Tectonic Impact on Organic Matter Enrichment in Paleozoic Marine Shales from the Yangtze Block, SW China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
3.1. Sampling and Powdering
3.2. TOC Analysis
3.3. Major Elements Analysis
3.4. Trace Elements Analysis
4. Results
4.1. TOC Contents
4.2. Major and Trace Elements
5. Discussion
5.1. Paleoenvironmental Conditions During Deposition of the Two Formations
5.1.1. Paleoproductivity Conditions
5.1.2. Paleo-Redox Conditions
5.1.3. Restricted Degree of Water Column
5.1.4. Terrigenous Clastic Input
5.1.5. Hydrothermal Activity
5.2. Controlling Factors for Organic Matter Enrichment
5.3. Enrichment Models of Organic Matter in Shales from Different Tectonic Backgrounds
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demaison, G.J.; Moore, G.T. Anoxic environments and oil source bed genesis. Org. Geochem. 1980, 2, 9–31. [Google Scholar] [CrossRef]
- Henderson, K.M.; Williams, A.E.; Clark, J.R. The Origin of Hyper-Enriched Black Shales and Their Relationship to Hydrocarbon Generation. Econ. Geol. 2024, 119, 1115–1137. [Google Scholar] [CrossRef]
- Liu, D.; Fan, Q.; Zhang, C.; Gao, Y.; Du, W.; Song, Y.; Zhang, Z.; Luo, Q.; Jiang, Z.; Huang, Z. Paleoenvironment evolution of the Permian Lucaogou Formation in the southern Junggar Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 603, 111198. [Google Scholar] [CrossRef]
- Bowker, K.A. Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bull. 2007, 91, 523–533. [Google Scholar] [CrossRef]
- Hammes, U.; Hamlin, H.S.; Ewing, T.E. Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana. AAPG Bull. 2011, 95, 1643–1666. [Google Scholar] [CrossRef]
- Ahmed, N.; Siddiqui, N.A.; Ramasamy, N.; Ramkumar, M.; Jamil, M.; Usman, M.; Sajid, Z.; Rahman, A.H.B.A. Geochemistry of Eocene Bawang Member turbidites of the Belaga Formation, Borneo: Implications for provenance, palaeoweathering, and tectonic setting. Geol. J. 2021, 56, 2477–2499. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosystems 2010, 11. [Google Scholar] [CrossRef]
- Lin, D.; Xi, Z.; Tang, S.; Lash, G.G.; Guo, Q.; Wang, H.; Zhu, Y. Organic matter enrichment in shale deposited proximal to paleo-uplifts and its impact on shale gas exploration. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 633, 111900. [Google Scholar] [CrossRef]
- Rashid, A.; Siddiqui, N.A.; Ahmed, N.; Wahid, A.; Jamil, M.; Sankoh, A.A.; Olutoki, J.O. Geochemical and mineralogical characteristics of shales from the early to middle Permian Dohol Formation in Peninsular Malaysia: Implications for organic matter enrichment, provenance, tectonic setting, palaeoweathering and paleoclimate. Heliyon 2024, 10, e27553. [Google Scholar] [CrossRef]
- Tyson, R.V.; Pearson, T.H. Modern and ancient continental shelf anoxia: An overview. Geol. Soc. Lond. Spec. Publ. 1991, 58, 1–24. [Google Scholar] [CrossRef]
- Zhang, K.; Song, Y.; Jiang, S.; Jiang, Z.; Jia, C.; Huang, Y.; Wen, M.; Liu, W.; Xie, X.; Liu, T. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze region. Mar. Pet. Geol. 2019, 99, 488–497. [Google Scholar] [CrossRef]
- Liu, S.; Liu, B.; Tang, S.; Zhao, C.; Tan, F.; Xi, Z.; Du, F. Palaeoenvironmental and tectonic controls on organic matter enrichment in the Middle Jurassic Dameigou Formation (Qaidam Basin, North China). Palaeogeogr. Palaeoclim. Palaeoecol. 2022, 585, 110747. [Google Scholar] [CrossRef]
- Critelli, S. Provenance of Mesozoic to Cenozoic circum-Mediterranean sandstones in relation to tectonic setting. Earth-Sci. Rev. 2018, 185, 624–648. [Google Scholar] [CrossRef]
- Rashid, A.; Siddiqui, N.A.; Ahmed, N.; Jamil, M.; EL-Ghali, M.A.; Ali, S.H.; Zaidi, F.K.; Wahid, A. Field attributes and organic geochemical analysis of shales from early to middle Permian Dohol Formation, Peninsular Malaysia: Implications for hydrocarbon generation potential. J. King Saud Univ. Sci. 2022, 34, 102287. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Rashid, A.; Siddiqui, N.A.; Latiff, A.H.A.; Ahmed, N.; Ahmad, M.; Jamil, M.; Ali, S.; Islam, M.M. Geochemical and mineralogical characterization of Carboniferous-Triassic shales in Peninsular Malaysia: Implications for hydrocarbon potential and depositional model. Carbonates Evaporites 2025, 40, 63. [Google Scholar] [CrossRef]
- Leckie, R.M.; Bralower, T.J.; Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 2002, 17, 13-11–13-29. [Google Scholar] [CrossRef]
- Stewart, K.; Kassakian, S.; Krynytzky, M.; Dijulio, D.; Murray, J.W. Oxic, suboxic, and anoxic conditions in the Black Sea. In The Black Sea Flood Question: Changes in Coastline, Climate, Human Settlement; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–21. [Google Scholar]
- Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 232, 344–361. [Google Scholar] [CrossRef]
- Guo, X.; Wang, R.; Shen, B.; Wang, G.; Wan, C.; Wang, Q. Geological characteristics, resource potential, and development direction of shale gas in China. Pet. Explor. Dev. 2025, 52, 17–32. [Google Scholar] [CrossRef]
- Wang, R.; Gu, Y.; Ding, W.; Gong, D.; Yin, S.; Wang, X.; Zhou, X.; Li, A.; Xiao, Z.K.; Cui, Z.X. Characteristics and dominant controlling factors of organic-rich marine shales with high thermal maturity: A case study of the Lower Cambrian Niutitang Formation in the Cen’gong block, southern China. J. Nat. Gas Sci. Eng. 2016, 33, 81–96. [Google Scholar] [CrossRef]
- Liu, D.; Tian, H.; Jia, C.; Fan, Q.; Lu, X.; Xu, M.; Song, Y.; Zhang, C. Calcite U-Pb dating and geochemical constraints on fracture opening in organic-rich shales. Int. J. Coal Geol. 2024, 294, 104621. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian. Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Prokoph, A.; Shields, G.; Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Sci. Rev. 2008, 87, 113–133. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Li, Z.; Wang, D.; Wang, G.; Lai, F.; Li, Z.; He, J. Microscopic pore structure characteristics and controlling factors of marine shale: A case study of Lower Cambrian shales in the Southeastern Guizhou, Upper Yangtze Platform, South China. Front. Earth Sci. 2024, 12, 1368326. [Google Scholar] [CrossRef]
- Yu, K.; Jin, Z.; Su, K.; Dong, X.; Zhang, W.; Du, H.; Chen, Y.; Zhang, W. The Cambrian sedimentary characteristics and their implications for oil and gas exploration in north margin of Middle-Upper Yangtze Plate. Sci. China Earth Sci. 2013, 56, 1014–1028. [Google Scholar] [CrossRef]
- Liu, Z.B.; Gao, B.; Du, W.; Feng, D.J.; Nie, H. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China. Petrol. Explor. Dev. 2017, 44, 20–31. [Google Scholar] [CrossRef]
- Lin, C.; Yang, H.; Liu, J.; Rui, Z.; Cai, Z.; Li, S.; Yu, B. Sequence architecture and depositional evolution of the Ordovician carbonate platform margins in the Tarim Basin and its response to tectonism and sea-level change. Basin Res. 2012, 24, 559–582. [Google Scholar] [CrossRef]
- Fang, C.; Liu, M.; Zhang, C.; Tang, H.; Li, J.; Xing, G.; Li, F.; Xu, N.; Wu, T.; Liu, B. Middle Ordovician climatic and oceanic destabilization in a slope-setting of the Yangtze platform, South China, and its role as a regional brake on the Ordovician radiations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 648, 112265. [Google Scholar] [CrossRef]
- Men, X.; Mou, C.; Ge, X. Changes in palaeoclimate and palaeoenvironment in the Upper Yangtze area (South China) during the Ordovician–Silurian transition. Sci. Rep. 2022, 12, 13186. [Google Scholar] [CrossRef]
- Hu, C.; Qin, T.; Ma, J.; Han, C.; Wang, X. Paleo-trade wind directions over the Yangtze Carbonate Platform during the Cambrian–Ordovician, Southern China. Geol. Mag. 2023, 160, 1160–1176. [Google Scholar] [CrossRef]
- Kozik, N.P.; Young, S.A.; Newby, S.M.; Liu, M.; Chen, D.; Hammarlund, E.U.; Bond, D.P.; Them, T.R.; Owens, J.D. Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction. Sci. Adv. 2022, 8, eabn8345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Jia, L.; Gao, S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- He, S.; Qin, Q.; Li, H.; Zhao, S. Geological characteristics of deep shale gas in the Silurian Longmaxi Formation in the southern Sichuan Basin, China. Front. Earth Sc-Switz 2022, 9, 818155. [Google Scholar] [CrossRef]
- Xi, Z.; Tang, S.; Wang, J.; Yi, J.; Guo, Y.; Wang, K. Pore structure and fractal characteristics of Niutitang shale from China. Minerals 2018, 8, 163. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, S.; Tian, H.; Chen, Y.; Feng, X.; Yin, W.; Fan, Q.; Xu, M.Y.; Du, W. Enrichment mechanisms of organic matter in the marine slope facies shales from the Niutitang Formation in the western Xuefeng Uplift. Pet. Sci. Bull. 2024, 9, 853–865. [Google Scholar]
- Wang, Y.; Zhai, G.; Liu, G.; Shi, W.; Lu, Y.; Li, J.; Zhang, Y. Geological characteristics of shale gas in different strata of marine facies in South China. J. Earth Sci. 2021, 32, 725–741. [Google Scholar] [CrossRef]
- Li, S.-Z.; Zhou, Z.; Nie, H.-K.; Zhang, L.-F.; Song, T.; Liu, W.B.; Li, H.H.; Xu, Q.C.; Wei, S.Y.; Tao, S. Distribution characteristics, exploration and development, geological theories research progress and exploration directions of shale gas in China. China Geol. 2022, 5, 110–135. [Google Scholar] [CrossRef]
- Berger, W.; Smetacek, V.; Wefer, G. Ocean productivity and paleoproductivity—An overview. Product. Ocean. Present Past 1989, 44, 1–34. [Google Scholar]
- Burdige, D.J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 2007, 107, 467–485. [Google Scholar] [CrossRef]
- Dymond, J.; Suess, E.; Lyle, M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 1992, 7, 163–181. [Google Scholar] [CrossRef]
- Schoepfer, S.D.; Shen, J.; Wei, H.; Tyson, R.V.; Ingall, E.; Algeo, T.J. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Sci. Rev. 2015, 149, 23–52. [Google Scholar] [CrossRef]
- Sweere, T.; Van, S.; Dickson, A.J.; Reichart, G.J. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chem. Geol. 2016, 441, 235–245. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, J.; Fu, X.; Chen, W.; Feng, X.; Wang, D.; Song, C.; Wang, Z. Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Mar. Petrol. Geol. 2015, 64, 203–221. [Google Scholar] [CrossRef]
- Algeo, T.J.; Kuwahara, K.; Sano, H.; Bates, S.; Lyons, T.; Elswick, E.; Hinnov, L.; Ellwood, B.; Moser, J.; Maynard, J.B. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 65–83. [Google Scholar] [CrossRef]
- Li, J.; Tang, S.; Zhang, S.; Xi, Z.; Yang, N.; Yang, G.; Li, L.; Li, Y. Paleo-environmental conditions of the Early Cambrian Niutitang Formation in the Fenggang area, the southwestern margin of the Yangtze Platform, southern China: Evidence from major elements, trace elements and other proxies. J. Asian Earth Sci. 2018, 159, 81–97. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, M.; Tan, X.; Chen, X.; Zheng, J.; Yang, Y.; Jing, C.; Wang, G. Coupling mechanism between sea level changes and pore heterogeneity of marine shale reservoirs driven by astronomical orbital cycles: Lower Silurian Longmaxi shale in the Upper Yangtze area, South China. Mar. Petrol. Geol. 2024, 160, 106590. [Google Scholar] [CrossRef]
- Acharya, S.S.; Panigrahi, M.K.; Gupta, A.K.; Tripathy, S. Response of trace metal redox proxies in continental shelf environment: The Eastern Arabian Sea scenario. Cont. Shelf Res. 2015, 106, 70–84. [Google Scholar] [CrossRef]
- Shafeiy, M.; Kammar, A.; Barkooky, A.; Meyers, P.A. Paleo-redox depositional conditions inferred from trace metal accumulation in two Cretaceous-Paleocene organic-rich sequences from Central Egypt. Mar. Petrol. Geol. 2016, 73, 333–349. [Google Scholar] [CrossRef]
- Klump, J.V.; Martens, C.S. Biogeochemical cycling in an organic rich coastal marine basin—II. Nutrient sediment-water exchange processes. Geochim. Cosmochim. Acta 1981, 45, 101–121. [Google Scholar] [CrossRef]
- Mcmanus, J.; Berelson, W.M.; Severmann, S.; Poulson, R.L.; Hammond, D.E.; Klinkhammer, G.P.; Holm, C. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochim. Cosmochim. Acta 2006, 70, 4643–4662. [Google Scholar] [CrossRef]
- Algeo, T.J.; Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol. 2009, 268, 211–225. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The continental crust: Its composition and evolution. In The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985. [Google Scholar]
- Wang, X.; Li, J.; Huang, Y.; Lu, S.; Chen, K.; Wei, Y.; Song, Z.; Zhao, R.; He, T. Influence of Paleosedimentary Environment on Shale Oil Enrichment in the Raoyang Sag, Bohai Bay Basin. Energy Fuels 2022, 36, 13597–13616. [Google Scholar] [CrossRef]
- Zonneveld, K.A.; Versteegh, G.J.; Kasten, S.; Eglinton, T.I.; Emeis, K.C.; Huguet, C.; Koch, B.P.; Lange, G.J.; Leeuw, J.W.; Middelburg, J.J. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences 2010, 7, 483–511. [Google Scholar] [CrossRef]
- Banerji, U.S.; Dubey, C.P.; Goswami, V.; Joshi, K.B. Geochemical indicators in provenance estimation. In Geochemical Treasures and Petrogenetic Processes; Springer Nature: Singapore, 2022; pp. 95–121. [Google Scholar]
- Mccollom, T.M. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. Planets 1999, 104, 30729–30742. [Google Scholar] [CrossRef]
- Mills, R.A.; Elderfield, H. Hydrothermal activity and the geochemistry of metalliferous sediment. Seafloor Hydrothermal Syst. Phys. Chem. Biol. Geol. Interact. 1995, 91, 392–407. [Google Scholar]
- Lu, Y.; Jiang, S.; Lu, Y.; Xu, S.; Shu, Y.; Wang, Y. Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale, South China. Mar. Pet. Geol. 2019, 109, 22–35. [Google Scholar] [CrossRef]
- Guilbaud, R.; Slater, B.J.; Poulton, S.; Harvey, T.; Brocks, J.; Nettersheim, B.J.; Butterfield, N.J. Oxygen minimum zones in the early Cambrian ocean. Geochem. Perspect. Lett. 2018, 6, 33–38. [Google Scholar] [CrossRef]
- Zhang, J.; Edwards, C.T.; Diamond, C.W.; Lyons, T.W.; Zhang, Y. Marine oxygenation, deoxygenation, and life during the Early Paleozoic: An overview. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 584, 110715. [Google Scholar] [CrossRef]
- Lu, M.; Duan, G.; Zhang, T.; Liu, N.; Song, Y.; Zhang, Z.; Qiao, J.; Wang, Z.; Fang, Z.; Luo, Q. Influences of paleoclimatic changes on organic matter enrichment mechanisms in freshwater and saline lacustrine oil shales in China: A machine learning approach. Earth-Sci. Rev. 2025, 262, 105061. [Google Scholar] [CrossRef]
- Zhou, J.Q.; Wang, Y.; Song, Z.Y.; Liu, J.T. Characterizing hydrothermal siliceous nodules to guide shale oil exploration in the Middle Permian Lucaogou Formation, Bogda area, Junggar Basin. Oil Gas Geol. 2023, 44, 789–800. [Google Scholar]
- Li, C.; Love, G.D.; Lyons, T.W.; Fike, D.A.; Sessions, A.L.; Chu, X. A stratified redox model for the Ediacaran ocean. Science 2010, 328, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.E. The Precambrian–Cambrian boundary: Seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and biomineralization. J. Geol. Soc. 1992, 149, 655–668. [Google Scholar] [CrossRef]
- Feng, L.; Li, C.; Huang, J.; Chang, H.; Chu, X. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze platform, South China. Precambrian Res. 2014, 246, 123–133. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, L.; Chen, L.; Tan, X.; Wang, G. Development characteristics of shale lithofacies in the Longmaxi Formation and their main controlling factors in the Changning area, south Sichuan Basin, SW China. Front. Earth Sc-Switz. 2021, 9, 775657. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.; Tan, X.; Zheng, J.; Yang, Y.; Jing, C.; Zhou, H.; Wang, G. Factors controlling organic matter accumulation in the Longmaxi Formation shale, Changning area, South Sichuan Basin. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 89. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Zou, C.; Zhao, S.; Wu, C. Paleoenvironmental characteristics and organic matter enrichment mechanisms of the upper Ordovician-lower Silurian organic-rich black shales in the Yangtze foreland basin, South China. Front. Earth Sc-Switz. 2023, 11, 1237495. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Z.; Nie, H.; Liu, M.; Meng, F.; Shen, B.; Zhang, X.; Wei, S.; Xi, Z.; Zhang, S.J. Organic matter accumulation mechanisms in the Wufeng-Longmaxi shales in western Hubei Province, China and paleogeographic implications for the uplift of the Hunan-Hubei Submarine high. Int. J. Coal Geol. 2023, 270, 104223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Xu, M.; Chen, H.; Cao, Q.; Jiang, Z.; Tang, X. Tectonic Impact on Organic Matter Enrichment in Paleozoic Marine Shales from the Yangtze Block, SW China. J. Mar. Sci. Eng. 2025, 13, 1028. https://doi.org/10.3390/jmse13061028
Liu D, Xu M, Chen H, Cao Q, Jiang Z, Tang X. Tectonic Impact on Organic Matter Enrichment in Paleozoic Marine Shales from the Yangtze Block, SW China. Journal of Marine Science and Engineering. 2025; 13(6):1028. https://doi.org/10.3390/jmse13061028
Chicago/Turabian StyleLiu, Dadong, Mingyang Xu, Hui Chen, Qian Cao, Zhenxue Jiang, and Xianglu Tang. 2025. "Tectonic Impact on Organic Matter Enrichment in Paleozoic Marine Shales from the Yangtze Block, SW China" Journal of Marine Science and Engineering 13, no. 6: 1028. https://doi.org/10.3390/jmse13061028
APA StyleLiu, D., Xu, M., Chen, H., Cao, Q., Jiang, Z., & Tang, X. (2025). Tectonic Impact on Organic Matter Enrichment in Paleozoic Marine Shales from the Yangtze Block, SW China. Journal of Marine Science and Engineering, 13(6), 1028. https://doi.org/10.3390/jmse13061028