Parasites and Microplastics in the Gastrointestinal Tract of Alosa immaculata from the Black Sea—Implications for Health and Condition
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
- -
- Very Poor (0.8–1.0);
- -
- Poor (1.0–1.2);
- -
- Balanced (1.2–1.4);
- -
- Good (1.4–1.6);
- -
- Very Good (>1.6).
2.3. Parasite Infestation Assessment
- -
- Abundance—the number of parasites/total number of fish examined (both infected and uninfected) [57].
- -
- -
- -
- Dominance—The dominance of parasites was estimated using the following formula [59]:
2.4. Microplastics (MP) Identification
Contamination Control for MP
2.5. Data Analysis
3. Results
3.1. Morphometric Data
3.2. Parasite Analysis
3.3. Microplastics
3.4. The Impact of Parasites and Microplastics on the Condition Factor (K)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MP | Microplastics |
K | Fulton’s condition factor |
Kn | Relative condition factor |
QA | Quality Assurance |
QC | Quality Control |
KOH | Potassium hydroxide |
FO | Frequency of occurrence |
SD | Standard deviation |
GIT | Gastrointestinal tract |
References
- Niță, V.; Nenciu, M.; Galațchi, M.; Diaconu, D. Speciile de Pești de La Litoralul Românesc. In Atlas Actualizat/Fish Species of the Romanian Coast. Updated Atlas; CD Press: Constanta, Romania, 2024; ISBN 978-606-528-757-0. [Google Scholar]
- Whitehead, P.J.P. Part 1. Chirocentridae, Clupeidae and Pristigasteridae. In FAO Species Catalogue. Clupeoid Fishes of the World. An Annotated and Illustrated Catalogue of the Herring, Sardines, Pilchards, Sprats, Anchovies and Wolf-Herrings; FAO Fisheries Synopsis: Rome, Italy, 1985; Volume 7, pp. 1–303. Available online: https://www.fao.org/4/Ac482e/Ac482e28.Pdf (accessed on 5 May 2025).
- Nizova, G.A.; Syrovatka, N.I. Helminthes of Commercial Fishes of Azov Sea Basin, Their Epizootological and Epidemiological Importance. In Main Problems of Fishery in Black Sea and Azov Sea Basins. Collection of Research Papers of AzNIIRKH; AzNIIRKH: Rostovon-Don, Russia, 2000; pp. 176–183. [Google Scholar]
- Gaevskaya, A.V.; Kornyychuk, Y.M. Parasitic Organisms as a Component of Ecosystems of the Black Sea Near-Shore Zone of Crimea. In Modern Condition of Biological Diversity in Near-Shore Zone of Crimea (The Black Sea Sector); Eremeev, V.N., Gaevskaya, A.V., Eds.; NAS: Sevastopol, Ukraine, 2003; pp. 425–490. [Google Scholar]
- Popjuk, M.P. Helminth Fauna of Pelagic Fishes off Crimea (The Black Sea). Ecol. Morya 2009, 78, 75–80. [Google Scholar]
- Popjuk, M.P. Parasite Fauna of Three Species of Mass Pelagic Fish during Migration through the Kerch Strait. Ecol. Morya 2011, 18, 73–80. [Google Scholar]
- Akmirza, A. Monogeneans of Fishes near Gökçeada, in Turkey. Turk. J. Zool. 2013, 37, 441–448. [Google Scholar] [CrossRef]
- Özer, A.; Öztürk, T.; Korniychuk, J. First Report of Mazocraes Alosae (Herman, 1782), Pronoprymna Ventricosa (Rudolphi, 1891) and Lecithaster Confusus Odhner, 1905 in Pontic Shad Alosa immaculata Bennet, 1835 near Turkish Coasts of the Black Sea. Lucr. Ştiinţifice Ser. Zooteh. 2013, 59, 311314. [Google Scholar]
- Freyhof, J.; Kottelat, M.; Alosa immaculata. The IUCN Red List of Threatened Species 2008: E.T907A13093654. 2008. Available online: https://www.iucnredlist.org/species/907/13093654 (accessed on 5 May 2025).
- Zalasiewicz, J.; Williams, M.; Haywood, A.; Ellis, M. The Anthropocene: A New Epoch of Geological Time? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 835–841. [Google Scholar] [CrossRef]
- Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007.
- Doney, S.C.; Ruckelshaus, M.; Emmett Duffy, J.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N.; et al. Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef]
- Harvell, D.; Altizer, S.; Cattadori, I.M.; Harrington, L.; Weil, E. Climate Change and Wildlife Diseases: When Does the Host Matter the Most? Ecology 2009, 90, 912–920. [Google Scholar] [CrossRef]
- UNDP. Black Sea Twice as Polluted by Marine Litter as Mediterranean Sea—EU Project’s Survey; UNDP: New York, NY, USA, 2019. [Google Scholar]
- Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.; Tritthart, M.; Glas, M.; Schludermann, E. The Danube so Colourful: A Potpourri of Plastic Litter Outnumbers Fish Larvae in Europe’s Second Largest River. Environ. Pollut. 2014, 188, 177–181. [Google Scholar] [CrossRef]
- Glevitzky, M.; Dumitrel, G.-A.; Rusu, G.I.; Toneva, D.; Vergiev, S.; Corcheş, M.-T.; Pană, A.-M.; Popa, M. Microplastic Pollution on the Beaches of the Black Sea in Romania and Bulgaria. Appl. Sci. 2025, 15, 4751. [Google Scholar] [CrossRef]
- Eryaşar, A.R.; Gedik, K.; Şahin, A.; Öztürk, R.Ç.; Yılmaz, F. Characteristics and Temporal Trends of Microplastics in the Coastal Area in the Southern Black Sea over the Past Decade. Mar. Pollut. Bull. 2021, 173, 112993. [Google Scholar] [CrossRef] [PubMed]
- Öztekin, A.; Üstün, F.; Bat, L.; Tabak, A. Microplastic Contamination of the Seawater in the Hamsilos Bay of the Southern Black Sea. Water Air Soil. Pollut. 2024, 235, 325. [Google Scholar] [CrossRef]
- Toschkova, S.; Ibryamova, S.; Bachvarova, D.C.; Koynova, T.; Stanachkova, E.; Ivanov, R.; Natchev, N.; Ignatova-Ivanova, T. The Assessment of the Bioaccumulation of Microplastics in Key Fish Species from the Bulgarian Aquatory of the Black Sea. BioRisk 2024, 22, 17–31. [Google Scholar] [CrossRef]
- Terzi, Y.; Erüz, C.; Özşeker, K. Marine Litter Composition and Sources on Coasts of South-Eastern Black Sea: A Long-Term Case Study. Waste Manag. 2020, 105, 139–147. [Google Scholar] [CrossRef]
- González-Fernández, D.; Hanke, G.; Pogojeva, M.; Machitadze, N.; Kotelnikova, Y.; Tretiak, I.; Savenko, O.; Bilashvili, K.; Gelashvili, N.; Fedorov, A.; et al. Floating Marine Macro Litter in the Black Sea: Toward Baselines for Large Scale Assessment. Environ. Pollut. 2022, 309, 119816. [Google Scholar] [CrossRef] [PubMed]
- Ioakeimidis, C.; Zeri, C.; Kaberi, H.; Galatchi, M.; Antoniadis, K.; Streftaris, N.; Galgani, F.; Papathanassiou, E.; Papatheodorou, G. A Comparative Study of Marine Litter on the Seafloor of Coastal Areas in the Eastern Mediterranean and Black Seas. Mar. Pollut. Bull. 2014, 89, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Gedik, K.; Gozler, A.M. Hallmarking Microplastics of Sediments and Chamelea Gallina Inhabiting Southwestern Black Sea: A Hypothetical Look at Consumption Risks. Mar. Pollut. Bull. 2022, 174, 113252. [Google Scholar] [CrossRef]
- Ibryamova, S.; Toschkova, S.; Bachvarova, D.C.; Lyatif, A.; Stanachkova, E.; Ivanov, R.; Natchev, N.; Ignatova-Ivanova, T. Assessment of the bioaccumulation of microplastics in the black sea mussel Mytilus Galloprovincialis L., 1819. J. IMAB 2022, 28, 4676–4682. [Google Scholar] [CrossRef]
- Mihova, S.; Doncheva, V.; Stefanova, K.; Stefanova, E.; Popov, D.; Panayotova, M. Plastic Ingestion by Phocoena phocoena and Tursiops truncatus from the Black Sea. In Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2023; pp. 295–307. [Google Scholar]
- Neves, D.; Sobral, P.; Ferreira, J.L.; Pereira, T. Ingestion of Microplastics by Commercial Fish off the Portuguese Coast. Mar. Pollut. Bull. 2015, 101, 119–126. [Google Scholar] [CrossRef]
- Romeo, T.; Pietro, B.; Pedà, C.; Consoli, P.; Andaloro, F.; Fossi, M.C. First Evidence of Presence of Plastic Debris in Stomach of Large Pelagic Fish in the Mediterranean Sea. Mar. Pollut. Bull. 2015, 95, 358–361. [Google Scholar] [CrossRef]
- Lusher, A.L.; Welden, N.A.; Sobral, P.; Cole, M. Sampling, Isolating and Identifying Microplastics Ingested by Fish and Invertebrates. Anal. Methods 2017, 9, 1346–1360. [Google Scholar] [CrossRef]
- Rummel, C.D.; Löder, M.G.J.; Fricke, N.F.; Lang, T.; Griebeler, E.-M.; Janke, M.; Gerdts, G. Plastic Ingestion by Pelagic and Demersal Fish from the North Sea and Baltic Sea. Mar. Pollut. Bull. 2016, 102, 134–141. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; d’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants Bioavailability and Toxicological Risk from Microplastics to Marine Mussels. Environ. Pollut. 2015, 198, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Avio, C.G.; Gorbi, S.; Regoli, F. Plastics and Microplastics in the Oceans: From Emerging Pollutants to Emerged Threat. Mar. Environ. Res. 2017, 128, 2–11. [Google Scholar] [CrossRef]
- Wright, S.L.; Rowe, D.; Thompson, R.C.; Galloway, T.S. Microplastic Ingestion Decreases Energy Reserves in Marine Worms. Curr. Biol. 2013, 23, R1031–R1033. [Google Scholar] [CrossRef]
- Collard, F.; Gasperi, J.; Gabrielsen, G.W.; Tassin, B. Plastic Particle Ingestion by Wild Freshwater Fish: A Critical Review. Environ. Sci. Technol. 2019, 53, 12974–12988. [Google Scholar] [CrossRef]
- Parker, B.; Andreou, D.; Green, I.D.; Britton, J.R. Microplastics in Freshwater Fishes: Occurrence, Impacts and Future Perspectives. Fish Fish. 2021, 22, 467–488. [Google Scholar] [CrossRef]
- Sures, B. How Parasitism and Pollution Affect the Physiological Homeostasis of Aquatic Hosts. J. Helminthol. 2006, 80, 151–157. [Google Scholar] [CrossRef]
- Hasan, A.K.M.M.; Hamed, M.; Hasan, J.; Martyniuk, C.J.; Niyogi, S.; Chivers, D.P. A Review of the Neurobehavioural, Physiological, and Reproductive Toxicity of Microplastics in Fishes. Ecotoxicol. Environ. Saf. 2024, 282, 116712. [Google Scholar] [CrossRef]
- Saood, A.I.; Shehab, Z.A.; Alahmed, H.A.A. The Impact of Parasites on the Physiological Function of Animals and the Host-Parasite Relationship. Eur. J. Theor. Appl. Sci. 2025, 3, 3–15. [Google Scholar] [CrossRef]
- Critchell, K.; Hoogenboom, M.O. Effects of Microplastic Exposure on the Body Condition and Behaviour of Planktivorous Reef Fish (Acanthochromis polyacanthus). PLoS ONE 2018, 13, e0193308. [Google Scholar] [CrossRef] [PubMed]
- Thelamon, V.; Dubois, F.; Gradito, M.; Binning, S.A. Body Condition Reveals Hidden Correlations between Co-Infection and Behavior in Sunfish. Behav. Ecol. 2025, 36, araf055. [Google Scholar] [CrossRef]
- Hasegawa, R.; Otsuki, Y.; Uemura, Y.; Furusawa, C.; Naka, M.; Kanno, Y.; Koizumi, I. Positive Feedback between Parasite Infection and Poor Host Body Condition Reduces Host Survival in the Wild. Funct. Ecol. 2025, 39, 723–736. [Google Scholar] [CrossRef]
- Stavrescu-Bedivan, M.M.; Scateanu, G.V.; Madjar, R.M.; Matei, P.B.; Toba, G.F. Comparative Study of Length-Weight Relationship, Size Structure and Fulton’s Condition Factor for Prussian Carp from Different Romanian Aquatic Ecosystems. Agrolife Sci. J. 2015, 4, 132–139. [Google Scholar]
- Wang, W.; Ge, J.; Yu, X. Bioavailability and Toxicity of Microplastics to Fish Species: A Review. Ecotoxicol. Environ. Saf. 2020, 189, 109913. [Google Scholar] [CrossRef]
- Loiseau, C.; Sorci, G. Can Microplastics Facilitate the Emergence of Infectious Diseases? Sci. Total Environ. 2022, 823, 153694. [Google Scholar] [CrossRef] [PubMed]
- Limonta, G.; Mancia, A.; Benkhalqui, A.; Bertolucci, C.; Abelli, L.; Fossi, M.C.; Panti, C. Microplastics Induce Transcriptional Changes, Immune Response and Behavioral Alterations in Adult Zebrafish. Sci. Rep. 2019, 9, 15775. [Google Scholar] [CrossRef]
- Yin, L.; Chen, B.; Xia, B.; Shi, X.; Qu, K. Polystyrene Microplastics Alter the Behavior, Energy Reserve and Nutritional Composition of Marine Jacopever (Sebastes schlegelii). J. Hazard. Mater. 2018, 360, 97–105. [Google Scholar] [CrossRef]
- Pechenik, J.A.; Fried, B. Effect of Temperature on Survival and Infectivity of Echinostoma Trivolvis Cercariae: A Test of the Energy Limitation Hypothesis. Parasitology 1995, 111, 373–378. [Google Scholar] [CrossRef]
- Buss, N.; Sander, B.; Hua, J. Effects of Polyester Microplastic Fiber Contamination on Amphibian–Trematode Interactions. Environ. Toxicol. Chem. 2022, 41, 869–879. [Google Scholar] [CrossRef]
- Fulton, T.W. The Soveregnity of the Sea: An Historical Account of the Claims of England to the Dominion of the British Seas, and of the Evolution of the Territorial Waters; W. Blackwood: Edinburgh, UK; London, UK, 1911. [Google Scholar]
- Morton, A.; Routledge, R.D. Fulton’s Condition Factor: Is It a Valid Measure of Sea Lice Impact on Juvenile Salmon? N. Am. J. Fish. Manag. 2006, 26, 56–62. [Google Scholar] [CrossRef]
- Le Cren, E.D. The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca Fluviatilis). J. Anim. Ecol. 1951, 20, 201–219. [Google Scholar] [CrossRef]
- Ricker, W.E. Linear Regressions in Fishery Research. J. Fish. Res. Board Can. 1973, 30, 409–434. [Google Scholar] [CrossRef]
- Bagenal, T.B.; Tesch, F.W. Age and Growth. In Methods for Assessment of Fish Production in Fresh Waters, 3rd ed.; Bagenal, T., Ed.; IBP Handbook; Blackwell Science Publications: Oxford, UK, 1978; Volume 3. [Google Scholar]
- Manko, P. Stomach Content Analysis in Freshwater Fish Feeding Ecology; University of Prešov: Prešov, Slovakia, 2016; ISBN 978-80-555-1613-4. [Google Scholar]
- Bruno, D.W.; Nowak, B.; Elliott, D.G. Guide to Identification of Fish Protozoan and Metazoan Parasites in Stained Tissue Sections. Dis. Aquat. Organ. 2006, 70, 1–36. [Google Scholar] [CrossRef]
- Moravec, F. Parasitic Nematodes of Freshwater Fishes of Europe; Academia and Kluwer: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology Meets Ecology on Its Own Terms: Margolis et al. Revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar]
- Veronika, E.; Elvince, R.; Wulandari, L. Parasite Infection, Prevalence, Intensity, and Dominance in Climbing Perch (Anabas testudineus) in Sebangau River, Central Kalimantan, Indonesia. Aquac. Aquar. Conserv. Legis. 2024, 17, 843–852. [Google Scholar]
- Roohi, J.D.; Ghasemzadeh, K.; Amini, M. Occurrence and Intensity of Parasites in Goldfish (Carassius auratus L.) from Guilan Province Fish Ponds, North Iran. Croat. J. Fish. 2016, 74, 20–24. [Google Scholar] [CrossRef]
- Beckingham, B.; Apintiloaiei, A.; Moore, C.; Brandes, J. Hot or Not: Systematic Review and Laboratory Evaluation of the Hot Needle Test for Microplastic Identification. Microplastics Nanoplastics 2023, 3, 8. [Google Scholar] [CrossRef]
- Lusher, A.L.; Bråte, I.L.N.; Munno, K.; Hurley, R.R.; Welden, N.A. Is It or Isn’t It: The Importance of Visual Classification in Microplastic Characterization. Appl. Spectrosc. 2020, 74, 1139–1153. [Google Scholar] [CrossRef]
- Matiddi, M.; Pham, C.K.; Anastasopoulou, A.; Andresmaa, E.; Avio, C.G.; Bianchi, J.; Chaieb, O.; Palazzo, L.; Darmon, G.; de Lucia, G.A.; et al. Monitoring Micro-Litter Ingestion in Marine Fish: A Harmonized Protocol for MSFD & RSCs Areas. 2021. Available online: https://accedacris.ulpgc.es/bitstream/10553/114417/1/Report_Monitoring-microlitter-ingestion-in-marine-fish.pdf (accessed on 28 April 2025).
- Valente, T.; Scacco, U.; Matiddi, M. Macro-Litter Ingestion in Deep-Water Habitats: Is an Underestimation Occurring? Environ. Res. 2020, 186, 109556. [Google Scholar] [CrossRef]
- On Marine Litter, M.T.G. Guidance on the Monitoring of Marine Litter in European Seas—An Update to Improve the Harmonised Monitoring of Marine Litter Under the Marine Strategy Framework Directive; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Lusher, A.L.; O’Donnell, C.; Officer, R.; O’Connor, I. Microplastic Interactions with North Atlantic Mesopelagic Fish. ICES J. Mar. Sci. 2016, 73, 1214–1225. [Google Scholar] [CrossRef]
- Renzi, M.; Specchiulli, A.; Blašković, A.; Manzo, C.; Mancinelli, G.; Cilenti, L. Marine Litter in Stomach Content of Small Pelagic Fishes from the Adriatic Sea: Sardines (Sardina pilchardus) and Anchovies (Engraulis encrasicolus). Environ. Sci. Pollut. Res. 2019, 26, 2771–2781. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Regoli, F. Experimental Development of a New Protocol for Extraction and Characterization of Microplastics in Fish Tissues: First Observations in Commercial Species from Adriatic Sea. Mar. Environ. Res. 2015, 111, 18–26. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J. Change in Marine Communities: An Approach to Statistical Analysis, 3rd ed.; PRIMER-E: Plymouth, UK, 2014. [Google Scholar]
- Zaharia, T.; Dumitrescu, E.; Maximov, V.; Cristea, M.; Nenciu, M.; Țoțoiu, A. Observation on the Parasite Influence on the Fish Conservation Status in Romanian Marine Natura 2000 Sites. Rech. Mar. 2012, 42, 173–184. [Google Scholar]
- Totoiu, A.; Zaharia, T.; Dumitrescu, E.; Maximov, V.; Nenciu, M.-I.; Cristea, M. Assesing the Nematode Infestation Degree of Commercial Clupeids at the Romanian Coast. Rech. Mar. 2013, 43, 241–248. [Google Scholar]
- Lazar, L.; Vlas, O.; Pantea, E.; Boicenco, L.; Marin, O.; Abaza, V.; Filimon, A.; Bisinicu, E. Black Sea Eutrophication Comparative Analysis of Intensity between Coastal and Offshore Waters. Sustainability 2024, 16, 5146. [Google Scholar] [CrossRef]
- Bisinicu, E.; Abaza, V.; Boicenco, L.; Adrian, F.; Harcota, G.-E.; Marin, O.; Oros, A.; Pantea, E.; Spinu, A.; Timofte, F.; et al. Spatial Cumulative Assessment of Impact Risk-Implementing Ecosystem-Based Management for Enhanced Sustainability and Biodiversity in the Black Sea. Sustainability 2024, 16, 4449. [Google Scholar] [CrossRef]
- Lazar, L.; Spanu, A.; Boicenco, L.; Oros, A.; Damir, N.; Bisinicu, E.; Abaza, V.; Filimon, A.; Harcota, G.; Marin, O.; et al. Methodology for Prioritizing Marine Environmental Pressures under Various Management Scenarios in the Black Sea. Front. Mar. Sci. 2024, 11, 1388877. [Google Scholar] [CrossRef]
- Marin, O. Long Term Quantitative Variation of the Main Opportunistic Macroalgae Species Along the Romanian Black Sea Coast. Cercet. Mar.-Rech. Mar. 2022, 52, 78–90. [Google Scholar] [CrossRef]
- Ristea, E.; Pârvulescu, O.C.; Lavric, V.; Oros, A. Assessment of Heavy Metal Contamination of Seawater and Sediments Along the Romanian Black Sea Coast: Spatial Distribution and Environmental Implications. Sustainability 2025, 17, 2586. [Google Scholar] [CrossRef]
- Lazar, L.; Boicenco, L.; Pantea, E.; Timofte, F.; Vlas, O.; Bișinicu, E. Modeling Dynamic Processes in the Black Sea Pelagic Habitat—Causal Connections between Abiotic and Biotic Factors in Two Climate Change Scenarios. Sustainability 2024, 16, 1849. [Google Scholar] [CrossRef]
- Niță, V.; Nenciu, M.; Begun, T.; Teacă, A.; Galațchi, M.; Danilov, C. National Fisheries Restricted Areas: An Alternative Tool for the Sustainable Management of Black Sea Vulnerable and Economically Important Fish Populations. Front. Mar. Sci. 2025, 12, 1570936. [Google Scholar] [CrossRef]
- Tiganov, G.; Nenciu, M.-I.; Danilov, C.S.; Nita, V.N. Estimates of the Population Parameters and Exploitation Rate of Pontic Shad (Alosa immaculata Bennett, 1835) in the Romanian Black Sea Coast. Sciendo 2018, 1, 162–167. [Google Scholar] [CrossRef]
- Tiganov, G.; Grigoras, D.; Nastase, A.; Paun, C.; Galatchi, M. Assessing of Pontic Shad (Alosa immaculata, Bennett 1835) Stock Status from Romanian Black Sea Coast. Turk. J. Fish. Aquat. Sci. 2023, 23, 3. [Google Scholar] [CrossRef]
- Stroe, D.M.; Cretu, M.; Tenciu, M.; Dima, F.M.; Patriche, N.; Tiganov, G.; Dediu, L. Age, Growth, and Mortality of Pontic Shad, Alosa immaculata Bennett, 1835, in the Danube River, Romania. Fishes 2024, 9, 128. [Google Scholar] [CrossRef]
- Leonov, C.M.; Stroe, M.D.; Dima, F.M.; Vidu, L.; Nicolae, C.G. Assessment of Growth and Mortality Parameters of Alosa immaculata (Bennet, 1835) from the Danube Delta. Sci. Pap. Ser. D Anim.Sci. 2023, 66, 596–601. [Google Scholar]
- Mocanu, M.; Oprea, L.; Crețu, M. Estimation of Growth Parameters and Mortality Rate of Pontic Shad (Alosa immaculata, Bennett, 1835) in the Romanian Sector of the Danube River, Km 169-Km 197. Sci. Papers. Ser. D. Anim. Sci. 2021, 64, 448–453. [Google Scholar]
- Özdemir, S.; Erdem, E.; Birinci-Ozdemir, Z.; Aksu, H. Monthly Monitoring of Length-Weight Relationships of Allis Shad (Alosa immaculata Bennett, 1835), Horse Mackerel (Trachurus Mediterraneus Steindachner, 1868) and Sprat (Sprattus Sprattus Linnaeus, 1758) from the Southern Black Sea, Turkey. Cah. Biol. Mar. 2015, 56, 25–30. [Google Scholar]
- Erguden, D.; Turan, F.; Turan, C. Length-Weight and Length-Length Relationships for Four Shad Species along the Western Black Sea Coast of Turkey. J. Appl. Ichthyol. 2011, 27, 942–944. [Google Scholar] [CrossRef]
- Jisr, N.; Younes, G.; Sukhn, C.; El-Dakdouki, M.H. Length-Weight Relationships and Relative Condition Factor of Fish Inhabiting the Marine Area of the Eastern Mediterranean City, Tripoli-Lebanon. Egypt. J. Aquat. Res. 2018, 44, 299–305. [Google Scholar] [CrossRef]
- Froese, R.; Tsikliras, A.C.; Stergiou, K.I. Editorial Note on Weight–Length Relations of Fishes. Acta Ichthyol. Piscat. 2011, 41, 261–263. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.; Liu, M.; Liu, W.; Zhao, W.; Liu, H.; Zhang, P.; You, F. Length-Weight, Length-Length Relationships, and Condition Factors of Black Rockfish Sebastes Schlegelii Hilgendorf, 1880 in Lidao Bay, China. Thalass. Int. J. Mar. Sci. 2017, 33, 57–63. [Google Scholar] [CrossRef]
- Yeşilçiçek, T. Some Biological Parameters of the Pontic Shad (Alosa immaculata Bennet, 1835) from the Southeastern Black Sea. Int. J. Adv. Nat. Sci. Eng. Res. 2023, 7, 600–606. [Google Scholar] [CrossRef]
- Savin, V.; Mocanu, E.; Patriche, N.; Tenciu, M.; Savin, C.; Stroe, D.; Nãstase, G. Study on the Maintenance Status and Biochemistry of Pontic Shad Alosa immaculata (Bennet, 1835) during Migration. Lucr. Ştiinţifice-Ser. Zooteh. 2020, 74, 146–150. [Google Scholar]
- Višnjić-Jeftić, Ž.; Lenhardt, M.; Vukov, T.; Gačić, Z.; Skorić, S.; Smederevac-Lalić, M.; Nikčević, M. The Geometric Morphometrics and Condition of Pontic Shad, Alosa immaculata (Pisces: Clupeidae) Migrants to the Danube River. J. Nat. Hist. 2013, 47, 1121–1128. [Google Scholar] [CrossRef]
- Le Cren, E.D. The Biology of the Sea Trout; Atlantic Salmon Trust: Pitlochry, UK, 1985. [Google Scholar]
- Ogunola, O.S.; Onada, O.A.; Falaye, A.E. Preliminary Evaluation of Some Aspects of the Ecology (Growth Pattern, Condition Factor and Reproductive Biology) of African Pike, Hepsetus odoe (Bloch 1794), in Lake Eleiyele, Ibadan, Nigeria. Fish. Aquat. Sci. 2018, 21, 12. [Google Scholar] [CrossRef]
- Samsun, O. The Weight-Length Relationship of Alosa Pontica (Eichw. 1838) in the Mid. Turkish Black Sea. E.U. J. Fish. Aquat. Sci. 1995, 12, 15. [Google Scholar]
- Combes, C. Parasitism: The Ecology and Evolution of Intimate Interactions; University of Chicago Press: Chicago, IL, USA, 2001; ISBN 0226114465. [Google Scholar]
- Sures, B.; Nachev, M. Effects of Multiple Stressors in Fish: How Parasites and Contaminants Interact. Parasitology 2022, 149, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Țoțoiu, A.; Nenciu, M.; Harcotă, G.-E.; Niță, V.; Patriche, N. Communities of Metazoan Parasites of Alosa immaculata (Bennett, 1835) from the Danube Waters in the Romanian Area. Recent Findings. In Proceedings of the Blue Growth: Challenges And Opportunities for the Black Sea, 2nd International Joint Conference, Constanta, Romania, 23–25 October 2024; p. 68. [Google Scholar]
- Grecu, I.; Docan, A.; Mogodan, A.; Dediu, L.; Cristea, V.; Ionescu, T.; Mihalache, I. Health Profile of Alosa immaculata (Bennet, 1835) during Its Spawning Migration in the Danube. Sci. Papers. Ser. D. Anim. Sci. 2020, LXIII, 439–446. [Google Scholar]
- Plaksina, M.P.; Gibson, D.I.; Dmitrieva, E.V. Life-History Studies on Infrapopulations of Mazocraes Alosae (Monogenea) Parasitising Alosa immaculata (Actinopterygii) in the Northern Black and Azov Seas. Folia Parasitol. 2021, 68, 9. [Google Scholar] [CrossRef]
- Buchmann, K.; Bresciani, J. Monogenea (Phylum platyhelminthes). In Fish Diseases and Disorders. Volume 1: Protozoan and Metazoan Infections; CABI: Egham, UK, 2006; pp. 297–344. [Google Scholar]
- Gérard, C.; Hervé, M.; Réveillac, E.; Acou, A. Spatial Distribution and Impact of the Gill-Parasitic Mazocraes Alosae (Monogenea polyopisthocotylea) on Alosa Alosa and A. Fallax (Actinopterygii, Clupeidae). Hydrobiologia 2016, 763, 371–379. [Google Scholar] [CrossRef]
- Bișinicu, E.; Harcotă, G.E.; Lazăr, L.; Niță, V.; Țoțoiu, A.; Țiganov, G. Fish Abundance and Mesozooplankton Resource: A Study on Sprattus Sprattus (Linnaeus, 1758) (Actinopterygii: Clupeidae) in the Romanian Black Sea Waters. Acta Zool. Bulg. 2024, 76, 215–224. [Google Scholar]
- Bișinicu, E.; Niță, V.; Țoțoiu, A.; Harcotă, G.E.; Țiganov, G.; Cristea, V. Mesozooplankton in the Diet of the Black Sea Shad Alosa Tanaica (Grim, 1901) (Clupeiformes: Clupeidae) from the Northern Part of the Romanian Black Sea Waters. Acta Zool. Bulg. 2022, 74, 417–424. [Google Scholar]
- Køie, M. Aspects of the Life Cycle and Morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Can. J. Zool. 1993, 71, 1289–1296. [Google Scholar] [CrossRef]
- Ugwu, K.; Herrera, A.; Gómez, M. Microplastics in Marine Biota: A Review. Mar. Pollut. Bull. 2021, 169, 112540. [Google Scholar] [CrossRef]
- Santos, R.G.; Andrades, R.; Fardim, L.M.; Martins, A.S. Marine Debris Ingestion and Thayer’s Law—The Importance of Plastic Color. Environ. Pollut. 2016, 214, 585–588. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Zhang, Y.-X.; Li, J.-Y.; Li, G.-J. [Black Microplastics in the Environment: Origin, Transport and Risk of Tire Wear Particles]. Ying Yong Sheng Tai Xue Bao 2022, 33, 2260–2270. [Google Scholar] [CrossRef]
- Haque, M.M.; Kabir, A.T.; Latifi, E.M.; Mahmud, D.M.S.; Hossain, M.R.; Himu, H.A.; Fatema, U.K.; Tareq, S.M. Microfiber Prevalence and Removal Efficiency of Textile Effluent Treatment Plants in Bangladesh. J. Hazard. Mater. Adv. 2024, 14, 100436. [Google Scholar] [CrossRef]
- Atamanalp, M.; Köktürk, M.; Uçar, A.; Duyar, H.A.; Özdemir, S.; Parlak, V.; Esenbuğa, N.; Alak, G. Microplastics in Tissues (Brain, Gill, Muscle and Gastrointestinal) of Mullus barbatus and Alosa immaculata. Arch. Environ. Contam. Toxicol. 2021, 81, 460–469. [Google Scholar] [CrossRef]
- Sun, X.; Li, Q.; Shi, Y.; Zhao, Y.; Zheng, S.; Liang, J.; Liu, T.; Tian, Z. Characteristics and Retention of Microplastics in the Digestive Tracts of Fish from the Yellow Sea. Environ. Pollut. 2019, 249, 878–885. [Google Scholar] [CrossRef]
- Cunha, I.; Planas, M. Optimal Prey Size for Early Turbot Larvae (Scophthalmus maximus L.) Based on Mouth and Ingested Prey Size. Aquaculture 1999, 175, 103–110. [Google Scholar] [CrossRef]
- Ciucă, A.-M.; Stoica, E.; Barbeș, L. First Report of Microplastic Ingestion and Bioaccumulation in Commercially Valuable European Anchovies (Engraulis encrasicolus, Linnaeus, 1758) from the Romanian Black Sea Coast. J. Mar. Sci. Eng. 2025, 13, 394. [Google Scholar] [CrossRef]
- Aytan, U.; Esensoy, F.B.; Senturk, Y. Microplastic Ingestion and Egestion by Copepods in the Black Sea. Sci. Total Environ. 2022, 806, 150921. [Google Scholar] [CrossRef] [PubMed]
- Beer, S.; Garm, A.; Huwer, B.; Dierking, J.; Nielsen, T.G. No Increase in Marine Microplastic Concentration over the Last Three Decades—A Case Study from the Baltic Sea. Sci. Total Environ. 2018, 621, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Krauth, T.; Wagner, S. Export of Plastic Debris by Rivers into the Sea. Environ. Sci. Technol. 2017, 51, 12246–12253. [Google Scholar] [CrossRef]
- Pojar, I.; Stănică, A.; Stock, F.; Kochleus, C.; Schultz, M.; Bradley, C. Sedimentary Microplastic Concentrations from the Romanian Danube River to the Black Sea. Sci. Rep. 2021, 11, 2000. [Google Scholar] [CrossRef]
- Babos, T.; Lazar, C.; Dobre, O.; Pop, C.; Pojar, I. Microplastic Characterization in Romanian Coastal Waters, Western Black Sea. Geoecomarina 2023, 29, 51–58. [Google Scholar]
- Procop, I.; Calmuc, M.; Pessenlehner, S.; Trifu, C.; Ceoromila, A.C.; Calmuc, V.A.; Fetecău, C.; Iticescu, C.; Musat, V.; Liedermann, M. The First Spatio-Temporal Study of the Microplastics and Meso–Macroplastics Transport in the Romanian Danube. Environ. Sci. Eur. 2024, 36, 154. [Google Scholar] [CrossRef]
- Alves, V.E.N.; Patrício, J.; Dolbeth, M.; Pessanha, A.; Palma, A.R.T.; Dantas, E.W.; Vendel, A.L. Do Different Degrees of Human Activity Affect the Diet of Brazilian Silverside Atherinella brasiliensis? J. Fish. Biol. 2016, 89, 1239–1257. [Google Scholar] [CrossRef]
- Hernandez-Milian, G.; Lusher, A.; MacGabban, S.; Rogan, E. Microplastics in Grey Seal (Halichoerus grypus) Intestines: Are They Associated with Parasite Aggregations? Mar. Pollut. Bull. 2019, 146, 349–354. [Google Scholar] [CrossRef]
- Pennino, M.G.; Bachiller, E.; Lloret-Lloret, E.; Albo-Puigserver, M.; Esteban, A.; Jadaud, A.; Bellido, J.M.; Coll, M. Ingestion of Microplastics and Occurrence of Parasite Association in Mediterranean Anchovy and Sardine. Mar. Pollut. Bull. 2020, 158, 111399. [Google Scholar] [CrossRef]
- Parker, B.; Britton, J.R.; Green, I.D.; Amat-Trigo, F.; Andreou, D. Parasite Infection but Not Chronic Microplastic Exposure Reduces the Feeding Rate in a Freshwater Fish. Environ. Pollut. 2023, 320, 121120. [Google Scholar] [CrossRef]
- Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of Different Shapes of Microplastics Initiates Intestinal Injury and Gut Microbiota Dysbiosis in the Gut of Zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef] [PubMed]
- Gaulke, C.A.; Martins, M.L.; Watral, V.G.; Humphreys, I.R.; Spagnoli, S.T.; Kent, M.L.; Sharpton, T.J. A Longitudinal Assessment of Host-Microbe-Parasite Interactions Resolves the Zebrafish Gut Microbiome’s Link to Pseudocapillaria tomentosa Infection and Pathology. Microbiome 2019, 7, 10. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, H.; Kong, X.; Cheng, X.; Ma, T.; He, H.; Du, W.; Yang, S.; Li, S.; Zhang, L. Combined Effects of Polyethylene and Organic Contaminant on Zebrafish (Danio rerio): Accumulation of 9-Nitroanthracene, Biomarkers and Intestinal Microbiota. Environ. Pollut. 2021, 277, 116767. [Google Scholar] [CrossRef] [PubMed]
- Iwanowicz, D. Overview on the effects of parasites on fish health. In Proceedings of the Third Bilateral Conference Between Russia and the United States. Bridging America and Russia with Shared Perspectives on Aquatic Animal Health, Shepherdstown, WV, USA, 12–20 July 2011. [Google Scholar]
- Cho, Y.-G.; Lee, H.-M.; Kim, J.-H.; Shin, J.-S.; Jeung, H.-D.; Choi, K.-S. Effects of Larval Trematode Parasitism on the Reproductive Capacity of Manila Clam Ruditapes philippinarum in a Sandy-Mud Tidal Flat on the West Coast of Korea. Front. Mar. Sci. 2022, 9, 936520. [Google Scholar] [CrossRef]
- Barber, I.; Wright, H.A. Effects of Parasites on Fish Behaviour: Interactions With Host Physiology. Fish Physiol. 2005, 24, 109–149. [Google Scholar]
- Šimková, A.; Lafond, T.; Ondračková, M.; Jurajda, P.; Ottová, E.; Morand, S. Parasitism, Life History Traits and Immune Defence in Cyprinid Fish from Central Europe. BMC Evol. Biol. 2008, 8, 29. [Google Scholar] [CrossRef]
- Grabner, D.; Rothe, L.E.; Sures, B. Parasites and Pollutants: Effects of Multiple Stressors on Aquatic Organisms. Environ. Toxicol. Chem. 2023, 42, 1946–1959. [Google Scholar] [CrossRef]
- Beaumont, N.J.; Aanesen, M.; Austen, M.C.; Börger, T.; Clark, J.R.; Cole, M.; Hooper, T.; Lindeque, P.K.; Pascoe, C.; Wyles, K.J. Global Ecological, Social and Economic Impacts of Marine Plastic. Mar. Pollut. Bull. 2019, 142, 189–195. [Google Scholar] [CrossRef]
- Zhang, E.; Kim, M.; Rueda, L.; Rochman, C.; VanWormer, E.; Moore, J.; Shapiro, K. Association of Zoonotic Protozoan Parasites with Microplastics in Seawater and Implications for Human and Wildlife Health. Sci. Rep. 2022, 12, 6532. [Google Scholar] [CrossRef] [PubMed]
No. | Prevalence (%) | Category | Remarks |
---|---|---|---|
1 | 100–99 | Always | Heavy infection |
2 | 98–90 | Nearly always | Bad infection |
3 | 89–70 | Usually | Moderate infection |
4 | 69–50 | Very often | Very often infection |
5 | 49–30 | Common | Common infection |
6 | 29–10 | Often | Frequent infection |
7 | 9–1 | Sometimes | Occasional infection |
8 | <1–0.1 | Rare | Rare infection |
9 | <0.1–0.01 | Very rare | Very rare infection |
10 | <0.01 | Almost never | Never |
No. | Intensity (ind fish−1) | Category |
---|---|---|
1 | <1 | Very low |
2 | 1–5 | Low |
3 | 6–50 | Moderate |
4 | 51–100 | Poor |
5 | >100 | Very poor |
6 | >1000 | Overinfected |
Sex | Mean | Min | Max | |
---|---|---|---|---|
Length (cm) | F | 31.35 ± 2.07 SD | 27.8 | 36 |
M | 30.4 ± 1.6 SD | 28.5 | 32.5 | |
Weight (g) | F | 252.29 ± 44.63 SD | 184.3 | 364.6 |
M | 30.4 ± 36.12 SD | 194.3 | 283.3 | |
Condition Factor (K) | F | 0.81 ± 0.06 SD | 0.7 | 0.95 |
M | 0.82 ± 0.05 SD | 0.74 | 0.91 |
Sample Code | Length (cm) | Weight (g) | Sex | Parasite | Microplastics | K | Kn |
---|---|---|---|---|---|---|---|
1 | 36 | 364.6 | F | Yes | Yes | 0.78 | 1.03 |
2 | 28.5 | 184.3 | F | Yes | Yes | 0.79 | 0.94 |
3 | 32.3 | 282.3 | M | Yes | Yes | 0.83 | 1.05 |
4 | 29 | 186.3 | F | Yes | Yes | 0.76 | 0.91 |
5 | 28.8 | 196.2 | F | Yes | No | 0.82 | 0.98 |
6 | 30.5 | 236.9 | F | Yes | Yes | 0.83 | 1.02 |
7 | 30.8 | 232.8 | F | Yes | Yes | 0.79 | 0.97 |
8 | 30.5 | 228.3 | F | Yes | No | 0.8 | 0.98 |
9 | 33 | 306 | F | Yes | Yes | 0.85 | 1.07 |
10 | 30.5 | 207.1 | F | No | No | 0.72 | 0.89 |
11 | 32.5 | 268.7 | F | Yes | Yes | 0.78 | 0.98 |
12 | 31 | 253.6 | F | Yes | Yes | 0.85 | 1.04 |
13 | 33.5 | 288.9 | F | Yes | No | 0.76 | 0.98 |
14 | 32 | 256.9 | F | Yes | No | 0.78 | 0.98 |
15 | 32.2 | 289.7 | F | Yes | Yes | 0.86 | 1.08 |
16 | 31.1 | 247.6 | F | Yes | No | 0.82 | 1.01 |
17 | 31.4 | 258.5 | F | No | No | 0.83 | 1.03 |
18 | 32.5 | 283.3 | M | Yes | Yes | 0.82 | 1.03 |
19 | 29.5 | 203.2 | M | Yes | Yes | 0.79 | 0.95 |
20 | 31.8 | 238.2 | M | Yes | No | 0.74 | 0.92 |
21 | 28.6 | 194.3 | M | Yes | Yes | 0.83 | 0.98 |
22 | 29.8 | 228.6 | F | No | No | 0.86 | 1.04 |
23 | 33 | 275.4 | F | Yes | No | 0.76 | 0.97 |
24 | 27.8 | 205.5 | F | Yes | Yes | 0.95 | 1.12 |
25 | 32 | 282.3 | F | Yes | Yes | 0.86 | 1.07 |
26 | 30.4 | 240.3 | F | Yes | Yes | 0.85 | 1.04 |
27 | 30 | 245.9 | M | Yes | No | 0.91 | 1.10 |
28 | 30 | 214.5 | M | No | Yes | 0.79 | 0.96 |
29 | 35.4 | 311.9 | F | Yes | No | 0.7 | 0.92 |
30 | 28.5 | 197.6 | M | Yes | No | 0.85 | 1.01 |
Genus Parasites | No. Fish Samples | No. Parasites | Average Intensity (Parasite/Host) | Average Abundance | Dominance (%) | Prevalence (%) |
---|---|---|---|---|---|---|
Mazocraes sp. | 30 | 52 | 3.47 | 1.73 | 23.85 | 50 |
Pronoprymna sp. | 30 | 11 | 1.83 | 0.37 | 5.05 | 20 |
Lecithaster sp. | 30 | 19 | 1.73 | 0.63 | 8.72 | 36.67 |
Hysterotylacium sp. | 30 | 103 | 4.48 | 3.43 | 47.25 | 76.67 |
Contracecum sp. | 30 | 33 | 2.36 | 1.1 | 15.14 | 46.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Țoțoiu, A.; Stoica, E.; Ciucă, A.-M.; Harcotă, G.-E.; Niță, V.; Patriche, N. Parasites and Microplastics in the Gastrointestinal Tract of Alosa immaculata from the Black Sea—Implications for Health and Condition. J. Mar. Sci. Eng. 2025, 13, 1316. https://doi.org/10.3390/jmse13071316
Țoțoiu A, Stoica E, Ciucă A-M, Harcotă G-E, Niță V, Patriche N. Parasites and Microplastics in the Gastrointestinal Tract of Alosa immaculata from the Black Sea—Implications for Health and Condition. Journal of Marine Science and Engineering. 2025; 13(7):1316. https://doi.org/10.3390/jmse13071316
Chicago/Turabian StyleȚoțoiu, Aurelia, Elena Stoica, Andreea-Mădălina Ciucă, George-Emanuel Harcotă, Victor Niță, and Neculai Patriche. 2025. "Parasites and Microplastics in the Gastrointestinal Tract of Alosa immaculata from the Black Sea—Implications for Health and Condition" Journal of Marine Science and Engineering 13, no. 7: 1316. https://doi.org/10.3390/jmse13071316
APA StyleȚoțoiu, A., Stoica, E., Ciucă, A.-M., Harcotă, G.-E., Niță, V., & Patriche, N. (2025). Parasites and Microplastics in the Gastrointestinal Tract of Alosa immaculata from the Black Sea—Implications for Health and Condition. Journal of Marine Science and Engineering, 13(7), 1316. https://doi.org/10.3390/jmse13071316