Comparative Research on Vessel Navigability on the Northern Sea Route Based on the NSR Admission Criteria and POLARIS Methodology
Abstract
1. Introduction
- (1)
- A comparative analysis framework is developed to systematically examine the differences and similarities between the POLARIS methodology and the NSR criteria when assessing the navigability of Arc4 to Arc9 ice-class vessels, based on 27 defined districts of the NSR;
- (2)
- From spatial and temporal perspectives, the “navigability rate” indicator is introduced to quantitatively compare the consistencies and differences between the two methods in terms of their navigability outcomes;
- (3)
- The results reveal significant spatial and temporal discrepancies between the two assessment approaches, offering theoretical insights and practical guidance for improving the current polar navigation safety assessment system.
2. Study Area and Data
2.1. Study Area
2.2. Study Data
2.2.1. Arctic Sea Ice Data
2.2.2. Russian Forecast Data on Ice Conditions in the NSR
3. Methodology
3.1. POLARIS Methodology
3.1.1. Risk Index Values
3.1.2. Risk Index Outcome
3.1.3. Risk Index Outcome Criteria
3.2. NSR Criteria
3.3. Data Processing Method
- (1)
- Data Preprocessing
- (2)
- RIO Calculation
- (3)
- Navigability Determination
- (4)
- Navigability Analysis
4. Results
4.1. Arc4 Ice-Class Vessels
4.2. Arc5 Ice-Class Vessels
4.3. Arc6 Ice-Class Vessels
4.4. Arc7 Ice-Class Vessels
4.5. Arc8 Ice-Class Vessels
4.6. Arc9 Ice-Class Vessels
4.7. Comparison of Navigability Outcomes Between the Two Methods
- (1)
- In September, when ice conditions are optimal:
- (2)
- In November, during the ice condition transition period:
- (3)
- In March, under the worst ice conditions:
5. Discussion
5.1. Results Analysis
- (1)
- (2)
- Inconsistent data sources. The POLARIS methodology typically utilizes sea ice observation data from the NSIDC, which has broad global applicability. In contrast, the NSR criteria rely on forecast data on ice types in NSR waters, as published by the NSRA, which are more closely aligned with actual sea conditions in Russian waters [18,28].
- (3)
- Different regional management and policy contexts. The NSR is located within Russia’s exclusive economic zone, and the NSR criteria place greater emphasis on domestic shipping practices and regulatory frameworks. In contrast, the POLARIS methodology, as a general-purpose framework, offers greater international applicability but may be less closely tailored to the specific conditions of Russian waters [21].
5.2. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jahn, A.; Holland, M.M.; Kay, J.E. Projections of an ice-free Arctic Ocean. Nat. Rev. Earth Environ. 2024, 5, 164–176. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; Roushdi, M.; Aboelkhear, M. Potential benefits of climate change on navigation in the northern sea route by 2050. Sci. Rep. 2024, 14, 2771. [Google Scholar] [CrossRef] [PubMed]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Bliss, A.C.; Markus, T. Current State of Sea Ice Cover. Available online: https://earth.gsfc.nasa.gov/cryo/data/current-state-sea-ice-cover (accessed on 22 June 2025).
- Пoстанoвление Правительства Рoссийскoй Федерации oт 31.01.2024 № 97 ∙ Официальнoе oпубликoвание правoвых актoв. Available online: http://publication.pravo.gov.ru/document/0001202402020023 (accessed on 20 May 2025).
- Müller, M.; Knol-Kauffman, M.; Jeuring, J.; Palerme, C. Arctic shipping trends during hazardous weather and sea-ice conditions and the Polar Code’s effectiveness. Npj Ocean. Sustain. 2023, 2, 12. [Google Scholar] [CrossRef]
- Xu, S.; Kim, E.; Haugen, S.; Zhang, M. A Bayesian network risk model for predicting ship besetting in ice during convoy operations along the Northern Sea Route. Reliab. Eng. Syst. Saf. 2022, 223, 108475. [Google Scholar] [CrossRef]
- Vanhatalo, J.; Huuhtanen, J.; Bergström, M.; Helle, I.; Mäkinen, J.; Kujala, P. Probability of a ship becoming beset in ice along the Northern Sea Route—A Bayesian analysis of real-life data. Cold Reg. Sci. Technol. 2021, 184, 103238. [Google Scholar] [CrossRef]
- Balmasov, S. Main Results of NSR Transit Navigation in 2024. Available online: https://chnl.no/news/main-results-of-nsr-transit-navigation-in-2024/ (accessed on 20 May 2025).
- International Code for Ships Operating in Polar Waters (Polar Code). Available online: https://www.imo.org/en/OurWork/Safety/Pages/polar-code.aspx (accessed on 20 May 2025).
- Ghosh, S.; Rubly, C. The emergence of Arctic shipping: Issues, threats, costs, and risk-mitigating strategies of the Polar Code. Aust. J. Marit. Ocean. Aff. 2015, 7, 171–182. [Google Scholar] [CrossRef]
- Faury, O.; Fedi, L.; Etienne, L.; Rigot-Muller, P.; Stephenson, S.; Cheaitou, A. Arctic Navigation: Stakes, Benefits and Limits of the Polaris System. J. Ocean. Technol. 2018, 13, 54–67. [Google Scholar]
- Rules of Navigation on the Water Area of the Northern Sea Route, Approved by the Decree N 1487 of the Government of the Russian Federation, 18 September 2020. Available online: http://rosatomflot.ru/img/all/0_rules_of_navigation_nsr_2020.pdf (accessed on 20 May 2025).
- Maritime, S.C. Guidance on Methodologies for Assessing Operational Capabilities and Limitations in Ice. In Tech. Rep. MSC. 1/Circ. 1519; International Maritime Organization: London, UK, 2016; Available online: https://www.nautinst.org/uploads/assets/uploaded/2f01665c-04f7-4488-802552e5b5db62d9.pdf (accessed on 21 May 2025).
- Lei, R.; Xie, H.; Wang, J.; Leppäranta, M.; Jónsdóttir, I.; Zhang, Z. Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to 2012. Cold Reg. Sci. Technol. 2015, 119, 132–144. [Google Scholar] [CrossRef]
- Liu, X.H.; Ma, L.; Wang, J.Y.; Wang, Y.; Wang, L.N. Navigable windows of the Northwest Passage. Polar Sci. 2017, 13, 91–99. [Google Scholar] [CrossRef]
- Copland, L.; Dawson, J.; Tivy, A.; Delaney, F.; Cook, A. Changes in shipping navigability in the Canadian Arctic between 1972 and 2016. Facets 2021, 6, 1069–1087. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; You, Q.; Zhang, Y.; Du, W. Projected changes in sea ice and the navigability of the Arctic Passages under global warming of 2 °C and 3 °C. Anthropocene 2022, 40, 100349. [Google Scholar] [CrossRef]
- Ma, L.; Qian, S.; Dong, H.; Fan, J.; Xu, J.; Cao, L.; Xu, S.; Li, X.; Cai, C.; Huang, Y. Navigability of Liquefied Natural Gas Carriers Along the Northern Sea Route. J. Mar. Sci. Eng. 2024, 12, 2166. [Google Scholar] [CrossRef]
- Chen, S.; Kern, S.; LI, X.; HUI, F.; YE, Y.; Cheng, X. Navigability of the Northern Sea Route for Arc7 ice-class vessels during winter and spring sea-ice conditions. Adv. Clim. Change Res. 2022, 13, 676–687. [Google Scholar] [CrossRef]
- Bai, J.; Zhu, K.; Feng, W.; Zhou, S. Coastal states’ influence on the polar code: An empirical study of Russia and Canada. Ocean Coast. Manag. 2024, 252, 107098. [Google Scholar] [CrossRef]
- Solski, J.J. The Polar Code Process and Sovereignty Bargains: Comparing the Approaches of CANADA and Russia to POLARIS. Ocean Dev. Int. Law. 2023, 54, 111–134. [Google Scholar] [CrossRef]
- Bond, J.; Hindley, R.; Kendrick, A.; Kämäräinen, J.; Kuulila, L. Evaluating risk and determining operational limitations for ships in ice. In Proceedings of the OTC Arctic Technology Conference 2018, Houston, TX, USA, 5–7 November 2018. [Google Scholar] [CrossRef]
- Greenwood, B.Y.N.; Kubat, I. Entering the “White Space” on the Map. Available online: https://greenwoodmaritime.com/wp-content/uploads/2015/PDF/MT_JAN2018_pp26-32.pdf (accessed on 29 May 2025).
- Wang, D.; Wang, J.; Zhang, H. Study of arctic waterway transit policy and its development on circumpolar nations and regions. Adv. Polar Sci. 2015, 27, 74–82. [Google Scholar] [CrossRef]
- Lu, H.M. Review and outlook for the 2020 Arctic navigation. World Shipp. 2021, 44, 24–27. [Google Scholar] [CrossRef]
- Gunnarsson, B.; Moe, A. Ten years of international shipping on the Northern Sea Route: Trends and challenges. Arct. Rev. Law. Politics 2021, 12, 4–30. [Google Scholar] [CrossRef]
- NSR Shipping Traffic—Activities in March 2022. Available online: https://chnl.no/maps/nsr-shipping-traffic-activities-in-march-2022/ (accessed on 21 May 2025).
- Klyachkin, S.V.; Kulakov, M.Y.; Filchuk, K.V.; Alekseyev, V.V.; Dymov, V.I.; Korobov, P.V. Integrated interactive system for numerical forecasting of the Arctic Ocean ice and hydrological regime elements. Russ. Arctic. 2024, 6, 19–36. [Google Scholar] [CrossRef]
- Types of Ice Conditions. Available online: https://nsr.rosatom.ru/en/navigational-and-weather-information/types-of-ice-conditions/ (accessed on 21 May 2025).
- Kim, Y.J.; Kim, H.C.; Han, D.; Lee, S.; Im, J. Prediction of monthly arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks. Cryosphere 2020, 14, 1083–1104. [Google Scholar] [CrossRef]
- An, L.; Ma, L.; Wang, H.; Zhang, H.-Y.; Li, Z.-H. Research on navigation risk of the arctic northeast passage based on Polaris. J. Navig. 2022, 75, 455–475. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Intergovernmental Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization (IOC-UNESCO) SIGRID-3:A Vector Archive Format for Sea Ice Charts. Available online: https://library.wmo.int/records/item/37171-sigrid-3-a-vector-archive-format-for-sea-ice-charts (accessed on 26 May 2025).
- Wang, H.; An, L.; Ma, L.; Zhang, H.-Y.; Li, Z.-H. Study on Navigable Window Navigating Through Arctic Northeast Passage Based on Polaris. Navig. China 2022, 45, 23–29, 38. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, C.; Ji, Q.; Chen, Y.; Zhen, Z.; Zhu, Y.; Yan, Z. Analysis of sea ice conditions and navigability in the Arctic Northeast Passage during the summer from 2002–2021. Geo-Spat. Inf. Sci. 2023, 26, 465–479. [Google Scholar] [CrossRef]
- Sea Ice. Available online: https://climate.copernicus.eu/climate-indicators/sea-ice (accessed on 21 May 2025).
- Sea Ice Cover for September 2024. Available online: https://climate.copernicus.eu/sea-ice-cover-september-2024 (accessed on 7 June 2025).
- Roach, L.A.; Meier, W.N. Sea ice in 2024. Nat. Rev. Earth Environ. 2025, 6, 252–254. [Google Scholar] [CrossRef]
- Sea Ice Cover for November 2024. Available online: https://climate.copernicus.eu/sea-ice-cover-november-2024 (accessed on 7 June 2025).
- Sea Ice Cover for March 2025. Available online: https://climate.copernicus.eu/sea-ice-cover-march-2025 (accessed on 7 June 2025).
- News. Available online: https://nsr.rosatom.ru/en/company/news/?ELEMENT_ID=187266 (accessed on 7 June 2025).
- Chen, X.; Wei, C.; Xin, Z.; Zhao, J.; Xian, J. Ship Detection Under Low-Visibility Weather Interference via an Ensemble Generative Adversarial Network. J. Mar. Sci. Eng. 2023, 11, 2065. [Google Scholar] [CrossRef]
- He, Y.; Li, Z.; Mou, J.; Hu, W.; Li, L.; Wang, B. Collision-avoidance path planning for multi-ship encounters considering ship manoeuvrability and COLREGs. Transp. Safety Environ. 2021, 3, 103–113. [Google Scholar] [CrossRef]
Specification | Arctic Sea Ice Data | Forecast DATA on Ice Conditions in the NSR |
---|---|---|
Source | NSIDC | NSRA |
Numbers of Files | 52 | 52 |
File Types | .dbf, .prj, .shp, .shx | .png |
Data Format | Vector data (shapefile components) | Raster image (PNG) |
Coordinate System | WGS 1984 | Unknown/Undefined coordinate system |
Ice Type | Arc9 (PC2) | Arc8 (PC3) | Arc7 (PC4) | Arc6 (PC5) | Arc5 (PC6) | Arc4 (PC7) |
---|---|---|---|---|---|---|
Ice-free | 3 | 3 | 3 | 3 | 3 | 3 |
New ice | 3 | 3 | 3 | 3 | 2 | 2 |
Grey ice | 3 | 3 | 3 | 3 | 2 | 2 |
Grey-white ice | 3 | 3 | 3 | 3 | 2 | 2 |
Thin first-year ice 1st stage | 2 | 2 | 2 | 2 | 2 | 1 |
Thin first-year ice 2nd stage | 2 | 2 | 2 | 2 | 1 | 1 |
Medium first-year ice less than 1 m thick | 2 | 2 | 2 | 1 | 1 | 0 |
Medium first-year ice | 2 | 2 | 2 | 1 | 0 | −1 |
Thick first-year ice | 2 | 2 | 1 | 0 | −1 | −2 |
Second-year ice | 1 | 1 | 0 | −1 | −2 | −3 |
Light multi-year ice, less than 2.5 m thick | 1 | 0 | −1 | −2 | −3 | −3 |
Heavy multi-year ice | 0 | −1 | −2 | −2 | −3 | −3 |
Ice Class of the Ship | Ice Navigation Method | Water Area of the Northern Sea Route | ||||||
---|---|---|---|---|---|---|---|---|
1,2,3,4,5,6,7 | 8,9,10,11 | 12,13,14 | 15,16,17 | 18,19,20,21 | 22,23,24,27 | 25,26,28 | ||
HMLC | HMLC | HMLC | HMLC | HMLC | HMLC | HMLC | ||
Arc4 | IN | - * + + | - - + + | - - + + | - - + + | - - + + | - - + + | - * + + |
NI | + + + + | + + + + | - + + + | - + + + | - + + + | - + + + | - + + + | |
Arc5 | IN | - * + + | - - + + | - - + + | - - + + | - - + + | - - + + | - * + + |
NI | + + + + | + + + + | - + + + | - + + + | - + + + | - + + + | - + + + | |
Arc6 | IN | * - + + | - * + + | - * + + | - * + + | - * + + | - * + + | - * + + |
NI | + + + + | + + + + | - + + + | - + + + | - + + + | - + + + | - + + + | |
Arc7 | IN | + + + + | * + + + | * + + + | * + + + | * + + + | * + + + | * + + + |
NI | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | |
Arc8 | IN | + + + + | + + + + | * + + + | * + + + | * + + + | * + + + | * + + + |
NI | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | |
Arc9 | IN | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + |
NI | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + |
September 2024 | November 2024 | March 2025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | W5 | W4 | W1 | W2 | W3 | |
R | 70.37 | 74.07 | 74.07 | 77.78 | 92.59 | 85.19 | 81.48 | 85.19 | 81.48 | 3.70 | 18.52 | 11.11 | 14.81 |
P | 96.30 | 100 | 100 | 100 | 70.37 | 96.30 | 85.19 | 88.89 | 88.89 | 85.19 | 85.19 | 88.89 | 88.89 |
September 2024 | November 2024 | March 2025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | W5 | W4 | W1 | W2 | W3 | |
R | 70.37 | 74.07 | 74.07 | 77.78 | 92.59 | 85.19 | 81.48 | 85.19 | 81.48 | 3.70 | 18.52 | 11.11 | 14.81 |
P | 96.30 | 100 | 100 | 100 | 70.37 | 96.30 | 85.19 | 88.89 | 88.89 | 92.59 | 92.59 | 92.59 | 92.59 |
September 2024 | November 2024 | March 2025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | W5 | W4 | W1 | W2 | W3 | |
R | 74.07 | 81.48 | 85.19 | 81.48 | 96.30 | 96.30 | 85.19 | 81.48 | 81.48 | 22.22 | 25.93 | 18.52 | 18.52 |
P | 96.30 | 100 | 100 | 100 | 74.07 | 96.30 | 85.19 | 88.89 | 88.89 | 92.59 | 92.59 | 92.59 | 92.59 |
September 2024 | November 2024 | March 2025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | W5 | W4 | W1 | W2 | W3 | |
R | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 51.85 | 51.85 | 51.85 | 51.85 |
P | 96.30 | 100 | 100 | 100 | 77.78 | 96.30 | 85.19 | 96.30 | 88.89 | 100 | 100 | 100 | 100 |
September 2024 | November 2024 | March 2025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | W5 | W4 | W1 | W2 | W3 | |
R | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 51.85 | 51.85 | 51.85 | 51.85 |
P | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
September 2024 | November 2024 | March 2025 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W1 | W2 | W3 | W4 | W5 | W4 | W1 | W2 | W3 | |
R | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
P | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Qian, S.; Mou, X.; Fan, J.; Xu, J.; Cao, L.; Xu, B.; Yao, B.; Li, X.; Li, Y. Comparative Research on Vessel Navigability on the Northern Sea Route Based on the NSR Admission Criteria and POLARIS Methodology. J. Mar. Sci. Eng. 2025, 13, 1282. https://doi.org/10.3390/jmse13071282
Ma L, Qian S, Mou X, Fan J, Xu J, Cao L, Xu B, Yao B, Li X, Li Y. Comparative Research on Vessel Navigability on the Northern Sea Route Based on the NSR Admission Criteria and POLARIS Methodology. Journal of Marine Science and Engineering. 2025; 13(7):1282. https://doi.org/10.3390/jmse13071282
Chicago/Turabian StyleMa, Long, Sihan Qian, Xiaoguang Mou, Jiemin Fan, Jin Xu, Liang Cao, Bo Xu, Boxi Yao, Xiaowen Li, and Yabin Li. 2025. "Comparative Research on Vessel Navigability on the Northern Sea Route Based on the NSR Admission Criteria and POLARIS Methodology" Journal of Marine Science and Engineering 13, no. 7: 1282. https://doi.org/10.3390/jmse13071282
APA StyleMa, L., Qian, S., Mou, X., Fan, J., Xu, J., Cao, L., Xu, B., Yao, B., Li, X., & Li, Y. (2025). Comparative Research on Vessel Navigability on the Northern Sea Route Based on the NSR Admission Criteria and POLARIS Methodology. Journal of Marine Science and Engineering, 13(7), 1282. https://doi.org/10.3390/jmse13071282