Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Survey
2.2. Analytical Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Educational, Scientific and Cultural Organization (UNESCO). The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water; United Nations: Paris, France, 2023; ISBN 9789231005763. [Google Scholar]
- Jones, E.; Qadir, M.; Van Vliet, M.T.H.; Smakhtin, V.; Kang, S. The State of Desalination and Brine Production: A Global Outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Sola, I.; Sánchez-Lizaso, J.L.; Muñoz, P.T.; García-Bartolomei, E.; Sáez, C.A.; Zarzo, D. Assessment of the Requirements within the Environmental Monitoring Plans Used to Evaluate the Environmental Impacts of Desalination Plants in Chile. Water 2019, 11, 2085. [Google Scholar] [CrossRef]
- Vicuña, S.; Daniele, L.; Farías, L.; González, H.; Marquet, P.; Palma-Behnk, R.; Stehr, A.; Urquiza, A.; Fragkou, M.C.; Wagemann, E.; et al. Desalinización: Oportunidades Y desafíos Para Abordar la Inseguridad Hídrica en Chile; Comité Asesor Ministerial Científico sobre Cambio Climático; Ministerio de Ciencia, Tecnología, Conocimiento e Innovación: Santiago, Chile, 2022. [Google Scholar]
- García-Bartolomei, E.; Vásquez, V.; Rebolledo, G.; Vivallo, A.; Acuña-Ruz, T.; Rebolledo, J.; Orrego, R.; Barra, R.O. Defining Priority Areas for the Sustainable Development of the Desalination Industry in Chile: A GIS Multi-Criteria Analysis Approach. Sustainability 2022, 14, 7772. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Environmental Impacts of Desalination and Brine Treatment—Challenges and Mitigation Measures. Mar. Pollut. Bull. 2020, 161, 111773. [Google Scholar] [CrossRef] [PubMed]
- Thiel, M.; Macaya, E.C.; Acuña, E.; Arntz, W.E.; Bastias, H.; Brokordt, K.; Camus, P.A.; Castilla, J.C.; Castro, L.R.; Cortés, M.; et al. The Humboldt Current System of Northern and Central Chile—Oceanographic Processes, Ecological Interactions and Socioeconomic Feedback. Oceanogr. Mar. Biol. 2007, 45, 195–344. [Google Scholar]
- Marín, V.H.; Escribano, R.; Delgado, L.E.; Olivares, G.; Hidalgo, P. Nearshore Circulation in a Coastal Upwelling Site off the Northern Humboldt Current System. Cont. Shelf. Res. 2001, 21, 1317–1329. [Google Scholar] [CrossRef]
- Bonnail, E.; Díaz-García, A.; Cruces, E.; García, A.; Borrero-Santiago, A.R. Coastal Uses and Contaminant Spread in the Desert Coastal Region of Atacama. Chemosphere 2022, 288, 132519. [Google Scholar] [CrossRef]
- Clark, G.F.; Knott, N.A.; Miller, B.M.; Kelaher, B.P.; Coleman, M.A.; Ushiama, S.; Johnston, E.L. First Large-Scale Ecological Impact Study of Desalination Outfall Reveals Trade-Offs in Effects of Hypersalinity and Hydrodynamics. Water Res. 2018, 145, 757–768. [Google Scholar] [CrossRef]
- Cambridge, M.L.; Zavala-Perez, A.; Cawthray, G.R.; Statton, J.; Mondon, J.; Kendrick, G.A. Effects of Desalination Brine and Seawater with the Same Elevated Salinity on Growth, Physiology and Seedling Development of the Seagrass Posidonia Australis. Mar. Pollut. Bull. 2019, 140, 462–471. [Google Scholar] [CrossRef]
- Sola, I.; Carratalá, A.; Pereira-Rojas, J.; Díaz, M.J.; Rodríguez-Rojas, F.; Sánchez-Lizaso, J.L.; Sáez, C.A. Assessment of Brine Discharges Dispersion for Sustainable Management of SWRO Plants on the South American Pacific Coast. Mar. Pollut. Bull. 2024, 207, 116905. [Google Scholar] [CrossRef]
- Valdes, J.; Castillo, A. Evaluacion de La Calidad Ambiental de Los Sedimentos Marinos En El Sistema de Bahias de Caldera (27 S), Chile. Lat. Am. J. Aquat. Res. 2014, 42, 497–513. [Google Scholar] [CrossRef]
- Sola, I.; Santana-Anticoy, C.; Silva-García, R.; Pérez-Hernández, G.; Pereira-Rojas, J.; Blanco-Murillo, F.; Díaz, M.J.; Sáez, C.A.; Rodríguez-Rojas, F. Evaluating Physico-Chemical and Biological Impacts of Brine Discharges for a Sustainable Desalination Development on South America’s Pacific Coast. J. Hazard. Mater. 2025, 489, 137464. [Google Scholar] [CrossRef]
- Servicio de Evaluación Ambiental (SEA). Available online: https://seia.sea.gob.cl/busqueda/buscarProyectoAction.php?nombre=Planta%20Desaladora%20Bah%EDa%20Caldera (accessed on 10 June 2025).
- Ministry of Public Works of the Government of Chile. Available online: https://concesiones.mop.gob.cl/autoridades-del-mop-conocen-experiencia-de-planta-desalinizadora-de-atacama/ (accessed on 10 June 2025).
- Barrio, R.N.; Sola, I.; Blanco-Murillo, F.; del-Pilar-Ruso, Y.; Fernández-Torquemada, Y.; Sánchez-Lizaso, J.L. Application of Salinity Thresholds in Spanish Brine Discharge Regulations: Energetic and Environmental Implications. Desalination 2021, 501, 114901. [Google Scholar] [CrossRef]
- Atlas, E.L.; Gordon, L.; Hager, S.W.; Park, P.K. A Practical Manual for Use of the Technicon AutoAnalyzer in Seawater Nutrient Analyses; Technical Report 215; Department of Oceanography, Oregon State University: Corvallis, OR, USA, 1971. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- APHA. APHA–AWWA–WPCF, Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Water Works Association: Washington, DC, USA, 1993. [Google Scholar]
- Sola, I.; Fernández-Torquemada, Y.; Forcada, A.; Valle, C.; del Pilar-Ruso, Y.; González-Correa, J.M.; Sánchez-Lizaso, J.L. Sustainable Desalination: Long-Term Monitoring of Brine Discharge in the Marine Environment. Mar. Pollut. Bull. 2020, 161, 111813. [Google Scholar] [CrossRef]
- Sola, I.; Zarzo, D.; Carratalá, A.; Fernández-Torquemada, Y.; de-la-Ossa-Carretero, J.A.; Del-Pilar-Ruso, Y.; Sánchez-Lizaso, J.L. Review of the Management of Brine Discharges in Spain. Ocean Coast. Manag. 2020, 196, 105301. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Belkin, N.; Rahav, E.; Elifantz, H.; Kress, N.; Berman-Frank, I. The Effect of Coagulants and Antiscalants Discharged with Seawater Desalination Brines on Coastal Microbial Communities: A Laboratory and in Situ Study from the Southeastern Mediterranean. Water Res. 2017, 110, 321–331. [Google Scholar] [CrossRef]
- Sirota, R.; Winters, G.; Levy, O.; Marques, J.; Paytan, A.; Silverman, J.; Sisma-Ventura, G.; Rahav, E.; Antler, G.; Bar-Zeev, E. Impacts of Desalination Brine Discharge on Benthic Ecosystems. Environ. Sci. Technol. 2024, 58, 5631–5645. [Google Scholar] [CrossRef]
- Saeed, M.O.; Ershath, M.M.; Al-Tisan, I.A. Perspective on Desalination Discharges and Coastal Environments of the Arabian Peninsula. Mar. Environ. Res 2019, 145, 1–10. [Google Scholar] [CrossRef]
- Sadiq, M. Metal Contamination in Sediments from a Desalination Plant Effluent Outfall Area. Sci. Total Environ. 2002, 287, 37–44. [Google Scholar] [CrossRef]
- Tréguer, P.J.; De La Rocha, C.L. The World Ocean Silica Cycle. Annu. Rev. Mar. Sci. 2013, 5, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, A.; Haralambous, K.J.; Loizidou, M. Desalination Brine Disposal Methods and Treatment Technologies—A Review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.A.; Gafni, A.; Adler, O.; Levy, O.; Bar-Zeev, E. Antiscalants Used in the Desalination Industry Impact the Physiology of the Coral Montipora Capricornis. Water Res. 2023, 229, 119411. [Google Scholar] [CrossRef]
- Rahav, E.; Belkin, N.; Reich, T.; Paytan, A.; Bar-Zeev, E. Evaluating the Effects of Desalination Antiscalants on Phytoplankton and Bacterial Communities in Oligotrophic Environments. Desalination 2024, 592, 118110. [Google Scholar] [CrossRef]
- Hall, L.W.; Anderson, R.D. The Influence of Salinity on the Toxicity of Various Classes of Chemicals to Aquatic Biota. Crit. Rev. Toxicol. 1995, 25, 281–346. [Google Scholar] [CrossRef]
- Dorn, P.B.; Raia, J.C.; Rodgers, J.H.; Jop, K.M.; Dickson, K.L. Hexavalent Chromium as a Reference Toxicant in Effluent Toxicity Tests. Environ. Toxicol. Chem. 1987, 6, 435–444. [Google Scholar] [CrossRef]
- Blanco-Murillo, F.; Díaz, M.J.; Rodríguez-Rojas, F.; Navarrete, C.; Celis-Plá, P.S.M.; Sánchez-Lizaso, J.L.; Sáez, C.A. A Risk Assessment on Zostera Chilensis, the Last Relict of Marine Angiosperms in the South-East Pacific Ocean, Due to the Development of the Desalination Industry in Chile. Sci. Total Environ. 2023, 883, 163538. [Google Scholar] [CrossRef]
- Lattemann, S.; Höpner, T. Environmental Impact and Impact Assessment of Seawater Desalination. Desalination 2008, 220, 1–15. [Google Scholar] [CrossRef]
- Bonnail, E.; Vera, S.; DelValls, T.Á. A New Disruptive Technology for Zero-Brine Discharge: Towards a Paradigm Shift. Appl. Sci. 2023, 13, 13092. [Google Scholar] [CrossRef]
- Lothmann, R.; Sewilam, H. Potential of Innovative Marine Aquaculture Techniques to Close Nutrient Cycles. Rev. Aquac. 2023, 15, 947–964. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Kitazawa, D.; Zhou, J.; Park, S.; Gao, S.; Shen, Y. Bio Mitigation Based on Integrated Multi Trophic Aquaculture in Temperate Coastal Waters: Practice, Assessment, and Challenges. Lat. Am. J. Aquat. Res. 2019, 47, 212–223. [Google Scholar] [CrossRef]
St1 | St2 | St3 | ||
---|---|---|---|---|
Distance from outfall | m | 0 | 500 | 1000 |
Coordinates | 27°04′02″ S | 27°04′25″ S | 27°04′13″ S | |
70°51′8.6″ W | 70°51′20″ W | 70°51′21″ W | ||
Depth | m | 17 | 15 | 18 |
T | °C | 15.28 ± 0.3 | 15.24 ± 0.2 | 15.25 ± 0.3 |
pH | 7.34 ± 0.2 | 7.39 ± 0.1 | 7.84 ± 0.1 | |
EC | µS/cm | 82,330 ± 3130 | 55,530 ± 2652 | 52,790 ± 2673 |
TDS | ppt | 41.16 ± 3.3 | 27.76 ± 2.5 | 26.4 ± 2.8 |
Salinity | PSU | 57.75 ± 3.8 | 36.9 ± 1.1 | 34.87 ± 0.5 |
DO | % | 66 ± 2.4 | 62.2 ± 4.3 | 59.4 ± 3.1 |
Al | mg/kg | 28,955.24 ± 5146.3 | 15,193.62 ± 4151.2 | 5307.12 ± 1280.7 |
As | mg/kg | 205.87 ± 44.1 | 398.01 ± 57.9 | 278.14 ± 64.4 |
B | mg/kg | 193.22 ± 12.8 | 288.1 ± 93.5 | 320.74 ± 33.7 |
Ba | mg/kg | 156.65 ± 21.2 | 60.82 ± 49.7 | 73.19 ± 59.9 |
Bi | mg/kg | <0.02 | <0.02 | 112.73 ± 26.7 |
Ca | mg/kg | 10,744 ± 220 | 15,866 ± 4358 | 144,436 ± 54,628 |
Cr | mg/kg | 79.07 ± 60.1 | 2.8 ± 3.2 | 13.62 ± 5.3 |
Cr(VI) | mg/kg | 94.08 ± 63.2 | 12.95 ± 6.7 | 12.03 ± 9.8 |
Fe | mg/kg | 14,981 ± 2644 | 5931 ± 966 | 4947 ± 163 |
Hf | mg/kg | 1.2 ± 0.4 | 0.6 ± 0.8 | 0.6 ± 0.1 |
Ir | mg/kg | 89.58 ± 10.7 | 166.71 ± 36.4 | 148.4 ± 57.9 |
K | mg/kg | 207 ± 12 | 1487 ± 224 | 733 ± 162 |
Li | mg/kg | 301.23 ± 3.2 | 280.22 ± 49.2 | 305.99 ± 43.5 |
Mg | mg/kg | 1747 ± 192 | 10,815 ± 1717 | 7865 ± 807 |
Mn | mg/kg | 236.96 ± 30.1 | 93.8 ± 8.8 | 510.88 ± 612.1 |
Sn | mg/kg | <0.02 | <0.02 | 3.48 ± 389.2 |
Sr | mg/kg | 687 ± 25 | 1077 ± 218 | 904 ± 398 |
Ti | mg/kg | 927.35 ± 86.1 | 583.33 ± 102.3 | 339.64 ± 87.7 |
Zn | mg/kg | <0.02 | <0.02 | 46.14 ± 26.8 |
Zr | mg/kg | 7.03 ± 0.6 | 6.68 ± 3.7 | 7.66 ± 9.4 |
Station | Nitrate (µM) | Nitrite (µM) | Acid Silicic (µM) | Phosphate (µM) | |
---|---|---|---|---|---|
St1 | av | 10.493 | 1.145 | 9.156 | 2.856 |
sd | 0.908 | 0.189 | 0.663 | 0.295 | |
St2 | av | 3.493 | 0.833 | 6.317 | 2.149 |
sd | 0.305 | 0.097 | 0.806 | 0.362 | |
St3 | av | 4.045 | 0.696 | 6.500 | 2.269 |
sd | 0.002 | 0.122 | 0.442 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnail, E.; Rojas-Lillo, Y.; DelValls, T.Á.; Cruces, E. Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile. J. Mar. Sci. Eng. 2025, 13, 1199. https://doi.org/10.3390/jmse13071199
Bonnail E, Rojas-Lillo Y, DelValls TÁ, Cruces E. Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile. Journal of Marine Science and Engineering. 2025; 13(7):1199. https://doi.org/10.3390/jmse13071199
Chicago/Turabian StyleBonnail, Estefanía, Yesenia Rojas-Lillo, T. Ángel DelValls, and Edgardo Cruces. 2025. "Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile" Journal of Marine Science and Engineering 13, no. 7: 1199. https://doi.org/10.3390/jmse13071199
APA StyleBonnail, E., Rojas-Lillo, Y., DelValls, T. Á., & Cruces, E. (2025). Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile. Journal of Marine Science and Engineering, 13(7), 1199. https://doi.org/10.3390/jmse13071199