Copepod Diversity and Zooplankton Community Structure in a Coastal Special Area of Conservation (La Palma Island, Atlantic Ocean)
Abstract
1. Introduction
2. Material and Methods
2.1. Sampling
2.2. Environmental and Biological Variables
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winder, M.; Jassby, A.D. Shifts in Zooplankton Community Structure: Implications for Food Web Processes in the Upper San Francisco Estuary. Estuaries Coasts 2011, 34, 675–690. [Google Scholar] [CrossRef]
- Tarasov, V.G. Effects of Shallow-Water Hydrothermal Venting on Biological Communities of Coastal Marine Ecosystems of the Western Pacific. Adv. Mar. Biol. 2006, 50, 267–421. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.-U.; Schizas, N.V.; James, R.A.; Wang, L.; Hwang, J.-S. Marine hydrothermal vents as templates for global change scenarios. Hydrobiologia 2018, 818, 1–10. [Google Scholar] [CrossRef]
- Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J.M.; Arístegui, J.; Alonso-González, I.J.; Hernández-León, S.; Blanco, M.J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M.D.; et al. The submarine volcano eruption at the island of El Hierro: Physical-chemical perturbation and biological response. Sci. Rep. 2012, 2, 486. [Google Scholar] [CrossRef]
- Román, A.; Tovar-Sánchez, A.; Roque-Atienza, D.; Huertas, I.E.; Caballero, I.; Fraile-Nuez, E.; Navarro, G. Unmanned aerial vehicles (UAVs) as a tool for hazard assessment: The 2021 eruption of Cumbre Vieja volcano, La Palma Island (Spain). Sci. Total Environ. 2022, 843, 157092. [Google Scholar] [CrossRef] [PubMed]
- Santana-Casiano, J.M.; González-Dávila, M.; Fraile-Nuez, E.; De Armas, D.; González, A.G.; Domínguez-Yanes, J.F.; Escánez, J. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci. Rep. 2013, 3, 1140. [Google Scholar] [CrossRef]
- González-Santana, D.; Santana-Casiano, J.M.; González, A.G.; González-Dávila, M. Coastal carbonate system variability along an active lava–seawater interface. Front. Mar. Sci. 2022, 9, 952203. [Google Scholar] [CrossRef]
- Caballero, M.J.; Perez-Torrado, F.J.; Velázquez-Wallraf, A.; Betancor, M.B.; Fernández, A.; Castro-Alonso, A. Fish mortality associated to volcanic eruptions in the Canary Islands. Front. Mar. Sci. 2023, 9, 999816. [Google Scholar] [CrossRef]
- Herrera, I.; Fraile-Nuez, E.; González-Ortegón, E. Exploring marine zooplankton dynamics through carbon stable isotope signatures in a recently marine submarine volcano. Estuar. Coast. Shelf Sci. 2024, 310, 109005. [Google Scholar] [CrossRef]
- Richardson, A.J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 2008, 65, 279–295. [Google Scholar] [CrossRef]
- Sambolino, A.; Herrera, I.; Álvarez, S.; Rosa, A.; Alves, F.; Canning-Clode, J.; Cordeiro, N.; Dinis, A.; Kaufmann, M. Seasonal variation in microplastics and zooplankton abundances and characteristics: The ecological vulnerability of an oceanic island system. Mar. Pollut. Bull. 2022, 181, 113906. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol. Indic. 2021, 129, 107867. [Google Scholar] [CrossRef]
- Cordero-Penín, V.; Abramic, A.; García-Mendoza, A.; Otero-Ferrer, F.; Haroun, R. Mapping marine ecosystem services potential across an Oceánico archipelago: Applicability and limitations for decision-making. Ecosyst. Serv. 2023, 60, 101517. [Google Scholar] [CrossRef]
- Hernández-León, S. Algunas observaciones sobre la abundancia y estructura del mesozooplancton en aguas del Archipiélago Canario. Bol. Inst. Esp. Oceanogr. 1988, 5, 109–118. Available online: https://www.researchgate.net/publication/38181390 (accessed on 1 October 2024).
- Putzeys, S.; Yebra, L.; Almeida, C.; Bécognée, P.; Hernández-León, S. Influence of the late winter bloom on migrant zooplankton metabolism and its implications on export fluxes. J. Mar. Syst. 2011, 88, 553–562. [Google Scholar] [CrossRef]
- Herrera, I.; López-Cancio, J.; Yebra, L.; Hernández-Léon, S. The effect of a strong warm winter on subtropical zooplankton biomass and metabolism. J. Mar. Res. 2017, 75, 557–577. [Google Scholar] [CrossRef]
- Fernández de Puelles, M.L.; Gazá, M.; Cabanellas-Reboredo, M.; González-Vega, A.; Herrera, I.; Presas-Navarro, C.; Arrieta, J.M.; Fraile-Nuez, E. Abundance and Structure of the Zooplankton Community During a Post-Eruptive Process: The Case of the Submarine Volcano Tagoro (El Hierro; Canary Islands), 2013–2018. Front. Mar. Sci. 2021, 8, 692885. [Google Scholar] [CrossRef]
- UNESCO. Zooplankton Sampling. In Oceanographic Methodology; UNESCO: Paris, France, 1968; Volume 2, p. 174. [Google Scholar]
- Lovegrove, T. The determination of the dry weight of plankton and the effect of various factors on the values obtained. In Some Contemporary Studies in Marine Sciences; Marshall, N., Ed.; Allen & Unwin: Sydney, NSW, Australia, 1966; pp. 429–467. [Google Scholar]
- Harris, R.P.; Irigoien, X.; Head, R.N.; Rey, C.; Hygum, B.H.; Hansen, B.W.; Niehoff, B.; Meyer-Harms, B.; Carlotti, F. Feeding, growth, and reproduction in the genus Calanus. ICES J. Mar. Sci. 2000, 57, 1708–1726. [Google Scholar] [CrossRef]
- Schlitzer, R. Ocean Data View. 2023. Available online: https://odv.awi.de (accessed on 1 January 2025).
- R Core Team. A Language and Environment for Statistical Computing. 2022. Available online: http://www.R-Project.org (accessed on 1 January 2025).
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- González-Dávila, M.; Santana-Casiano, J.M.; Rueda, M.J.; Llinás, O.; González-Dávila, E.F. Seasonal and interannual variability of sea-surface carbon dioxide species at the European Station for time series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Vélez-Belchí, P.; González-Carballo, M.; Pérez-Hernández, M.D.; Hernández-Guerra, A. Open ocean temperature and salinity trends in the Canary Current Large Marine Ecosystem. In Oceanographic and Biological Features in the Canary Current Large Marine Ecosystem; Valdés, L., Déniz-González, I., Eds.; IOC Technical Series, No. 115; IOC-UNESCO: Paris, France, 2015; pp. 299–308. Available online: http://hdl.handle.net/1834/9196 (accessed on 1 November 2024).
- Hernández-León, S. Gradients of mesozooplankton biomass and ETS activity in the wind-shear area as evidence of an island mass effect in the Canary Island waters. J. Plankton Res. 1988, 10, 1141–1154. [Google Scholar] [CrossRef]
- Fernández de Puelles, M.L. Ciclo anual de la comunidad de meso y microzooplancton, su estructura, relaciones tróficas y producción en aguas de las Islas Canarias. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 1994. [Google Scholar]
- Herrera, A.; Raymond, E.; Martínez, I.; Álvarez, S.; Canning-Clode, J.; Gestoso, I.; Pham, C.K.; Ríos, N.; Rodríguez, Y.; Gómez, M. First evaluation of neustonic microplastics in the Macaronesian region, NE Atlantic. Mar. Pollut. Bull. 2020, 153, 110999. [Google Scholar] [CrossRef] [PubMed]
- Campillo, A.; Almeda, R.; Vianello, A.; Gómez, M.; Martínez, I.; Navarro, A.; Herrera, A. Searching for hotspots of neustonic microplastics in the Canary Islands. Mar. Pollut. Bull. 2023, 192, 115057. [Google Scholar] [CrossRef]
- Gómez, M.; Hernández-León, S. Estudio de la comunidad mesozooplanctónica en relación a un efecto de isla en aguas de Gran Canaria. Vieraea 1997, 26, 11–21. [Google Scholar]
- Tomita, M.; Shiga, N.; Ikeda, T. Seasonal occurrence and vertical distribution of appendicularians in Toyama Bay, southern Japan Sea. J. Plankton Res. 2003, 25, 579–589. [Google Scholar] [CrossRef]
- Franco, P.; Dahms, H.U.; Lo, W.T.; Hwang, J.S. Pelagic tunicates in the China Seas. J. Nat. Hist. 2017, 51, 917–936. [Google Scholar] [CrossRef]
- Mingorance Rodríguez, M.C.; Lozano Soldevilla, F.; García Braun, J.A.; Landeira Sánchez, J.M. Estudio de la influencia de la acuicultura en la comunidad mesozooplanctónica de zonas costeras de la isla de Tenerife. Rev. Aquat. 2004, 20, 1–8. Available online: https://www.redalyc.org/articulo.oa?id=49402001 (accessed on 1 November 2024).
- Hernández-León, S.; Miranda-Rodal, D. Actividad del sistema de transporte de electrones y biomasa del mesozooplankton en aguas de las Islas Canarias. Bol. Inst. Esp. Oceanogr. 1987, 4, 49–62. [Google Scholar]
- Hernández-León, S.; Almeida, C.; Bécognée, P.; Yebra, L.; Arístegui, J. Zooplankton biomass and indices of grazing and metabolism during a late winter bloom in subtropical waters. Mar. Biol. 2004, 145, 1191–1200. [Google Scholar] [CrossRef]
- Burd, B.J.; Thomson, R.E. Distribution and relative importance of jellyfish in a region of hydrothermal venting. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2000, 47, 1703–1721. [Google Scholar] [CrossRef]
- Pauly, D.; Liang, C.; Xian, W.; Chu, E.; Bailly, N. The Sizes, Growth and Reproduction of ArrowWorms (Chaetognatha) in Light of the Gill-Oxygen Limitation Theory (GOLT). J. Mar. Sci. Eng. 2021, 9, 1397. [Google Scholar] [CrossRef]
- Ariza, A.; Kaartvedt, S.; Røstad, A.; Garijo, J.C.; Arístegui, J.; Fraile-Nuez, E.; Hernández-León, S. The submarine volcano eruption off El Hierro Island: Effects on the scattering migrant biota and the evolution of the pelagic communities. PLoS ONE 2014, 9, e102354. [Google Scholar] [CrossRef]
- Skebo, K.; Tunnicliffe, V.; Garcia Berdeal, I.; Johnson, H.P. Spatial Patterns of Zooplankton and Nekton in a Hydrothermally Active Axial Valley on Juan de Fuca Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 1044–1060. [Google Scholar] [CrossRef]
- Dahms, H.-U.; Thirunavukkarasu, S.; Hwang, J.-S. Can Marine Hydrothermal Vents Be Used as Natural Laboratories to Study Global Change Effects on Zooplankton in a Future Ocean? J. Mar. Sci. Eng. 2023, 11, 163. [Google Scholar] [CrossRef]
- Corral, J. Contribución Al Conocimiento Del Plancton de Canarias: Estudio Cuantitativo, Sistemático Y Observaciones Ecológicas de Los Copepodos Epipelágicos en la Zona de Santa Cruz de Tenerife en El Curso de Un Ciclo Anual [Sección de Biológicas]. Ph.D. Thesis, Universidad de Madrid, Madrid, Spain, 1970. [Google Scholar]
- Turner, J.T. The Importance of Small Planktonic Copepods, and Their Roles in Pelagic Marine Food Webs. Zool. Stud. 2004, 43, 255–266. [Google Scholar]
- Castellani, C.; Edwards, M. (Eds.) Marine Plankton: A Practical Guide to Ecology, Methodology, and Taxonomy; Oxford Academic: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Kâ, S.; Hwang, J.S. Mesozooplankton distribution and composition on the northeastern coast of Taiwan during autumn: Effects of the Kuroshio Current and hydrothermal vents. Zool. Stud. 2011, 50, 155–163. [Google Scholar]
- Hernández-León, S. Annual cycle of epiplanktonic copepods in Canary Island waters. Fish. Oceanogr. 1998, 7, 252–257. [Google Scholar] [CrossRef]
- Corral, J. Ciclo anual de la Diversidad Específica en Comunidades Superficiales de Copépodos de las Islas Canarias. Vieraea 1973, 3, 95–99. [Google Scholar]
- Mingnorance, M.C. Observaciones sobre los c1adóceros (Crustacea) recolectados en una estación al sur de la isla de El Hierro (Islas Canarias). Vieraea 1987, 17, 7–10. [Google Scholar]
- Hernández-León, S.; Llinás, O.; Braun, J.G. Nota sobre la variación de la biomasa del mesoplancton en aguas de Canarias. Inv. Pesq. 1984, 48, 485–508. [Google Scholar]
- Hernández-León, S.; Almeida, C.; Gómez, M.; Torres, S.; Montero, I.; Portillo-Hahnefeld, A. Zooplankton biomass and indices of feeding and metabolism in island-generated eddies around Gran Canaria. J. Mar. Syst. 2001, 30, 51–66. [Google Scholar] [CrossRef]
- Hernández-León, S. Nota sobre la regeneración de amonio por el mesozooplancton en aguas de Canarias. Bol. Inst. Esp. Oceanog. 1986, 3, 75–80. Available online: https://www.researchgate.net/publication/38181521 (accessed on 1 November 2024).
- Mingorance, M.C. Contribución al estudio de los cladóceros marinas de las islas orientales del Archipiélago Canario (Crustacea). Vieraea 1987, 17, 151–153. [Google Scholar]
- Hernández-León, S. Actividad del sistema de transporte de electrones en el mesozooplancton durante un máximo primaveral en aguas del Archipiélago Canario. Inv. Pesq. 1987, 41, 491–499. [Google Scholar]
- Espinosa, J.M.; Lozano Soldevilla, F.; Landeira, J.M.; Lozano, G. Variabilidad espacial de Sapphirinidae Thorell. 1859 (Copepoda. Cyclopoida) de la Región Canaria: Campaña Canarias 85. Vieraea 2019, 46, 251–278. [Google Scholar] [CrossRef]
- Hernández-León, S. Accumulation of mesozooplankton in a wake area as a causative mechanism of the “island-mass effect”. Mar. Biol. 1991, 109, 141–147. [Google Scholar] [CrossRef]
- Arístegui, J.; Hernández-León, S.; Gómez, M.; Medina, L.; Ojeda, A.; Torres, S. Influence of the north trade winds on the biomass and production of neritic plankton around Gran Canaria Island. Sci. Mar. 1989, 54, 223–229. [Google Scholar]
- Hernández-León, S. Ciclo anual de la biomasa del mesozooplancton sobre un área de plataforma en aguas del Archipiélago Canario. Inv. Pesq. 1988, 52, 3–16. Available online: https://www.researchgate.net/publication/38181018 (accessed on 1 November 2024).
- Hernández-León, S.; Torres, S. The relationship between ammonia excretion and GDH activity in marine zooplankton. J. Plankton Res. 1997, 19, 587–601. [Google Scholar] [CrossRef]
- Arístegui, J.; Hernández-León, S.; Montero, M.F.; Gómez, M. The seasonal planktonic cycle in coastal waters of the Canary Islands. Sci. Mar. 2001, 65, 51–58. [Google Scholar] [CrossRef]
- Hernández-León, S.; Gómez, M. Factors affecting the respiration/ETS ratio in marine zooplankton. J. Plankton Res. 1996, 18, 239–255. Available online: https://academic.oup.com/plankt/article/18/2/239/1521240 (accessed on 1 November 2024). [CrossRef]
- Hernández, F.; Jiménez, S.; Silva, J.L. Zooplancton de la isla de El Hierro. Rev. Acad. Canar. De Las Ciencias 1998, 10, 29–39. [Google Scholar]
- Landeira, J.M.; Lozano-Soldevilla, F.; Hernández-León, S.; Barton, E.D. Spatial variability of planktonic invertebrate larvae in the Canary Islands area. J. Mar. Biol. Assoc. United Kingd. 2010, 90, 1217–1225. [Google Scholar] [CrossRef]
- Hernández-León, S.; Almeida, C.; Yebra, L.; Arístegui, J.; Fernández de Puelles, M.L.; García-Braun, J. Zooplankton abundance in subtropical waters: Is there a lunar cycle? Sci. Mar. 2001, 65, 59–63. [Google Scholar] [CrossRef]
- Hernández-León, S.; Almeida, C.; Portillo-Hahnefeld, A.; Gómez, M.; Rodríguez, J.M.; Arístegui, J. Zooplankton biomass and indices of feeding and metabolism in relation to an upwelling filament off northwest Africa. J. Mar. Res. 2002, 60, 327–346. [Google Scholar] [CrossRef]
- Hernández-León, S.; Gómez, M.; Pagazaurtundua, M.; Portillo-Hahnefeld, A.; Montero, I.; Almeida, C. Vertical distribution of zooplankton in Canary Island waters: Implications for export flux. Deep.-Sea Res. I 2001, 48, 1071–1092. [Google Scholar] [CrossRef]
- Yebra, L.; Hernández-León, S.; Almeida, C.; Bécognée, P.; Rodríguez, J.M. The effect of upwelling filaments and island-induced eddies on indices of feeding. respiration and growth in copepods. Prog. Oceanogr. 2004, 62, 151–169. [Google Scholar] [CrossRef]
- Yebra, L.; Almeida, C.; Hernández-León, S. Vertical distribution of zooplankton and active flux across an anticyclonic eddy in the Canary Island waters. Deep.-Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 69–83. [Google Scholar] [CrossRef]
- Hernández-León, S.; Putzeys, S.; Almeida, C.; Bécognée, P.; Marrero-Díaz, A.; Arístegui, J.; Yebra, L. Carbon export through zooplankton active flux in the Canary Current. J. Mar. Syst. 2019, 189, 12–21. [Google Scholar] [CrossRef]
- Schmoker, C.; Arístegui, J.; Hernández-León, S. Planktonic biomass variability during a late winter bloom in the subtropical waters off the Canary Islands. J. Mar. Syst. 2012, 95, 24–31. [Google Scholar] [CrossRef]
- Hernández-León, S.; Franchy, G.; Moyano, M.; Menéndez, I.; Schmoker, C.; Putzeys, S. Carbon sequestration and zooplankton lunar cycles: Could we be missing a major component of the biological pump? Limnol. Oceanogr. 2010, 55, 2503–2512. [Google Scholar] [CrossRef]
- Schmoker, C.; Hernández-León, S. Stratification effects on the plankton of the subtropical Canary Current. Prog. Oceanogr. 2013, 119, 24–31. [Google Scholar] [CrossRef]
- Armengol, L.; Franchy, G.; Ojeda, A.; Santana-del Pino, Á.; Hernández-León, S. Effects of copepods on natural microplankton communities: Do they exert top-down control? Mar. Biol. 2017, 164, 136. [Google Scholar] [CrossRef]
- Garijo, J.C. Hernández-León, S. The use of an image-based approach for the assessment of zooplankton physiological rates: A comparison with enzymatic methods. J. Plankton Res. 2015, 37, 923–938. [Google Scholar] [CrossRef]
- Armengol, L.; Franchy, G.; Ojeda, A.; Hernández-León, S. Plankton Community Changes From Warm to Cold Winters in the Oligotrophic Subtropical Ocean. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Ariza, A.; Garijo, J.C.; Landeira, J.M.; Bordes, F.; Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical Noreste Atlantic Ocean (Canary Islands). Prog. Oceanogr. 2015, 134, 330–342. [Google Scholar] [CrossRef]
- Hernández, F.; De Vera, A.; García-Talavera Fariña, F.; Lozano, F.; Fernández de Puelles, M.L.; Fraile, E. Análisis en periodo posteruptivo del zooplanctonde La Restinga (SO—El Hierro. islas Canarias). Primeros resultados del proyecto VULCANO. Vieraea 2014, 42, 165–178. [Google Scholar] [CrossRef]
- De Vera, A.; Hernández, F.; Lozano-Soldevilla, F.; Espinosa, J.M. Composición y distribución espacio-temporal de los moluscos planctónicos durante la etapa posteruptiva de un volcán submarino. Proyecto VULCANO. Vieraea 2017, 45, 127–158. [Google Scholar] [CrossRef]
- Collazo, N.; Hernández, F.; Lozano-Soldevilla, F.; De Vera, A.; Núñez, J.; Fraile-Nuez, E. Poliquetos planctónicos relacionados con enclaves de vulcanismo reciente en Canarias. Vieraea 2017, 45, 89–118. [Google Scholar] [CrossRef]
- Hernández, F.; García-Talavera Fariña, F.; De Vera, A. Sobre un quetognato de profundidad del género Eukrohnia. nuevo registro para la fauna zooplanctónica de Canarias. Resultados del proyecto VULCANA (Chaetognatha. Eukrohniidae). Vieraea 2015, 43, 9–20. [Google Scholar]
- Couret, M.; Landeira, J.M.; Tuset, V.M.; Sarmiento-Lezcano, A.N.; Vélez-Belchí, P.; Hernández-León, S. Mesozooplankton size structure in the Canary Current System. Mar. Environ. Res. 2023, 188, 105976. [Google Scholar] [CrossRef] [PubMed]
Copepod Taxa | Transect—Contribution % |
---|---|
Copepodites | 35.65 |
Acartia negligens | 8.45 |
Oithona plumifera | 6.30 |
Macrosetella gracilis | 5.08 |
Farranula gracilis | 4.71 |
Oncaea media | 4.67 |
Clausocalanus paululus | 4.23 |
Oncaea sp. | 4.17 |
Oncaea scottodicarloi | 2.91 |
Clausocalanus furcatus | 2.72 |
Calocalanus styliremis | 2.02 |
Calocalanus pavo | 1.60 |
Paracalanus sp. | 1.53 |
Clausocalanus arcuicornis | 1.37 |
Mecynocera clausi | 1.33 |
Calocalanus pavoninus | 1.04 |
Oncaea venusta venella | 0.95 |
Oithona setigera typica | 0.90 |
Nauplius | 0.86 |
Clausocalanus sp. | 0.74 |
Farranula rostrata | 0.65 |
Lucicutia flavicornis | 0.62 |
Calocalanus plumulosus | 0.54 |
Clausocalanus lividus | 0.49 |
Agetus flaccus | 0.48 |
Onychocorycaeus latus | 0.48 |
Calanoida | 0.46 |
Lubbockia aculeata | 0.36 |
Candacia bispinosa | 0.34 |
Paracalanus aculeatus | 0.32 |
Nannocalanus minor | 0.32 |
Ctenocalanus vanus | 0.31 |
Oncaea mediterranea | 0.31 |
Calocalanus contractus | 0.31 |
Acartia danae | 0.29 |
Clausocalanus mastigophorus | 0.28 |
Candacia ethiopica | 0.27 |
Microsetella rosea | 0.25 |
Corycaeus speciosus | 0.20 |
Acartiidae | 0.16 |
Copilia lata | 0.14 |
Clausocalanus pergens | 0.14 |
Cymbasoma rigidum | 0.14 |
Calocalanus sp. | 0.14 |
Sapphirina intestinata | 0.11 |
Scolecithrix danae | 0.10 |
Scolecitrichidae | 0.09 |
Corycaeus clausi | 0.09 |
Paracalanidae | 0.09 |
Copilia mirabilis | 0.09 |
Oncaea venusta venella | 0.09 |
Calocalanus plumatus | 0.09 |
Clytemnestra scutellata | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Martínez, A.; Herrera, I. Copepod Diversity and Zooplankton Community Structure in a Coastal Special Area of Conservation (La Palma Island, Atlantic Ocean). J. Mar. Sci. Eng. 2025, 13, 1124. https://doi.org/10.3390/jmse13061124
Torres-Martínez A, Herrera I. Copepod Diversity and Zooplankton Community Structure in a Coastal Special Area of Conservation (La Palma Island, Atlantic Ocean). Journal of Marine Science and Engineering. 2025; 13(6):1124. https://doi.org/10.3390/jmse13061124
Chicago/Turabian StyleTorres-Martínez, Adrián, and Inma Herrera. 2025. "Copepod Diversity and Zooplankton Community Structure in a Coastal Special Area of Conservation (La Palma Island, Atlantic Ocean)" Journal of Marine Science and Engineering 13, no. 6: 1124. https://doi.org/10.3390/jmse13061124
APA StyleTorres-Martínez, A., & Herrera, I. (2025). Copepod Diversity and Zooplankton Community Structure in a Coastal Special Area of Conservation (La Palma Island, Atlantic Ocean). Journal of Marine Science and Engineering, 13(6), 1124. https://doi.org/10.3390/jmse13061124