. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, W.; Zheng, B.; Li, J.; Xie, B.; Nan, R.; Tan, Z.; Tan, B.; Xiong, N.N. YOLO-MES: An Effective Lightweight Underwater Garbage Detection Scheme for Marine Ecosystems. IEEE Access 2025, 13, 60440–60454. [Google Scholar] [CrossRef]
- Faisal, M.; Chaudhury, S.; Sankaran, K.S.; Raghavendra, S.; Chitra, R.J.; Eswaran, M.; Boddu, R.; Mahalle, P.N. Faster R-CNN Algorithm for Detection of Plastic Garbage in the Ocean: A Case for Turtle Preservation. Math. Probl. Eng. 2022, 2022, 3639222. [Google Scholar] [CrossRef]
- Xue, B.; Huang, B.; Wei, W.; Chen, G.; Li, H.; Zhao, N.; Zhang, H. An Efficient Deep-Sea Debris Detection Method Using Deep Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12348–12360. [Google Scholar] [CrossRef]
- Xue, B.; Huang, B.; Chen, G.; Li, H.; Wei, W. Deep-sea debris identification using deep convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8909–8921. [Google Scholar] [CrossRef]
- Shen, A.; Zhu, Y.; Angelov, P.; Jiang, R. Marine debris detection in satellite surveillance using attention mechanisms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4320–4330. [Google Scholar] [CrossRef]
- Teng, C.; Kylili, K.; Hadjistassou, C. Deploying deep learning to estimate the abundance of marine debris from video footage. Mar. Pollut. Bull. 2022, 183, 114049. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Kylili, K.; Kyriakides, I.; Artusi, A.; Hadjistassou, C. Identifying floating plastic marine debris using a deep learning approach. Environ. Sci. Pollut. Res. 2019, 26, 17091–17099. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Huang, B.; Wang, J.; Shao, X.; Wu, Q.; Xi, D.; Liu, Y.; Chen, Y.; Zhang, G.; Ren, Z.; et al. Seafloor debris detection using underwater images and deep learning-driven image restoration: A case study from Koh Tao, Thailand. Mar. Pollut. Bull. 2025, 214, 117710. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, Y.; Zhou, Z.; Zhang, Y.; He, L. Toward smart ocean monitoring: Real-time detection of marine litter using YOLOv12 in support of pollution mitigation. Mar. Pollut. Bull. 2025, 217, 118136. [Google Scholar] [CrossRef]
- Ultralytics. Available online: https://www.ultralytics.com/ (accessed on 1 August 2025).
- NVIDIA. NVIDIA. Available online: https://www.nvidia.com/en-gb/ (accessed on 31 July 2025).
- NVIDIA. GeForce 20 Series. Available online: https://www.nvidia.com/en-gb/geforce/graphics-cards/compare/?section=compare-20 (accessed on 31 July 2025).
- NVIDIA. Tensor Cores. Available online: https://www.nvidia.com/en-us/data-center/tensor-cores/?ncid=no-ncid (accessed on 31 July 2025).
- NVIDIA. TITAN RTX. Available online: https://www.nvidia.com/en-eu/deep-learning-ai/products/titan-rtx/ (accessed on 31 July 2025).
- NVIDIA. DLSS. Available online: https://www.nvidia.com/en-us/geforce/technologies/dlss/ (accessed on 31 July 2025).
- de Vries, R.; Egger, M.; Mani, T.; Lebreton, L. Quantifying floating plastic debris at sea using vessel-based optical data and artificial intelligence. Remote Sens. 2021, 13, 3401. [Google Scholar] [CrossRef]
- Maharjan, N.; Miyazaki, H.; Pati, B.M.; Dailey, M.N.; Shrestha, S.; Nakamura, T. Detection of River Plastic Using UAV Sensor Data and Deep Learning. Remote Sens. 2022, 14, 3049. [Google Scholar] [CrossRef]
- van Lieshout, C.; van Oeveren, K.; van Emmerik, T.; Postma, E. Automated River Plastic Monitoring Using Deep Learning and Cameras. Earth Space Sci. 2020, 7, e2019EA000960. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Basu, B.; Basu, A.S.; Pilla, F. Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models. Mar. Pollut. Bull. 2022, 178, 113527. [Google Scholar] [CrossRef]
- García-Peñalvo, F.; Vázquez-Ingelmo, A. What do we mean by GenAI? A systematic mapping of the evolution, trends, and techniques involved in generative AI. Int. J. Interact. Multimed. Artif. Intell. 2023, 8, 7–16. [Google Scholar] [CrossRef]
- OpenAI ChatGPT. Available online: https://openai.com/chatgpt/overview/ (accessed on 1 August 2025).
- DeepSeek AI. Available online: https://www.deepseek.com/en (accessed on 1 August 2025).
- Shah, M.; Sureja, N. A Comprehensive Review of Bias in Deep Learning Models: Methods, Impacts, and Future Directions. Arch. Comput. Methods Eng. 2024, 32, 255–267. [Google Scholar] [CrossRef]
- Vardi, G. On the Implicit Bias in Deep-Learning Algorithms. Commun. ACM 2023, 66, 86–93. [Google Scholar] [CrossRef]
- Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision transformers for remote sensing image classification. Remote Sens. 2021, 13, 516. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. arXiv 2021, arXiv:2012.12877. [Google Scholar]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Suaria, G.; Aliani, S. Floating marine litter detection algorithms and techniques using optical remote sensing data: A review. Mar. Pollut. Bull. 2021, 170, 112675. [Google Scholar] [CrossRef]
Citation | Architecture | No. of Classes | Size (Images) | Outcome (mAP) |
---|---|---|---|---|
[46] | Faster RCNN | 3 | 5,720 | 81% |
[51] | RetinaNet | 4 | 369 | 81% |
[71] | ResNet50-YOLOv3 | 7 | 10,000 | 83.4% |
[66] | YOLOv3 | 1 | 300 | 98.15% |
[74] | YOLOv5 | 9 | 2050 | 89.4% |
[77] | SFD-YOLO (enhanced YOLOv8) | 11 | 294 | 91.2% |
[78] | YOLOv12 | 15 | 5,130 | 84% 70% |
[68] | YOLOv5 | 3 | 10,000 | 96% |
YOLOv7 | 3 | 10,000 | 96% | |
YOLOv8 | 3 | 10,000 | 96% |
GPU (/CPU) | Release Year | CUDA Cores | Memory (/RAM) |
---|---|---|---|
NVIDIA GeForce RTX 4090 | 2022 | 16,384 | 24 GB GDDR6X |
NVIDIA GeForce RTX 3090 | 2020 | 10,496 | 24 GB GDDR6X |
Nvidia GeForce RTX A4000 (Intel(R) Core(TM) i9−11900 CPU@2.50 GHz) | 2021 | 6144 | 16 GB GDDR6 (64 GB RAM) |
NVIDIA Tesla K80 | 2014 | 4992 | 24 GB GDDR5 |
NVIDIA TITAN RTX (AMD Ryzen 7 3700X) | 2018 | 4608 | 24 GB GDDR6 (48 GB RAM) |
NVIDIA GeForce RTX 2080 Ti (Intel Xeon Silver 4110) | 2018 | 4352 | 11 GB GDDR6 (32 GB RAM) |
NVIDIA Tesla P100 | 2016 | 3584 | 16 GB HBM2 |
NVIDIA GTX 1080 Ti | 2016 | 3584 | 11 GB GDDR5X |
NVIDIA Tesla T4 (15 GB) | 2018 | 2560 | 15 GB GDDR6 |
NVIDIA GTX 1080 (Intel Core i7-7800X@3.50 GHz) | 2017 | 2560 | 8 GB GDDR5X (40 GB RAM) |
NVIDIA GTX 1080 (Intel Core i3-6100U) | 2016 | 2560 | 8 GB GDDR5X (4 GB RAM) |
NVIDIA GeForce RTX 2070 (Intel Core i7-8700) | 2018 | 2304 | 8 GB GDDR6 (16 GB RAM) |
NVIDIA GeForce RTX 2060 (Intel Core i7-10750H) | 2019 | 1920 | 6 GB GDDR6 (16 GB RAM) |
NVIDIA Quadro K4200 (Intel Xeon E5-2630 v3@2.40 GHz) | 2014 | 1344 | 4 GB GDDR5 (48 GB RAM) |
NVIDIA GeForce GTX 1050 Ti (Dell Inspiron i7-7700HQ@2.80 GHz) | 2016 | 768 | 4 GB GDDR5 (16 GB RAM) |
Architecture | Dataset | Result | GPU | Cores | |
---|---|---|---|---|---|
[77] | SFD-YOLO (enhanced YOLOv8) | Collected. Pretrained on TrashCan 1.0 | 91.2% (mAP) | RTX 4090 24 GB | 16,384 |
[67] | YOLOv8 modified | TrashCan 1.0 | 66.7%; 72% (mAP) | RTX 3090 24 GB | 10,496 |
[76] | VGG-16 | Collected. Pretrained on ImageNet | 86% (val Acc) | Quadro K4200 4 GB | 1344 |
[57] | VGG-16 | Collected. Pretrained on ImageNet | 90% (val Acc) | Quadro K4200 4 GB | 1344 |
[59] | VGG-16 | Collected (JEDI incl) | 95% (Acc) | GTX 1050 Ti 4 GB | 768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moorton, Z.; Mistry, K.; Strachan, R.; Hu, S. Up-to-Date Scoping Review of Object Detection Methods for Macro Marine Debris. J. Mar. Sci. Eng. 2025, 13, 1590. https://doi.org/10.3390/jmse13081590
Moorton Z, Mistry K, Strachan R, Hu S. Up-to-Date Scoping Review of Object Detection Methods for Macro Marine Debris. Journal of Marine Science and Engineering. 2025; 13(8):1590. https://doi.org/10.3390/jmse13081590
Chicago/Turabian StyleMoorton, Zoe, Kamlesh Mistry, Rebecca Strachan, and Shanfeng Hu. 2025. "Up-to-Date Scoping Review of Object Detection Methods for Macro Marine Debris" Journal of Marine Science and Engineering 13, no. 8: 1590. https://doi.org/10.3390/jmse13081590
APA StyleMoorton, Z., Mistry, K., Strachan, R., & Hu, S. (2025). Up-to-Date Scoping Review of Object Detection Methods for Macro Marine Debris. Journal of Marine Science and Engineering, 13(8), 1590. https://doi.org/10.3390/jmse13081590