Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania)
Abstract
1. Introduction
2. Methodology and Data Series
2.1. Methodology
- Basic statistical analysis
- II.
- Perform CPD using the CUSUM change point algorithm
- III.
- Compute IM and determine the CPs in the (IM) series
- IV.
- Compute SPI
- Compute the mean, standard deviation, and skewness of the precipitation series.
- Take the logarithm of the precipitation series, and fit a gamma distribution. The validation of this distribution was performed using the Anderson–Darling and Kolmogorov–Smirnov goodness-of-fit tests. Since the p-value was greater than 0.05 (the significance level) in both cases, the null hypothesis that the series follows a gamma distribution cannot be rejected [69].
- Build the Cumulative Distribution Function (CDF), G.
- Adjust the CDF to accommodate the argument null values, using the following formula:H(x) = q + (1 − q)G(x)
- Transform H into a Gaussian standard distribution. The computed values represent SPI values.
2.2. The Study Region and Data Series
3. Results
3.1. Results of the Statistical Analysis
3.2. Results for the De Martonne Aridity Index
3.3. Results for SPI
- A CP in SPI-3 during the first quarter and SPI-6 during the first semester of 2011.
- No CP in SPI-3 during the second quarter.
- Two CPs in SPI-3 during the third quarter of the years 1996 and 2000. Specifically, they showed transitions from normal to extreme wet or very wet to extreme wet periods, respectively.
- A CP in SPI-3 during the fourth quarter and SPI-6 during the second semester of 2000.
- All values of SPI-6 indicated a high variability in the precipitation regime, with a tendency toward very wet periods in the second semester in the last study years.
4. Discussion
- In the Dobrogea region, including Sulina, a modest warming trend was observed between 1960 and 1980, with a multi-station average annual mean increase of approximately 0.8 °C since the late 1990s [42,84,88]. After 1988, statistically significant increases in minimum and mean temperatures were recorded. Specifically, there was an average increase of around 0.7 °C at Sulina and neighboring stations, with minimum temperatures rising after approximately 1988 and mean temperatures increasing after around 1997 [89]. From 1961 to 2013, average annual temperatures fluctuated between 9.7 °C and 12.3 °C, with the most significant increases occurring in the latter decades. By comparison, European land temperatures rose by about 1.4 to 1.6 °C during the period from 2006 to 2015 relative to pre-industrial levels, highlighting Europe as one of the fastest-warming continents.
- In the winter and fall seasons, there has typically been a stronger increase in minimum (overnight) temperatures since 1988. Weather stations in Sulina and Dobrogea have recorded more significant rises in minimum temperature, suggesting milder winters. For the summer months, observational data reveal that maximum temperatures have risen by approximately 0.6 °C per decade in July and about 0.65 °C per decade in August at coastal and Danube Delta stations. Additionally, the number of days exceeding 30 °C has become more frequent between 1965 and 2005, particularly in July and August. This trend has heightened the risk of crop failure during extreme summer conditions, such as those experienced in 2000 [51,89].
- At Sulina, the annual precipitation decreased from approximately 281 mm during the period of 1961–1990 to about 229 mm in 1980–2009, resulting in a decline of over 50 mm across three decades. This brings the area below the global arid threshold of approximately 229 mm per year. Dry spells are becoming longer, and precipitation intensity—measured by indices such as R95p and SDII—is increasing in parts of Dobrogea. Drought analyses conducted using the Standardized Precipitation-Evapotranspiration Index (SPEI) and the Composite Drought Index from 2001 to 2021 indicate that the period from 1991 to 2021 was the driest in Dobrogea since 1901. Severe and extreme drought occurrences peaked in the years 2011–2012, 2015, and 2020, impacting as much as 70% of the region [51,90].
- Heatwaves in Southern Romania have become longer, more frequent, and more intense since 1961, particularly after 1990. By contrast, cold spells have decreased in both frequency and severity. Additionally, the spring and autumn seasons are getting shorter, with extreme heat events increasingly extending into transitional months, such as late spring and early fall. This shift is noticeably altering the seasonal experience for daily life [91]. These findings are in concordance with the general trend in SSE, as presented in [13,14,15,16,17,18,19].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CP | Change Point |
CPD | Change Point Detection |
CUSUM | Cumulative Sum |
DDBR | Danube Delta Biosphere Reserve |
De Martonne Aridity Index | |
IQRM | Interquartile Range Method |
PDSI | Palmer Drought Severity Index |
SEE | South East Europe |
SPI | Standardized Precipitation Index |
References
- Kundzewicz, Z.W. Climate change impacts on the hydrological cycle. Ecohydrol. Hydrobiol. 2008, 8, 195–203. [Google Scholar] [CrossRef]
- Hamder, J.; Honda, Y.; Kundzewicz, Z.W. Changes in Impacts of Climate Extremes: Human Systems and Ecosystems. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/SREX-Chap4_FINAL-1.pdf (accessed on 3 June 2025).
- Ma, J.; Zhou, L.; Foltz, R.; Qu, X.; Ying, J.; Tokinaga, H.; Mechoso, C.R.; Li, J.; Gu, X. Hydrological cycle changes under global warming and their effects on multiscale climate variability. Ann. N. Y. Acad. Sci. 2020, 1472, 21–48. [Google Scholar] [CrossRef] [PubMed]
- OBSERVER: Copernicus Climate Change Service Tracks Record Atmospheric Moisture and Sea Surface Temperatures in 2024. Available online: https://www.copernicus.eu/en/news/news/observer-copernicus-climate-change-service-tracks-record-atmospheric-moisture-and-sea (accessed on 14 March 2025).
- Luo, Y.; Wang, L.; Hu, C.; Hao, L.; Sun, G. Changing Extreme Precipitation Patterns in Nepal Over 1971–2015. Earth Space Sci. 2024, 11, e2024EA003563. [Google Scholar] [CrossRef]
- Wang, B.; Luo, X.; Yang, Y.-M.; Liu, J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Nat. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef] [PubMed]
- Jiu, L.; Song, M.; Zhu, Z.; Horton, R.M.; Hu, Y.; Xie, S.-P. Arctic sea-ice loss is projected to lead to more frequent strong El Niño events. Nat. Commun. 2022, 13, 4952. [Google Scholar] [CrossRef]
- McPhaden, M.J. El Nino and La Niña: Causes and Global Consequences. Available online: https://www.pmel.noaa.gov/gtmba/files/PDF/pubs/ElNinoLaNina.pdf (accessed on 1 June 2025).
- Assessment of El Niño-Associated Risks: The Step-Wise Process. Available online: https://www.unescap.org/sites/default/files/FINAL_El%20Nino%20Methodology.pdf (accessed on 1 June 2025).
- Bărbulescu, A. Modeling the greenhouse gases data series in Europe during 1990–2021. Toxics 2023, 11, 726. [Google Scholar] [CrossRef]
- Antonescu, N.N.; Stănescu, D.-P.; Calotă, R. CO2 Emissions Reduction through Increasing H2 Participation in Gaseous Combustible—Condensing Boilers Functional Response. Appl. Sci. 2022, 12, 3831. [Google Scholar] [CrossRef]
- Bărbulescu, A. Modeling Greenhouse Gas Emissions from Agriculture. Atmosphere 2025, 16, 295. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- South East European Climate Change Center. Available online: http://www.seevccc.rs/?p=18 (accessed on 15 July 2025).
- Spinoni, J.; Vogt, J.V.; Barbosa, P. European drought climatologies and trends based on a multi-indicator approach. Glob. Planet. Change 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Bulgaria. Climate Change. Available online: https://www.climatechangepost.com/countries/bulgaria/climate-change/ (accessed on 15 July 2025).
- Nojarov, P. Genetic climatic regionalization of the Balkan Peninsula using cluster analysis. J. Geogr. Sci. 2017, 27, 43–61. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Giannakopoulos, C. Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate 2023, 11, 49. [Google Scholar] [CrossRef]
- Noto, L.V.; Cipolla, G.; Pumo, D.; Francipane, A. Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses. Water Resour. Manag. 2023, 37, 2307–2323. [Google Scholar] [CrossRef] [PubMed]
- Popescu, C.; Bărbulescu, A. Flooding simulation at the confluence between the Strâmba and Aluniș Rivers in the Vărbilău Catchment, in Romania. Rom. Rep. Phys. 2025, 77, 705. [Google Scholar] [CrossRef]
- Mimikou, M.A.; Baltas, E.A. Assessment of Climate Change Impacts in Greece: A General Overview. Am. J. Clim. Change 2013, 2, 29099. [Google Scholar] [CrossRef]
- Ju, X.; Li, W.; Li, j.; He, L.; Mao, J.; Han, L. Future climate change and urban growth together affect surface runoff in a large-scale urban agglomeration. Sustain. Cities Soc. 2023, 99, 104970. [Google Scholar] [CrossRef]
- Song, Y.H.; Chung, E.-S.; Ayugi, B.O. CMIP6 GCMs projected future Koppen-Geiger climate zones on a global scale. Earth’s Future 2025, 13, e2023EF004401. [Google Scholar] [CrossRef]
- FAO. Agricultural Transformation in Europe and Central Asia: Regional Synthesis Report; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Županić, F.Ž.; Radić, D.; Podbregar, I. Climate change and agriculture management: Western Balkan region analysis. Energy Sustain. Soc. 2021, 11, 51. [Google Scholar] [CrossRef]
- Filho, W.L.; Trbic, G.; Filipovic, D. Climate Change Adaptation in the Agriculture of South-East Europe: Challenges and Policy Options; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ward, C.J.; Cope, M.R.; Wilson, D.R.; Muirbrook, K.A.; Poff, J.M. Powerless in a Western US Energy Town: Exploring Challenges to Socially Sustainable Rural Development. Sustainability 2020, 12, 8426. [Google Scholar] [CrossRef]
- Reeves, J.; Chen, J.; Wang, X.; Lund, R.; Lu, Q.Q. A Review and Comparison of Changepoint Detection Techniques for Climate Data. J. Appl. Meteor. Climatol. 2007, 46, 900–915. [Google Scholar] [CrossRef]
- Xie, P.; Gu, H.; Sang, Y.-F.; Wu, Z.; Singh, V.P. Comparison of different methods for detecting change points in hydroclimatic time series. J. Hydrol. 2019, 577, 123973. [Google Scholar] [CrossRef]
- Rwema, M.; Sylla, M.B.; Safari, B.; Roinen, B.; Laine, M. Trend analysis and change point detection in precipitation time series over the Eastern Province of Rwanda during 1981–2021. Theor. Appl. Climatol. 2025, 156, 98. [Google Scholar] [CrossRef]
- Liu, M.; Liu, P.; Guo, Y.; Wang, Y.; Geng, X.; Nie, Z.; Yu, Y. Change-Point Analysis of Precipitation and Drought Extremes in China over the Past 50 Years. Atmosphere 2020, 11, 11. [Google Scholar] [CrossRef]
- Tomé, A.R.; Miranda, P.M.A. Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett. 2004, 31, L02207. [Google Scholar] [CrossRef]
- Darkhovsky, B.S.; Brodsky, B.E. Nonparametric Methods in Change Point Problems; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Jandhyala, S.; Fotopoulos, V.; Macneill, I.; Liu, P. Inference for single and multiple change-points in time series. J. Time Ser. Anal. 2013, 34, 423–446. [Google Scholar] [CrossRef]
- Truong, C.; Oudre, L.; Vayatis, N. Selective review of offline change point detection methods. Signal Proc. 2020, 167, 107299. [Google Scholar] [CrossRef]
- Lung-Yut-Fong, A.; Lévy-Leduc, C.; Cappé, O. Distributed detection/localization of change-points in high-dimensional network traffic data. Stat. Comput. 2012, 22, 485–496. [Google Scholar] [CrossRef]
- Liu, S.; Wright, A.; Hauskrecht, M. Change-point detection method for clinical decision support system rule monitoring. Artif. Intell. Med. 2018, 91, 49–56. [Google Scholar] [CrossRef]
- Chen, G.; Lu, G.; Shang, W.; Xie, Z. Automated Change-Point Detection of EEG Signals Based on Structural Time-Series Analysis. IEEE Access 2019, 7, 180168–180180. [Google Scholar] [CrossRef]
- Yang, P.; Dumont, G.; Ansermino, J.M. Adaptive change detection in heart rate trend monitoring in anesthetized children. IEEE Trans. Biomed. Eng. 2006, 53, 2211–2219. [Google Scholar] [CrossRef]
- Shi, X.; Beaulieu, C.; Killick, R.; Lund, R. Changepoint Detection: An Analysis of the Central England Temperature Series. J. Clim. 2022, 35, 6329–6342. [Google Scholar] [CrossRef]
- Getahun, Y.S.; Li, M.-H.; Pun, I.-F. Trend and change-point detection analyses of rainfall and temperature over the Awash River basin of Ethiopia. Heliyon 2021, 7, e08024. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Deguenon, J. Change point detection and models for precipitation evolution. Case study. Rom. J. Phys. 2014, 59, 590–600. [Google Scholar]
- Monteiro, M.; Costa, M. Change Point Detection by State Space Modeling of Long-Term Air Temperature Series in Europe. Stats 2023, 6, 113–130. [Google Scholar] [CrossRef]
- Musaev, A.; Grigoriev, D.; Kolosov, M. Adaptive algorithms for change point detection in financial time series. AIMS Math. 2024, 9, 35238–35263. [Google Scholar] [CrossRef]
- Manner, H.; Rodríguez, G.; Stöckler, F. A changepoint analysis of exchange rate and commodity price risks for Latin American stock markets. Int. Rev. Econ. Financ. 2024, 89A, 1385–1403. [Google Scholar] [CrossRef]
- Aminikhanghahi, S.; Cook, D.J. A Survey of Methods for Time Series Change Point Detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef]
- De Martonne, E. Une nouvelle function climatologique: L’indice d’aridité. Meteorologie 1926, 2, 449–458. [Google Scholar]
- Charalampopoulos, I.; Droulia, F.; Kokkoris, I.P.; Dimopoulos, P. Future Bioclimatic Change of Agricultural and Natural Areas in Central Europe: An Ultra-High-Resolution Analysis of the De Martonne Index. Water 2023, 15, 2563. [Google Scholar] [CrossRef]
- Pellicone, G.; Caloiero, T.; Guagliardi, I. The De Martonne aridity index in Calabria (Southern Italy). J. Maps 2019, 15, 788–796. [Google Scholar] [CrossRef]
- Mavrakis, A.; Papavasileiou, H. NDVI and E. de Martonne Indices in an Environmentally Stressed Area (Thriasio Plain—Greece). Procedia Technol. 2013, 8, 477–481. [Google Scholar] [CrossRef]
- Lungu, M.; Panaitescu, L.; Niţă, S. Aridity, climatic risk phenomenon in Dobrudja. Present. Environ. Sustain. Dev. 2011, 5, 179–190. [Google Scholar]
- Gebremedhin, M.A.; Abraha, A.Z.; Fenta, A.A. Changes in future climate indices using Statistical Downscaling Model in the upper Baro basin of Ethiopia. Theor. Appl. Climatol. 2018, 133, 39–46. [Google Scholar] [CrossRef]
- Moral, F.J.; Rebollo, F.J.; Paniagua, L.L.; García-Martín, A.; Honorio, F. Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theor. Appl. Climatol. 2016, 126, 801–814. [Google Scholar] [CrossRef]
- Naresh Kumar, M.; Murthy, C.S.; Sesha Sai, M.V.R.; Roy, P.S. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Leveidioti, I.; Karavitis, C.A.; Kalogeropoulos, K.; Vasilakou, C.G.; Tsatsaris, A.; Zervas, E. Spatiotemporal Application of the Standardized Precipitation Index (SPI) in the Eastern Mediterranean. Climate 2023, 11, 95. [Google Scholar] [CrossRef]
- Maftei, C.E.; Bărbulescu, A.; Osman, A. Assessment of the drought risk in Constanța County, Romania. Atmosphere 2024, 15, 1281. [Google Scholar] [CrossRef]
- Standardized Precipitation Index (SPI). Available online: https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi#:~:text=The%20Standardized%20Precipitation%20Index%20(SPI,to%20groundwater%20and%20reservoir%20storage (accessed on 3 June 2025).
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Aakash, R. Outlier Detection and Treatment: Z-score, IQR, and Robust Methods. Available online: https://medium.com/@aakash013/outlier-detection-treatment-z-score-iqr-and-robust-methods-398c99450ff3 (accessed on 3 June 2025).
- Pettitt, A.N. A non-parametric approach to the change point problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Buishand, T.A. Tests for detecting a shift in the mean of hydrological time series. J. Hydrol. 1984, 73, 51–69. [Google Scholar] [CrossRef]
- Lee, A.F.S.; Heghinian, S.M. A Shift of the Mean Level in a Sequence of Independent Normal Random Variables—A Bayesian Approach. Technometrics 1977, 19, 503–506. [Google Scholar] [CrossRef]
- Hubert, P. Segmentation Procedure as a Tool for Discrete Modeling of Hydro-Meteorological Regimes. Stoch. Environ. Res. Risk Assess. 2000, 14, 297–304. [Google Scholar] [CrossRef]
- Taylor, W.A. Change-Point Analysis: A Powerful New Tool for Detecting Changes. 2000. Available online: https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf (accessed on 4 June 2025).
- Neniu, A.-I.; Vlăduț, A.Ș. The influence of climatic conditions on the forest vegetation within the Getic Subcarpatians—Oltenia sector. Univ. Craiova Ser. Geogr. 2020, 21, 5–18. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scale. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Times Scales. Atmos. Sci. Pap. 1997, 634, 1–30. [Google Scholar]
- Ross, S.M. Introduction to Probability and Statistica for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Bărbulescu, A.; Dumitriu, C.S.; Maftei, C. On the Probable Maximum Precipitation Method. Rom. J. Phys. 2022, 67, 801. [Google Scholar]
- Croitoru, A.-E.; Piticar, A.; Imbroane, A.M.; Burada, D.C. Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor. Appl. Climatol. 2013, 112, 597–607. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Bojariu, R.; Birsan, M.-V.; Marin, L.; Manea, A. Recent climatic changes in Romania from observational data (1961–2013). Theor. Appl. Climatol. 2015, 122, 111–119. [Google Scholar] [CrossRef]
- Ionita, M.; Chelcea, S. Spatio-Temporal Variability of Seasonal Drought over the Dobrogea Region. In Extreme Weather and Impacts of Climate Change on Water Resources in the Dobrogea Region; IGI Global: Hershey, PA, USA, 2015; pp. 17–51. [Google Scholar]
- Marin, L.; Birsan, M.-V.; Bojariu, R.; Dumitrescu, A.; Micu, D.M.; Manea, A. An overview of annual climatic changes in Romania: Trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity and wind speed during the 1961–2013 period. Carpathian J. Earth Environ. Sci. 2014, 9, 253–258. [Google Scholar]
- Mateescu, E.; Smarandache, M.; Jeler, N.; Apostol, V. Drought Conditions and Management Strategies in Romania (Capacity Development to Support National Drought Management Policy) [Country Report]. Available online: https://www.droughtmanagement.info/literature/UNW-DPC_NDMP_Country_Report_Romania_2013.pdf (accessed on 11 July 2015).
- Prăvălie, R.; Sirodoev, I.; Patriche, C.V.; Bandoc, G.; Peptenatu, D. The analysis of the relationship between climatic water deficit and corn agricultural productivity in the Dobrogea plateau. Carpathian J. Earth Environ. Sci. 2014, 9, 201–214. [Google Scholar]
- Prăvălie, R.; Bandoc, G. Aridity Variability in the Last Five Decades in the Dobrogea Region, Romania. J. Arid. Land Res. Manag. 2015, 29, 265–287. [Google Scholar] [CrossRef]
- Dumitru, A.; Olaru, E.-A.; Dumitru, M.; Iorga, G. Assessment of air pollution by aerosols over a coal open-mine influenced region in southwestern Romania. Rom. J. Phys. 2024, 69, 801. [Google Scholar] [CrossRef]
- Chiritescu, R.-V.; Luca, E.; Iorga, G. Observational study of major air pollutants over urban Romania in 2020 in comparison with 2019. Rom. Rep. Phys. 2024, 76, 702. [Google Scholar]
- Serban, C.; Maftei, C. Spatiotemporal Drought Analysis Using the Composite Drought Index (CDI) over Dobrogea, Romania. Water 2025, 17, 481. [Google Scholar] [CrossRef]
- Popescu, A.; Dinu, T.A.; Stoian, E.; Serban, V. Variation of the main agricultural crops yield due to drought in Romania and Dobrogea region in the period 2000–2019. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2020, 20, 397–415. [Google Scholar]
- Ranca, A. Climate Changes and Their Impact on the Vineyards in Dobrogea. Available online: https://climatechange-summit.org/climate-change-and-its-influence-on-romanian-wine-the-case-of-dobrogea/#:~:text=Climate%20change%20and%20its%20influence%20on%20Romanian%20wine%20%E2%80%93%20the%20case,and%20quality%20of%20native%20wines (accessed on 11 July 2024).
- Gâştescu, P. The Danube Delta Biosphere Reserve. Geography, Biodiversity, Protection, Management. Available online: https://www.limnology.ro/water2012/Proceedings/066.pdf (accessed on 4 June 2025).
- ClimateChangePost. Droughts. Romania. Available online: https://www.climatechangepost.com/countries/romania/droughts/ (accessed on 16 July 2025).
- Bărbulescu, A.; Serban, C.; Maftei, C. Statistical analysis and evaluation of Hurst coefficient for annual and monthly precipitation time series. WSEAS Trans. Math. 2010, 9, 791–800. [Google Scholar]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Change 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Prăvălie, R.; Piticar, A.; Roșca, B.; Sfîcă, L.; Bandoc, G.; Tiscovschi, A.; Patriche, C. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. Catena 2019, 172, 295–312. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Birsan, M.-V. Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Bărbulescu, A. On the Regional Temperature Series Evolution in the South-Eastern Part of Romania. Appl. Sci. 2023, 13, 3904. [Google Scholar] [CrossRef]
- Tolika, K.; Anagnostopoulou, C.; Traboulsi, M.; Zaharia, L.; (Oprea) Constantin, D.M.; Tegoulias, I.; Maheras, P. Comparative Study of the Frequencies of Atmospheric Circulation Types at Different Geopotential Levels and Their Relationship with Precipitation in Southern Romania. Available online: https://www.thefreelibrary.com/Comparative%2BStudy%2Bof%2Bthe%2BFrequencies%2Bof%2BAtmospheric%2BCirculation%2BTypes...-a0811216020?utm_source=chatgpt.com (accessed on 10 June 2025).
- Pascale, S.; Lucarini, V.; Feng, X.; Porporato, A.; ul Hasson, S. Projected Changes of Rainfall Seasonality and Dry Spells in a High Concentration Pathway 21st Century Scenario. arXiv 2014, arXiv:1410.3116. [Google Scholar] [CrossRef]
- Bădăluță, C.A.; Haliuc, A.; Bădăluță, G.; Scriban, R.E. Spatiotemporal variability of drought in Romania during 1901–2021 using the Standardized Precipitation Evapotranspiration Index (SPEI). An. Univ. Oradea Ser. Geogr. 2024, 34, 33–44. [Google Scholar] [CrossRef]
- Bandoc, G.; Prăvălie, R. Climatic water balance dynamics over the last five decades in Romania’s most arid region, Dobrogea. J. Geogr. Sci. 2015, 25, 1307–1327. [Google Scholar] [CrossRef]
- European Environment Agency. Coastal. Available online: https://www.eea.europa.eu/publications/europes-changing-climate-hazards-1/coastal (accessed on 16 July 2025).
- Climate ADAPT. Coastal Areas. Available online: https://climate-adapt.eea.europa.eu/en/eu-adaptation-policy/sector-policies/coastal-areas#:~:text=Climate%20change%20is%20expected%20to,coastal%20areas%20at%20EU%20levels (accessed on 16 July 2025).
- Climate Risk in the Agricultural Sector. Available online: https://www.unepfi.org/wordpress/wp-content/uploads/2023/03/Agriculture-Sector-Risks-Briefing.pdf (accessed on 16 July 2025).
- Bărbulescu, A.; Maftei, C.; Dumitriu, C.S. The modelling of the climateric process that participates at the sizing of an irrigation system. Bull. Appl. Comput. Math. 2002, 2048, 11–20. [Google Scholar]
- State of Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/6e2d2772-5976-4671-9e2a-0b2ad87cb646/content#:~:text=drink%20and%20water%20to%20grow,alia%2C%20supporting%20inland%20fisheries%20and (accessed on 16 July 2025).
- Romania—2016–2020 National Action Plan on Climate Change: Summary Report (English). Dissemination Note. World Bank Group: Washington, DC, USA. Available online: https://documents1.worldbank.org/curated/en/254931468188327164/pdf/103920-WP-P145943-PUBLIC-Summary-of-Climate-Change-Action-Plan.pdf (accessed on 16 July 2025).
- Rus, M.-I.; Munteanu, I.; Vaidianu, N.; Aivaz, K.-A. Research Trends Concerning the Danube Delta: A Specific Social-Ecological System Facing Climate Uncertainty. Earth 2025, 6, 7. [Google Scholar] [CrossRef]
- Better Water Quality Using Integrative Floodplain Management Based on Ecosystems Services. Available online: https://dtp.interreg-danube.eu/uploads/media/approved_project_output/0001/56/be4e1449db0a518c6391634bbca0dc083dbe8533.pdf (accessed on 16 July 2025).
Beginning | End | Mean | Stdev |
---|---|---|---|
1 | 91 | 27.46 | 25.16 |
92 | 93 | 102.75 | 38.54 |
94 | 557 | 21.22 | 17.54 |
558 | 558 | 163.00 | 0.00 |
559 | 581 | 17.00 | 13.02 |
582 | 582 | 129.00 | 0.00 |
583 | 592 | 20.93 | 16.68 |
593 | 593 | 132.00 | 0.00 |
594 | 660 | 31.18 | 26.53 |
Month | Confidence Interval | Confidence Level | From | To | Year | Confidence Interval | Confidence Level | From | To |
---|---|---|---|---|---|---|---|---|---|
213 | (57, 359) | 90% | 1.3665 | 1.0265 | 18 | (14, 26) | 100% | 14.701 | 10.550 |
424 | (348, 444) | 93% | 1.0265 | 0.6953 | 49 | (44, 52) | 96% | 10.550 | 16.017 |
469 | (448, 544) | 98% | 0.6953 | 1.0807 | |||||
593 | (505, 646) | 90% | 1.0807 | 1.4994 |
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1965 | −0.23 | 0.22 | 0.07 | 0.51 | 1.64 | −0.23 | 1.42 | −0.33 | −1.79 | −2.32 | 0.09 | 1.27 |
1966 | 2.57 | 0.04 | 0.49 | −1.15 | 0.39 | 0.03 | −0.04 | 0.71 | 0.62 | −0.92 | 1.37 | 1.39 |
1967 | 0.63 | 0.48 | −0.73 | −1.09 | −0.63 | −0.89 | −1.51 | 0.86 | −0.60 | 0.38 | −1.40 | 0.65 |
1968 | 1.18 | 0.21 | −0.43 | −2.21 | −1.49 | −1.44 | 0.20 | −0.17 | 1.48 | −0.80 | 0.59 | 0.52 |
1969 | 0.09 | 1.57 | 0.52 | 0.80 | −2.08 | 1.06 | 0.64 | −0.78 | −0.12 | −1.50 | −1.99 | 2.27 |
1970 | −0.55 | 1.59 | −0.13 | −0.27 | 1.05 | −0.49 | −1.32 | 1.22 | −1.33 | −0.29 | −0.08 | −0.94 |
1971 | −0.07 | 1.01 | −0.14 | −2.02 | 1.28 | −0.09 | 0.21 | −0.95 | 1.68 | −1.06 | 0.13 | −0.72 |
1972 | −0.90 | −0.82 | −1.86 | −0.34 | 0.30 | −0.45 | −0.77 | 1.59 | 1.80 | 1.51 | −0.37 | −1.50 |
1973 | −0.10 | 0.89 | 1.11 | 0.11 | 0.10 | −1.33 | 0.17 | 0.11 | −2.05 | −1.12 | −0.13 | −1.35 |
1974 | −1.23 | −0.57 | −0.15 | 1.54 | 0.41 | −0.33 | 1.43 | −0.59 | 0.65 | −0.40 | −0.26 | −0.55 |
1975 | −0.56 | −2.41 | 0.39 | 1.50 | −0.65 | −0.40 | 0.80 | −1.37 | −2.10 | 0.65 | 1.12 | −2.75 |
1976 | −0.07 | 0.18 | −0.80 | −0.90 | −0.94 | −0.94 | −0.05 | 1.91 | 0.88 | −1.15 | 0.00 | 0.28 |
1977 | 0.02 | 0.94 | −2.14 | 1.41 | 0.50 | −0.26 | −0.04 | 0.64 | −1.04 | −1.61 | −0.47 | −0.46 |
1978 | −1.22 | 1.23 | 1.36 | 0.46 | 0.75 | 0.96 | −0.19 | 0.34 | −0.37 | −0.83 | −1.62 | −0.59 |
1979 | 0.67 | −0.73 | −0.24 | 0.05 | 0.85 | 0.74 | 0.91 | 0.29 | −0.36 | −0.47 | 0.91 | −1.23 |
1980 | 0.41 | −2.22 | 0.21 | 0.75 | 1.09 | 1.98 | −0.26 | 0.24 | 0.08 | −0.06 | 0.82 | 1.27 |
1981 | 0.65 | −0.28 | 0.73 | −0.51 | −0.26 | −1.93 | 0.07 | 0.00 | −0.26 | 0.40 | 1.66 | 0.24 |
1982 | −0.94 | 0.22 | −0.36 | 0.34 | −1.51 | −0.22 | 0.16 | −0.65 | −1.24 | 0.36 | −1.23 | −0.18 |
1983 | −1.89 | 0.00 | −1.88 | −0.59 | −0.95 | 0.97 | −0.16 | −0.28 | −0.85 | −0.66 | −0.52 | −0.55 |
1984 | 0.70 | 0.95 | 1.51 | 0.83 | −0.01 | 0.27 | 0.28 | −1.04 | −1.69 | −0.83 | 0.62 | −0.40 |
1985 | 0.53 | 0.51 | −1.39 | 0.23 | −0.43 | 0.40 | 0.01 | 0.48 | −0.38 | −0.61 | 0.24 | −0.35 |
1986 | 0.27 | 1.62 | −0.31 | −1.40 | −2.18 | −0.06 | −0.77 | −0.12 | 0.43 | 0.45 | −1.89 | 0.15 |
1987 | 0.22 | −1.47 | −0.60 | −0.88 | −0.01 | 0.15 | −0.28 | 0.91 | −0.69 | 1.35 | 0.54 | −0.12 |
1988 | 0.89 | 0.12 | 2.10 | 1.14 | 1.06 | −0.48 | −0.03 | −1.28 | 0.94 | −0.47 | 0.44 | 1.12 |
1989 | −1.28 | −0.05 | −0.65 | −0.83 | 0.37 | 1.62 | −0.95 | −1.70 | 0.91 | 1.13 | −0.50 | −0.57 |
1990 | −0.96 | −0.02 | −2.14 | 0.33 | 0.16 | −0.38 | −0.59 | 0.20 | 0.58 | −0.70 | −0.65 | 0.83 |
1991 | −1.54 | 0.15 | −1.53 | 0.85 | 1.34 | −0.56 | 0.85 | 0.35 | −0.83 | 0.09 | −0.97 | 0.36 |
1992 | −2.27 | −0.06 | 0.82 | −0.66 | 0.61 | 1.14 | 0.18 | −0.69 | −0.50 | 0.63 | −0.12 | 0.06 |
1993 | −1.91 | 0.25 | 1.23 | 0.79 | 0.09 | 0.24 | 0.80 | −1.14 | 0.02 | −0.47 | 0.02 | −0.55 |
1994 | −1.28 | −2.11 | −1.26 | −0.70 | −0.30 | 0.42 | 0.90 | 0.31 | −1.69 | −0.55 | −2.03 | 0.01 |
1995 | 0.61 | −1.37 | 0.61 | −0.06 | −0.01 | −0.71 | 0.26 | 0.54 | 0.30 | −0.44 | 1.28 | −0.02 |
1996 | 0.25 | 1.06 | −0.02 | 0.16 | −0.22 | −2.79 | −1.83 | 1.00 | 1.77 | 0.24 | −0.12 | 0.94 |
1997 | −0.89 | −0.73 | 0.23 | 1.25 | 0.56 | 1.67 | 2.22 | 1.11 | −0.45 | 0.39 | 0.99 | 0.26 |
1998 | −0.31 | −1.30 | −0.29 | −0.99 | −0.38 | −0.06 | 0.56 | 0.37 | 1.43 | 1.36 | 1.47 | −1.60 |
1999 | −0.42 | −0.61 | 0.74 | 0.28 | 0.13 | 1.32 | −0.09 | 2.70 | 0.63 | 0.46 | −0.89 | 0.53 |
2000 | 0.81 | 0.21 | −1.06 | −0.29 | −2.24 | −0.17 | −1.64 | −0.76 | 1.18 | −1.66 | 0.96 | −0.93 |
2001 | −1.59 | −0.01 | 0.42 | −0.44 | 0.25 | 0.86 | −0.98 | −0.28 | 0.54 | 0.07 | 0.68 | −0.03 |
2002 | −0.72 | −0.12 | 1.20 | 0.01 | −0.40 | −0.86 | −0.97 | 1.50 | −0.24 | 1.50 | 0.53 | −0.45 |
2003 | 0.75 | 0.54 | −0.97 | −0.03 | −1.70 | −1.76 | 1.09 | −0.35 | 0.24 | 0.43 | −0.63 | 0.24 |
2004 | 0.70 | −0.41 | −0.49 | −0.56 | 1.44 | −0.69 | 1.63 | 1.78 | 0.15 | 0.15 | 0.34 | 0.50 |
2005 | 0.92 | 0.74 | 1.02 | 1.31 | 0.56 | 0.15 | 0.93 | 0.47 | 0.48 | −0.90 | 1.46 | 0.12 |
2006 | 0.03 | −0.55 | 0.79 | 0.73 | 0.61 | 0.57 | −1.16 | 0.78 | 0.63 | −1.58 | −0.99 | −0.55 |
2007 | 0.03 | −0.20 | 0.38 | −0.47 | −1.21 | −0.45 | −2.44 | 0.76 | 0.57 | 1.42 | 1.16 | 1.51 |
2008 | −0.64 | −1.35 | 0.15 | 0.73 | −0.53 | 0.29 | 0.03 | −1.57 | 1.07 | −0.47 | −0.73 | 0.44 |
2009 | 0.79 | −0.20 | 0.31 | −1.75 | −0.44 | −2.08 | 1.34 | −1.01 | 0.24 | 0.48 | −1.07 | 1.69 |
2010 | 0.55 | 1.42 | 0.73 | 0.03 | 0.75 | 1.52 | 0.41 | −1.28 | 0.07 | 1.27 | −0.42 | 1.16 |
2011 | 1.19 | 0.09 | −0.46 | 0.64 | 0.50 | 0.27 | −0.28 | −1.53 | 0.02 | 0.02 | −1.69 | 0.02 |
2012 | 1.77 | −0.20 | −1.06 | −0.16 | 1.06 | 0.01 | −0.73 | 0.60 | −0.50 | 0.24 | −0.79 | 1.38 |
2013 | 1.37 | −0.05 | −0.95 | −0.20 | −0.06 | 0.83 | 0.45 | −0.56 | 1.24 | 1.77 | −0.79 | −1.72 |
2014 | 1.19 | −0.20 | 0.61 | 0.83 | 1.89 | −0.07 | −0.05 | −0.02 | −0.16 | 0.48 | 1.41 | 1.53 |
2015 | −0.27 | 1.55 | 2.02 | 1.01 | −2.07 | −0.71 | −0.73 | −0.19 | −0.01 | 1.93 | 1.83 | −1.87 |
2016 | 1.52 | −1.93 | 0.98 | 0.53 | 1.60 | 0.46 | −2.59 | −0.70 | 1.01 | 1.60 | 0.06 | −1.20 |
2017 | 0.21 | 0.34 | 0.34 | 2.39 | −0.30 | 1.52 | 1.65 | −0.71 | −2.31 | 1.60 | 0.35 | 0.41 |
2018 | 0.37 | 2.19 | 1.16 | −2.75 | −0.02 | 1.60 | 1.20 | −2.09 | 0.38 | −0.71 | 1.34 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Dumitriu, C.Ș. Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania). J. Mar. Sci. Eng. 2025, 13, 1529. https://doi.org/10.3390/jmse13081529
Bărbulescu A, Dumitriu CȘ. Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania). Journal of Marine Science and Engineering. 2025; 13(8):1529. https://doi.org/10.3390/jmse13081529
Chicago/Turabian StyleBărbulescu, Alina, and Cristian Ștefan Dumitriu. 2025. "Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania)" Journal of Marine Science and Engineering 13, no. 8: 1529. https://doi.org/10.3390/jmse13081529
APA StyleBărbulescu, A., & Dumitriu, C. Ș. (2025). Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania). Journal of Marine Science and Engineering, 13(8), 1529. https://doi.org/10.3390/jmse13081529