A Discrete-Element-Based Approach to Generate Random Parameters for Soil Fatigue Models
Abstract
1. Introduction
2. Cyclic Soil Degradation Models
3. Undrained Cyclic Triaxial Discrete Element Testing
3.1. Random Sample Generation
3.2. Numerical Consolidation Phase
3.3. Strain-Controlled Cyclic Triaxial Testing
4. Ottawa F65 Sand Discrete Model Characterization
4.1. Contact Law Formulation
4.2. Morris Sensitivity
4.3. Calibration of the Contact Law Parameters
4.4. Validation
5. Cyclic Degradation Response
5.1. Deterministic Response
5.2. Random Cyclic Undrained Response
6. Seismic Analysis of a 15 MW Offshore Wind Turbine
6.1. Ground Motion Selection and Seismic Site Response Analysis
6.2. Impact of Cyclic Soil Degradation on the Bending Moment Envelope
6.3. Damage Equivalent Load Assessment
7. Conclusions
- The dispersion of the particle size distribution strongly affects the number of cycles to liquefaction; an average dispersion of finer up to 10% can result in a coefficient of variation of about 60% on the failure condition.
- Large uncertainties in the degrading behavior also occur when the initial dispersion on the particle size distribution is small; this can be linked to the variation in the minimum and maximum void ratio determining the variability in the relative density for each sample as well as the inherent anisotropy of the initial distribution of particles, as observed by Otsubo et al. [95].
- Because of the large nonlinearities involved during cyclic soil behavior, the soil fatigue model parameters are not normally distributed, even when the initial distribution of the parameters is Gaussian.
- The seismic analysis has shown an important effect of soil degradation on wind tower behavior; whilst the maximum bending moment and the fatigue on the tower wall is reduced compared to non-degrading soils, as observed in [10], the soil capacity is largely reduced, reducing the structural reliability of the wind turbine.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Fu, Y.; Huang, L.; Zhang, K. Reborn and upgrading: Optimum repowering planning for offshore wind farms. Energy Rep. 2022, 8, 5204–5214. [Google Scholar] [CrossRef]
- Mardfekri, M.; Gardoni, P.; Bisadi, V. Service reliability of offshore wind turbines. Int. J. Sustain. Energy 2015, 34, 468–484. [Google Scholar] [CrossRef]
- Zorzi, G.; Mankar, A.; Velarde, J.; Sørensen, J.D.; Arnold, P.; Kirsch, F. Reliability analysis of offshore wind turbine foundations under lateral cyclic loading. Wind Energy Sci. 2020, 5, 1521–1535. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, X.; Guo, Z.; Zhang, J.; Lü, Q. Robust design of monopiles for offshore wind turbines considering uncertainties in dynamic loads and soil parameters. Ocean. Eng. 2022, 266, 112822. [Google Scholar] [CrossRef]
- Johari, A.; Javadi, A.A.; Makiabadi, M.H.; Khodaparast, A.R. Reliability assessment of liquefaction potential using the jointly distributed random variables method. Soil Dyn. Earthq. Eng. 2012, 38, 81–87. [Google Scholar] [CrossRef]
- Johari, A.; Pour, J.R.; Javadi, A. Reliability analysis of static liquefaction of loose sand using the random finite element method. Eng. Comput. 2015, 32, 2100–2119. [Google Scholar] [CrossRef]
- Johari, A.; Khodaparast, A.R.; Javadi, A.A. An Analytical Approach to Probabilistic Modeling of Liquefaction Based on Shear Wave Velocity. Iran J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 263–275. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Kulhawy, F.H. Characterization of geotechnical variability. Can. Geotech. J. 1999, 36, 612–624. [Google Scholar] [CrossRef]
- Manolis, G.D. Stochastic soil dynamics. Soil Dyn. Earthq. Eng. 2002, 22, 3–15. [Google Scholar] [CrossRef]
- Schafhirt, S.; Page, A.; Eiksund, G.R.; Muskulus, M. Influence of Soil Parameters on the Fatigue Lifetime of Offshore Wind Turbines with Monopile Support Structure. Energy Procedia 2016, 94, 347–356. [Google Scholar] [CrossRef]
- Damgaard, M.; Bayat, M.; Andersen, L.V.; Ibsen, L.B. Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations. Comput. Geotech. 2014, 61, 116–126. [Google Scholar] [CrossRef]
- Damgaard, M.; Andersen, L.V.; Ibsen, L.B. Dynamic response sensitivity of an offshore wind turbine for varying subsoil conditions. Ocean. Eng. 2015, 101, 227–234. [Google Scholar] [CrossRef]
- Damgaard, M.; Andersen, L.V.; Ibsen, L.B.; Toft, H.S.; Sørensen, J.D. A probabilistic analysis of the dynamic response of monopile foundations: Soil variability and its consequences. Probabilistic Eng. Mech. 2015, 41, 46–59. [Google Scholar] [CrossRef]
- Kementzetzidis, E.; Metrikine, A.V.; Versteijlen, W.G.; Pisanò, F. Frequency effects in the dynamic lateral stiffness of monopiles in sand: Insight from field tests and 3D FE modelling. Géotechnique 2021, 71, 812–825. [Google Scholar] [CrossRef]
- Yeter, B.; Garbatov, Y.; Guedes Soares, C. Uncertainty analysis of soil-pile interactions of monopile offshore wind turbine support structures. Appl. Ocean. Res. 2019, 82, 74–88. [Google Scholar] [CrossRef]
- Stuyts, B.; Weijtjens, W.; Gkougkoudi-Papaioannou, M.; Devriendt, C.; Troch, P.; Kheffache, A. Insights from in-situ pore pressure monitoring around a wind turbine monopile. Ocean. Eng. 2023, 269, 113556. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Naggar, M.H.E.; Du, X.; Dou, P. Cumulative cyclic response of offshore monopile in sands. Appl. Ocean. Res. 2023, 133, 103481. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Cui, C.; Naggar, M.H.E.; Du, X. Seismic Response of Monopile-Supported OWT Structure Considering Effect of Long-Term Cyclic Loading. Int. J. Str. Stab. Dyn. 2023, 23, 2350099. [Google Scholar] [CrossRef]
- Shajarati, A.; Sørensen, K.W.; Nielsen, S.K.; Ibsen, L.B. Behaviour of Cohesionless Soils During Cyclic Loading; DCE Technical Memorandum No. 14; Aalborg University: Aalborg, Denmark, 2012. [Google Scholar]
- Zienkiewicz, O.C.; Shiomi, T. Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution. Num. Anal. Meth. Geomech. 1984, 8, 71–96. [Google Scholar] [CrossRef]
- Esfeh, P.K.; Kaynia, A.M. Numerical modeling of liquefaction and its impact on anchor piles for floating offshore structures. Soil Dyn. Earthq. Eng. 2019, 127, 105839. [Google Scholar] [CrossRef]
- Kementzetzidis, E.; Corciulo, S.; Versteijlen, W.G.; Pisanò, F. Geotechnical aspects of offshore wind turbine dynamics from 3D non-linear soil-structure simulations. Soil Dyn. Earthq. Eng. 2019, 120, 181–199. [Google Scholar] [CrossRef]
- Kumari, S.; Sawant, V.A. Numerical simulation of liquefaction phenomenon considering infinite boundary. Soil Dyn. Earthq. Eng. 2021, 142, 106556. [Google Scholar] [CrossRef]
- Idriss, I.M.; Dobry, R.; Singh, R.D. Nonlinear Behavior of Soft Clays during Cyclic Loading. J. Geotech. Engrg. Div. 1978, 104, 1427–1447. [Google Scholar] [CrossRef]
- Matlock, H. SPASM 8—A Dynamic Beam-Column Program for Seismic Pile Analysis with Support Motion; Fugro Inc.: Long Beach, CA, USA, 1979. [Google Scholar]
- Allotey, N.; El Naggar, M.H. A Consistent Soil Fatigue Framework Based on the Number of Equivalent Cycles. Geotech. Geol. Eng. 2008, 26, 65–77. [Google Scholar] [CrossRef]
- Nikitas, G.; Arany, L.; Aingaran, S.; Vimalan, J.; Bhattacharya, S. Predicting long term performance of offshore wind turbines using cyclic simple shear apparatus. Soil Dyn. Earthq. Eng. 2017, 92, 678–683. [Google Scholar] [CrossRef]
- Tsai, C.-C. Generalized simple model for predicting the modulus degradation and strain accumulation of clay subject to long-term undrained cyclic loading. Ocean. Eng. 2022, 254, 111412. [Google Scholar] [CrossRef]
- Prevost, J.H. DYNAFLOW; Version 98, Release 02. A.; Princeton University, Department of Civil Engineering & Op. Res.: Princeton, NJ, USA, 1998. [Google Scholar]
- Ziotopoulou, K.; Boulanger, R.W. Calibration and implementation of a sand plasticity plane-strain model for earthquake engineering applications. Soil Dyn. Earthq. Eng. 2013, 53, 268–280. [Google Scholar] [CrossRef]
- Beaty, M.H. Application of UBCSAND to the LEAP centrifuge experiments. Soil Dyn. Earthq. Eng. 2018, 104, 143–153. [Google Scholar] [CrossRef]
- Ghofrani, A.; Arduino, P. Prediction of LEAP centrifuge test results using a pressure-dependent bounding surface constitutive model. Soil Dyn. Earthq. Eng. 2018, 113, 758–770. [Google Scholar] [CrossRef]
- Mardfekri, M.; Gardoni, P. Multi-hazard reliability assessment of offshore wind turbines: Multi-hazard reliability assessment of offshore wind turbines. Wind Energy 2015, 18, 1433–1450. [Google Scholar] [CrossRef]
- Tombari, A.; Stefanini, L. Hybrid fuzzy–stochastic 1D site response analysis accounting for soil uncertainties. Mech. Syst. Signal Process. 2019, 132, 102–121. [Google Scholar] [CrossRef]
- Andersen, K.H.; Engin, H.K.; D’Ignazio, M.; Yang, S. Determination of cyclic soil parameters for offshore foundation design from an existing data base. Ocean. Eng. 2023, 267, 113180. [Google Scholar] [CrossRef]
- Tombari, A.; Dobbs, M.; Holland, L.M.J.; Stefanini, L. A rigorous possibility approach for the geotechnical reliability assessment supported by external database and local experience. Comput. Geotech. 2024, 166, 105967. [Google Scholar] [CrossRef]
- Maksimov, F.; Tombari, A. Derivation of Cyclic Stiffness and Strength Degradation Curves of Sands through Discrete Element Modelling. Modelling 2022, 3, 400–416. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Kozicki, J.; Tejchman, J.; Mühlhaus, H. Discrete simulations of a triaxial compression test for sand by DEM. Num. Anal. Meth. Geomech. 2014, 38, 1923–1952. [Google Scholar] [CrossRef]
- Thornton, C.; Liu, L. DEM simulations of uni-axial compression and decompression. Compact. Soils Granulates Powders 2000, 2, 251–261. [Google Scholar]
- Lee, S.J.; Hashash, Y.M.A.; Nezami, E.G. Simulation of triaxial compression tests with polyhedral discrete elements. Comput. Geotech. 2012, 43, 92–100. [Google Scholar] [CrossRef]
- De Bono, J.P.; McDowell, G.R. DEM of triaxial tests on crushable sand. Granular Matter 2014, 16, 551–562. [Google Scholar] [CrossRef]
- Zorzi, G.; Kirsch, F.; Gabrieli, F.; Rackwitz, F. Long-Term Cyclic Triaxial Tests with Dem Simulations. In Proceedings of the V International Conference on Particle-Based Methods—Fundamentals and Applications, Hannover, Germany, 26–28 October 2017. [Google Scholar]
- Ali, U.; Kikumoto, M.; Ciantia, M. Impact of particle elongation on the behavior of round and angular granular media: Consequences of particle rotation and force chain development. Comput. Geotech. 2024, 165, 105858. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.; Liang, K.; Iqbal, K. Mechanical characteristics and microstructure of saturated sand under monotonic and cyclic loading conditions. Soil Dyn. Earthq. Eng. 2024, 176, 108283. [Google Scholar] [CrossRef]
- Sitharam, T.G. Discrete element modelling of cyclic behaviour of granular materials. Geotech. Geol. Eng. 2003, 21, 297–329. [Google Scholar] [CrossRef]
- O’Sullivan, C.; Cui, L.; O’Neill, S.C. Discrete Element Analysis of the Response of Granular Materials During Cyclic Loading. S&F 2008, 48, 511–530. [Google Scholar] [CrossRef]
- Zhang, L.; Evans, T.M. Boundary effects in discrete element method modeling of undrained cyclic triaxial and simple shear element tests. Granular Matter 2018, 20, 60. [Google Scholar] [CrossRef]
- Martin, E.L.; Thornton, C.; Utili, S. Micromechanical investigation of liquefaction of granular media by cyclic 3D DEM tests. Géotechnique 2020, 70, 906–915. [Google Scholar] [CrossRef]
- Wu, Q.X.; Pan, K.; Yang, Z.X. Undrained cyclic behavior of granular materials considering initial static shear effect: Insights from discrete element modeling. Soil Dyn. Earthq. Eng. 2021, 143, 106597. [Google Scholar] [CrossRef]
- Cui, L.; Bhattacharya, S. Soil–monopile interactions for offshore wind turbines. Proc. Inst. Civ. Eng.- Eng. Comput. Mech. 2016, 169, 171–182. [Google Scholar] [CrossRef]
- Sharif, Y.U.; Brown, M.J.; Ciantia, M.O.; Cerfontaine, B.; Davidson, C.; Knappett, J.; Meijer, G.J.; Ball, J. Using discrete element method (DEM) to create a cone penetration test (CPT)-based method to estimate the installation requirements of rotary-installed piles in sand. Can. Geotech. J. 2021, 58, 919–935. [Google Scholar] [CrossRef]
- Cerfontaine, B.; Ciantia, M.O.; Brown, M.J.; White, D.J.; Sharif, Y.U. DEM study of particle scale effect on plain and rotary jacked pile behaviour in granular materials. Comput. Geotech. 2023, 161, 105559. [Google Scholar] [CrossRef]
- Li, L.; Zheng, M.; Liu, X.; Wu, W.; Liu, H.; El Naggar, M.H.; Jiang, G. Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation. Comput. Geotech. 2022, 144, 104635. [Google Scholar] [CrossRef]
- Vasko, A. An Investigation into the Behavior of Ottawa Sand Through Monotonic and Cyclic Shear Tests. Master’s Thesis, The George Washington University, Washington, DC, USA, 2015. [Google Scholar]
- ElGhoraiby, M.A.; Park, H.; Manzari, M.T. Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dyn. Earthq. Eng. 2020, 138, 106292. [Google Scholar] [CrossRef]
- Sobieski, W.; Lipiński, S. The influence of particle size distribution on parameters characterizing the spatial structure of porous beds. Granular Matter 2019, 21, 14. [Google Scholar] [CrossRef]
- Winkler, E. Die Lehre von der Elastizitat und Festigkeit; Verlag von H. Dominicus: Prague, Czech Republic, 1876. [Google Scholar]
- Allotey, N.; El Naggar, M.H. Generalized dynamic Winkler model for nonlinear soil–structure interaction analysis. Can. Geotech. J. 2008, 45, 560–573. [Google Scholar] [CrossRef]
- Choobbasti, A.J.; Zahmatkesh, A. Computation of degradation factors of p-y curves in liquefiable soils for analysis of piles using three-dimensional finite-element model. Soil Dyn. Earthq. Eng. 2016, 89, 61–74. [Google Scholar] [CrossRef]
- Heidari, M.; Jahanandish, M.; El Naggar, H.; Ghahramani, A. Nonlinear cyclic behavior of laterally loaded pile in cohesive soil. Can. Geotech. J. 2014, 51, 129–143. [Google Scholar] [CrossRef]
- Heidari, M.; El Naggar, H.; Jahanandish, M.; Ghahramani, A. Generalized cyclic p–y curve modeling for analysis of laterally loaded piles. Soil Dyn. Earthq. Eng. 2014, 63, 138–149. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Li, Y.-P.; Lin, S.-H. p-y based approach to predicting the response of monopile embedded in soft clay under long-term cyclic loading. Ocean. Eng. 2023, 275, 114144. [Google Scholar] [CrossRef]
- White, D.J.; Doherty, J.P.; Guevara, M.; Watson, P.G. A cyclic p-y model for the whole-life response of piles in soft clay. Comput. Geotech. 2022, 141, 104519. [Google Scholar] [CrossRef]
- Zeng, F.; Jiang, C.; Liu, P. Cyclic p-y curve model of piles subjected to two-way load considering the collapse and densification of sand. Ocean. Eng. 2023, 289, 116122. [Google Scholar] [CrossRef]
- Xiao-Ling, Z.; Rui, Z.; Yan, H. Study on p-y curve of large diameter pile under long-term cyclic loading. Appl. Ocean. Res. 2023, 140, 103736. [Google Scholar] [CrossRef]
- Byrne, B.W.; Houlsby, G.T.; Burd, H.J.; Gavin, K.G.; Igoe, D.J.P.; Jardine, R.J.; Martin, C.M.; McAdam, R.A.; Potts, D.M.; Taborda, D.M.G.; et al. PISA design model for monopiles for offshore wind turbines: Application to a stiff glacial clay till. Géotechnique 2020, 70, 1030–1047. [Google Scholar] [CrossRef]
- Cao, G.; Ding, X.; Yin, Z.; Zhou, H.; Zhou, P. A new soil reaction model for large-diameter monopiles in clay. Comput. Geotech. 2021, 137, 104311. [Google Scholar] [CrossRef]
- Heidari, M.; Hesham El Naggar, M. Analytical Approach for Seismic Performance of Extended Pile-Shafts. J. Bridge Eng. 2018, 23, 04018069. [Google Scholar] [CrossRef]
- Matlock, H. Correlation for Design of Laterally Loaded Piles in Soft Clay. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 22–24 April 1970. [Google Scholar] [CrossRef]
- Wang, L.; Lai, Y.; Hong, Y.; Mašín, D. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios. Ocean. Eng. 2020, 212, 107492. [Google Scholar] [CrossRef]
- Plassiard, J.-P.; Belheine, N.; Donzé, F.-V. A spherical discrete element model: Calibration procedure and incremental response. Granular Matter 2009, 11, 293–306. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Sakaguchi, H.; Murakami, A. The role of rolling friction in granular packing. Granular Matter 2013, 15, 175–182. [Google Scholar] [CrossRef]
- Barnett, N.; Rahman, M.M.; Karim, M.R.; Nguyen, H.B.K. Evaluating the particle rolling effect on the characteristic features of granular material under the critical state soil mechanics framework. Granular Matter 2020, 22, 89. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, X.; Wen, T.; Zhang, Y. Numerical Comparison of Contact Force Models in the Discrete Element Method. Aerospace 2022, 9, 737. [Google Scholar] [CrossRef]
- Van Gunsteren, W.F.; Berendsen, H.J.C. A Leap-frog Algorithm for Stochastic Dynamics. Mol. Simul. 1988, 1, 173–185. [Google Scholar] [CrossRef]
- Grubmüller, H.; Heller, H.; Windemuth, A.; Schulten, K. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 1991, 6, 121–142. [Google Scholar] [CrossRef]
- Kuhn, M.R.; Renken, H.E.; Mixsell, A.D.; Kramer, S.L. Investigation of Cyclic Liquefaction with Discrete Element Simulations. J. Geotech. Geoenviron. Eng. 2014, 140, 04014075. [Google Scholar] [CrossRef]
- El Shamy, U.; Zeghal, M. Coupled Continuum-Discrete Model for Saturated Granular Soils. J. Eng. Mech. 2005, 131, 413–426. [Google Scholar] [CrossRef]
- Kutter, B.L.; Manzari, M.T.; Zeghal, M. (Eds.) Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading: LEAP-UCD-2017; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Radjai, F.; Dubois, F. Discrete-Element Modeling of Granular Materials; Wiley-Iste: London, UK, 2011. [Google Scholar]
- Hosn, R.A.; Sibille, L.; Benahmed, N.; Chareyre, B. Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction. Granular Matter 2017, 19, 1–12. [Google Scholar]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis. The Primer, 1st ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Kumar, S.S.; Krishna, A.M.; Dey, A. Assessment of Dynamic Response of Cohesionless Soil Using Strain-Controlled and Stress-Controlled Cyclic Triaxial Tests. Geotech. Geol. Eng. 2020, 38, 1431–1450. [Google Scholar] [CrossRef]
- Schneider, J.A.; Moss, R.E.S. Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands. Géotechnique Lett. 2011, 1, 31–36. [Google Scholar] [CrossRef]
- DeAlba, P.; Seed, H.B.; Chan, C.K. Sand Liquefaction in Large-Scale Simple Shear Tests. J. Geotech. Eng. Div. ASCE 1976, 102, 909–927. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, J.; Wu, Y.; Jia, Y.; Bur, N.; Colliat, J.B.; Bian, H. Experimental Study and DEM Simulation of Size Effects on the Dry Density of Rockfill Material. Front. Phys. 2022, 10, 837727. [Google Scholar] [CrossRef]
- Tombari, A.; Stefanini, L.; Nicosia, G.L.D.; Holland, L.M.J.; Dobbs, M. Geotechnical data-driven possibility reliability assessment. Comput. Geotech. 2025, 185, 107311. [Google Scholar] [CrossRef]
- Gaertner, E.; Rinker, J.; Sethuraman, L.; Zahle, F.; Anderson, B.; Barter, G.; Abbas, N.; Meng, F.; Bortolotti, P.; Skrzypinski, W.; et al. Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine; International Energy Agency: Paris, France, 2020. Available online: https://www.nrel.gov/docs/fy20osti/75698.pdf (accessed on 1 May 2025).
- Seismosoft. SeismoStruct 2025—Verification Report. 2025. Available online: https://seismosoft.com/wp-content/uploads/prods/lib/SeismoStruct-2025-User-Manual_ENG.pdf (accessed on 1 June 2025).
- Tombari, A.; El Naggar, M.H.; Dezi, F. Impact of ground motion duration and soil non-linearity on the seismic performance of single piles. Soil Dyn. Earthq. Eng. 2017, 100, 72–87. [Google Scholar] [CrossRef]
- Ragan, P.; Manuel, L. Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods. Wind. Eng. 2007, 31, 83–99. [Google Scholar] [CrossRef]
- Velarde, J.; Kramhøft, C.; Sørensen, J.D.; Zorzi, G. Fatigue reliability of large monopiles for offshore wind turbines. Int. J. Fatigue 2020, 134, 105487. [Google Scholar] [CrossRef]
- Otsubo, M.; Chitravel, S.; Kuwano, R.; Hanley, K.J.; Kyokawa, H.; Koseki, J. Linking inherent anisotropy with liquefaction phenomena of granular materials by means of DEM analysis. Soils Found. 2022, 62, 101202. [Google Scholar] [CrossRef]
- Mutabaruka, P.; Taiebat, M.; Pellenq, R.J.-M.; Radjai, F. Effects of size polydispersity on random close-packed configurations of spherical particles. Phys. Rev. E 2019, 100, 042906. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Yang, M.; Taiebat, M. Effect of coefficient of uniformity on cyclic liquefaction resistance of granular materials. Comput. Geotech. 2023, 155, 105232. [Google Scholar] [CrossRef]
- Ching, J.; Wu, S.; Phoon, K.-K. Constructing Quasi-Site-Specific Multivariate Probability Distribution Using Hierarchical Bayesian Model. J. Eng. Mech. 2021, 147, 04021069. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Dimensionless stiffness value | ||
Rolling stiffness coefficient | ||
Frictional angle | ||
Limiting rolling coefficient |
[%] | 0.4 | 0.3 | 0.22 | 0.2 | 0.165 | 0.1 | 0.075 | 0.065 | 0.05 |
1.55 | 1.22 | --- | 0.92 | --- | 1.03 | 0.89 | --- | 0.77 | |
--- | --- | 1.21 | 1.08 | 1.04 | 0.92 | 0.75 | 0.66 | 0.53 |
0 | 0.01 | 0.05 | 0.1 | |
0.031 | 0.038 | 0.069 | 0.127 | |
Cu | 1.69–1.75 | 1.71–1.77 | 1.65–1.83 | 1.61–1.97 |
Fines content [%] | 7.7–10.5 | 8.3–11.1 | 7.5–10.5 | 7.86–12.5 |
particles | 3426 | 3460 | 3292 | 2848 |
[%] | [%] | [%] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.005 | 9 | 9.03 | 10.8 | 7–11 | / | / | / | / | / | / | / | / |
0.031 | 9 | 8.57 | 27.2 | 5–16 | 7 | 7.1 | 31.8 | 5–13 | 4 | 2.43 | 40.7 | 1–5 |
0.038 | 9 | 7.83 | 18.6 | 5–11 | 7 | 7.13 | 27.5 | 4–11 | 4 | 2.2 | 37.8 | 1–4 |
0.069 | 9 | 8.23 | 27.5 | 4–12 | 7 | 7.83 | 29.9 | 4–16 | 4 | 1.77 | 59.7 | 1–6 |
0.127 | 9 | 8.88 | 56.5 | 2–31 | 7 | 7.36 | 35.5 | 3–15 | 4 | 1.8 | 57.7 | 1–5 |
[-] | [%] | [-] | [-] | [%] | [-] | [-] | [%] | [-] | |
---|---|---|---|---|---|---|---|---|---|
0.031 | 1.07 | 13.4 | 0.91–1.50 | 0.86 | 21.0 | 0.64–1.27 | 2.21 | 44.69 | 0.02–3.60 |
0.038 | 1.07 | 11.8 | 0.93–1.45 | 0.86 | 20.6 | 0.57–1.18 | 2.12 | 50.1 | 0.22–3.66 |
0.069 | 1.10 | 10.8 | 0.94–1.42 | 0.91 | 19.4 | 0.61–1.35 | 1.36 | 55.1 | 0.26–4.22 |
0.127 | 0.98 | 12.6 | 0.77–1.38 | 0.84 | 17.8 | 0.46–1.22 | 1.46 | 55.0 | 0.95–3.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tombari, A.; Maksimov, F. A Discrete-Element-Based Approach to Generate Random Parameters for Soil Fatigue Models. J. Mar. Sci. Eng. 2025, 13, 1145. https://doi.org/10.3390/jmse13061145
Tombari A, Maksimov F. A Discrete-Element-Based Approach to Generate Random Parameters for Soil Fatigue Models. Journal of Marine Science and Engineering. 2025; 13(6):1145. https://doi.org/10.3390/jmse13061145
Chicago/Turabian StyleTombari, Alessandro, and Fedor Maksimov. 2025. "A Discrete-Element-Based Approach to Generate Random Parameters for Soil Fatigue Models" Journal of Marine Science and Engineering 13, no. 6: 1145. https://doi.org/10.3390/jmse13061145
APA StyleTombari, A., & Maksimov, F. (2025). A Discrete-Element-Based Approach to Generate Random Parameters for Soil Fatigue Models. Journal of Marine Science and Engineering, 13(6), 1145. https://doi.org/10.3390/jmse13061145