Influencing Factors and Wavelet Coherence of Waves Generated by Submerged Jet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Numerical Method
2.3. Geometric Configuration and Boundary Conditions
2.4. Wavelet Coherence
3. Numerical Model Validation
3.1. Grid Independence Test
3.2. Velocity Validation
3.3. Wave Height Validation
4. Results and Discussion
4.1. Influencing Factors of the Wave Height
4.1.1. Range Analysis
4.1.2. Variance Analysis
4.2. Wavelet Coherence of the Wave Surface Process and Kinetic Energy
4.3. Wavelet Coherence of the Wave Surface Process and Reynolds Stress
4.3.1. Reynolds Shear Stress
4.3.2. Reynolds Normal Stress
4.4. Wavelet Coherence of Wave Surface Process and Eddy Structure Parameter
4.5. Spectral Correlation Analysis
5. Conclusions
- (1)
- The LES model effectively simulates the flow field of submerged jets and wave propagation, providing reliable data on surface wave behavior and flow characteristics.
- (2)
- Orthogonal experimental design combined with range analysis and variance analysis revealed that under the conditions of this paper, the orifice contraction ratio has the most significant effect on wave height, followed by upstream water depth, while orifice altitude has the least effect. The most influential combination of orifice altitude and upstream depth varies by location, but Shape 1 always dominates.
- (3)
- Wavelet analysis revealed that along the jet centerline, strong coherence between the wave surface process and variables such as velocity head, Reynolds stress, and eddy structure parameters mainly occurs in the low-frequency range (0.01–1.0 Hz) with consistent phase. In the higher range (1.0–5.0 Hz), the coherence becomes intermittent. When the upstream water depth l = 5.5, the wave surface process and flow variables are in-phase, while lower upstream depths exhibit anti-phase behavior.
- (4)
- Spectral correlation analysis indicates that the power spectral density of the wave surface process is correlated with those of the velocity head, Reynolds stress, and eddy structure parameters, with the maximum spectral correlation coefficient reaching 0.91.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bondur, V.G.; Zhurbas, V.M.; Grebenyuk, Y.V. Mathematical Modeling of Turbulent Jets of Deep-Water Sewage Discharge into Coastal Basins. Oceanology 2006, 46, 757–771. [Google Scholar] [CrossRef]
- Tate, P.M.; Scaturro, S.; Cathers, B. Marine Outfalls. In Springer Handbook of Ocean Engineering; Dhanak, M.R., Xiros, N.I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 711–740. [Google Scholar]
- Jirka, G.H. Improved Discharge Configurations for Brine Effluents from Desalination Plants. J. Hydraul. Eng. 2008, 134, 116–120. [Google Scholar] [CrossRef]
- Abessi, O.; Roberts, P.J.W. Dense Jet Discharges in Shallow Water. J. Hydraul. Eng. 2016, 142, 04015033. [Google Scholar] [CrossRef]
- Hosseini, S.A.R.S.; Mohammadian, A.; Roberts, P.J.W.; Abessi, O. Numerical Study on the Effect of Port Orientation on Multiple Inclined Dense Jets. J. Mar. Sci. Eng. 2022, 10, 590. [Google Scholar] [CrossRef]
- Bourodimos, E.L. Turbulent Transfer and Mixing of Submerged Heated Water Jet. Water Resour. Res. 1972, 8, 982–997. [Google Scholar] [CrossRef]
- Ryu, Y.; Chang, K.A.; Mori, N. Dispersion of Neutrally Buoyant Horizontal Round Jet in Wave Environment. J. Hydraul. Eng. 2005, 131, 1088–1097. [Google Scholar] [CrossRef]
- Anthony, D.G.; Willmarth, W.W. Turbulence Measurements in a Round Jet beneath a Free Surface. J. Fluid Mech. 1992, 243, 699–720. [Google Scholar] [CrossRef]
- Tay, G.F.K.; Rahman, M.S.; Tachie, M.F. Characteristics of a Horizontal Square Jet Interacting with the Free Surface. Phys. Rev. Fluids 2017, 2, 064607. [Google Scholar] [CrossRef]
- Walker, D.T.; Chen, C.Y.; Willmarth, W.W. Turbulent Structure in Free-Surface Jet Flows. J. Fluid Mech. 1995, 291, 223–261. [Google Scholar] [CrossRef]
- Wen, Q.; Kim, H.D.; Liu, Y.Z.; Kim, K.C. Dynamic Structures of a Submerged Jet Interacting with a Free Surface. Exp. Therm. Fluid Sci. 2014, 57, 396–406. [Google Scholar] [CrossRef]
- Hu, B.; Wang, C.; Wang, H.; Yu, Q.; Liu, J.; Zhu, Y.; Ge, J.; Chen, X.; Yang, Y. Numerical Simulation Study of the Horizontal Submerged Jet Based on the Wray-Agarwal Turbulence Model. J. Mar. Sci. Eng. 2022, 10, 1217. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Laminar Slip Wall Jet of Glauert Type and Heat Transfer. Int. J. Heat Mass Transfer 2019, 134, 1153–1158. [Google Scholar] [CrossRef]
- Mirikar, D.; Mishra, A.; Khan, M.H.; Agrawal, A.; Yadav, H. Flow Characterization of a Submerged Inclined Impinging Pulse Jet. Phys. Fluids 2024, 36, 125147. [Google Scholar] [CrossRef]
- Aliha, N.M.; Afshin, H.; Farhanieh, B. Numerical Investigation of Nozzle Geometry Effect on Turbulent 3-D Water Offset Jet Flows. J. Appl. Fluid Mech. 2016, 9, 2083–2095. [Google Scholar] [CrossRef]
- Nwaiwu, C.F. Experimental Investigation of Nozzle Geometry Effect on the Characteristics and Structure of Submerged Twin Jets. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2020. [Google Scholar]
- Zhang, L.; Fan, J.W.; Wang, C.; Wang, Y.; Cui, Y. Numerical Study on Flow Characteristics of a Submerged Circular Water Jet at Varying Impingement Heights. Phys. Fluids 2025, 37, 025167. [Google Scholar] [CrossRef]
- Evans, J.T. Pneumatic and Similar Breakwaters. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 231, 457–466. [Google Scholar] [CrossRef]
- Mori, N.; Chang, K.A. Experimental Study of a Horizontal Jet in a Wavy Environment. J. Eng. Mech.-ASCE 2003, 129, 1149–1155. [Google Scholar] [CrossRef]
- Maraglino, D.; De Padova, D.; Mossa, M.; Zonta, F.; Soldati, A. Large Eddy Simulation of a Turbulent Submerged Jet Interacting with a Wave Environment. Acta Mech. 2025, 236, 3211–3229. [Google Scholar] [CrossRef]
- Zhang, S.; Lian, J.; Li, J.; Liu, F.; Ma, B. Wavelet Bispectral Analysis and Nonlinear Characteristics in Waves Generated by Submerged Jets. Ocean Eng. 2022, 264, 112473. [Google Scholar] [CrossRef]
- Zhang, S.; Lian, J.; Yao, Y.; He, J.; Liu, F.; Ma, B. Characteristics of Waves Generated by Submerged Jets from Rectangular Orifices. Exp. Therm. Fluid Sci. 2023, 140, 110757. [Google Scholar] [CrossRef]
- Zhou, J.H.; Zhang, Q.H.; Liu, G.W.; Zhang, J.F.; Xing, E.B. A Numerical Model for Solitary Wave Breaking Based on the Phase-Field Lattice Boltzmann Method. Phys. Fluids 2024, 36, 092125. [Google Scholar] [CrossRef]
- Liu, D.; Lin, P. Three-Dimensional Liquid Sloshing in a Tank with Baffles. Ocean Eng. 2009, 36, 202–212. [Google Scholar] [CrossRef]
- Zhang, B.C.; Xu, D.; Ji, C.N.; Ran, Q.H. Investigation on the Width-to-Depth Ratio Effect on Turbulent Flows in a Sharp Meandering Channel with Periodic Boundaries Using Large Eddy Simulations. J. Hydrodyn. 2024, 36, 662–677. [Google Scholar] [CrossRef]
- Tian, J.; Roussinova, V.; Balachandar, R. Characteristics of a Jet in the Vicinity of a Free Surface. J. Fluids Eng.-Trans. ASME 2012, 134, 031204. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, Y.; Pang, T.; Wang, B.; Chachan, R.; Tian, Y. A Comprehensive Study on Spectral Analysis and Anomaly Detection of River Water Quality Dynamics with High Time Resolution Measurements. J. Hydrol. 2020, 589, 125175. [Google Scholar] [CrossRef]
- Guyennon, N.; Valerio, G.; Salerno, F.; Pilotti, M.; Tartari, G.; Copetti, D. Internal Wave Weather Heterogeneity in a Deep Multi-Basin Subalpine Lake Resulting from Wavelet Transform and Numerical Analysis. Adv. Water Resour. 2014, 71, 149–161. [Google Scholar] [CrossRef]
- Lian, J.; Zhang, Y.; Liu, F.; Zhao, Q. Analysis of the Ground Vibration Induced by High Dam Flood Discharge Using the Cross Wavelet Transform Method. J. Renew. Sustain. Energy 2015, 7, 043146. [Google Scholar] [CrossRef]
- Chi, W.; Shu, F.; Lin, Y.; Li, Y.; Luo, F.; He, J.; Chen, Z.; Zou, X.; Zheng, B. Typhoon-Induced Destruction and Reconstruction of the Coastal Current System on the Inner Shelf of East China Sea. Cont. Shelf Res. 2023, 255, 104912. [Google Scholar] [CrossRef]
- Peng, N.N.; Chow, K.W. A Numerical Wave Tank with Large Eddy Simulation for Wave Breaking. Ocean Eng. 2022, 266, 112555. [Google Scholar] [CrossRef]
- Lilly, D.K. A Proposed Modification of the Germano Subgrid-Scale Closure Method. Phys. Fluids A 1992, 4, 633–635. [Google Scholar] [CrossRef]
- Meneveau, C.; Lund, T.S.; Cabot, W.H. A Lagrangian Dynamic Subgrid-Scale Model of Turbulence. J. Fluid Mech. 1996, 319, 353–385. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection. J. Comput. Phys. 1977, 23, 276–299. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. Gmres: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Zou, Q. Gmres Algorithms over 35 Years. Appl. Math. Comput. 2023, 445, 127869. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J.; Holschneider, M. Nonstationary Gaussian Processes in Wavelet Domain: Synthesis, Estimation, and Significance Testing. Phys. Rev. E 2007, 75, 016707. [Google Scholar] [CrossRef] [PubMed]
- Sankar, G.; Balachandar, R.; Carriveau, R. Tailwater Effects on the Characteristics of a Square Jet near a Free-Surface. J. Hydraul. Res. 2008, 46, 504–515. [Google Scholar] [CrossRef]
- Marasinghe, M.G.; Koehler, K.J. Analysis of Variance Models. In Statistical Data Analysis Using Sas: Intermediate Statistical Methods; Marasinghe, M.G., Koehler, K.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 301–417. [Google Scholar]
- Choi, Y.; Lvov, Y.V.; Nazarenko, S. Joint Statistics of Amplitudes and Phases in Wave Turbulence. Physica D 2005, 201, 121–149. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, Streams, and Convergence Zones in Turbulent Flows. In Proceedings of the Summer Program in Center for Turbulence Research; Center for Turbulence Research: Stanford, CA, USA, 1988; pp. 193–208. [Google Scholar]
- Thyagarajan, K.S. Introduction to Digital Signal Processing Using Matlab with Application to Digital Communications; Springer: Berlin, Germany, 2018. [Google Scholar]
Schemes | Block 1 Upstream Pool | Block 2 Jet Orifices | Block 3 Downstream Pool | Grid Quantity (Million) | Inlet Flow (L/s) | Outlet Flow (L/s) | Relative Error (%) |
---|---|---|---|---|---|---|---|
Mesh 1 | 0.04 × 0.04 × 0.04 m | 0.04 × 0.04 × 0.04 m | 0.02 ×0.02 ×0.02 m | 1.548 | 130.4 | 145.1 | 11.27 |
Mesh 2 | 0.04 ×0.04 × 0.04 m | 0.02 × 0.02 × 0.02 m | 0.02 ×0.02 ×0.02 m | 1.768 | 130.4 | 121.5 | −6.82 |
Mesh 3 | 0.04 × 0.04 × 0.04 m | 0.02 × 0.02 × 0.02 m | x- and y-directions 0.02 m, z-direction 0.01–0.02 m | 2.314 | 130.4 | 130.0 | −0.31 |
Mesh 4 | 0.04 × 0.04 × 0.04 m | 0.02 × 0.02 × 0.02 m | x- and y-directions 0.015 m, z-direction 0.005–0.015 m | 5.246 | 130.4 | 130.6 | 0.15 |
Level | Factors | ||
---|---|---|---|
A Orifice Altitude (h3/b) | B Upstream Water Depth (l) | C Orifice Shape | |
1 | 2.4 | 4.5 | Shape 1 |
2 | 1.4 | 5.0 | Shape 3 |
3 | 0.4 | 5.5 | Shape 2 |
Experiment Sequence Number | Factors | ||
---|---|---|---|
A Orifice Altitude (h3/b) | B Upstream Water Depth (l) | C Orifice Shape | |
1 | A1 (2.4) | B1 (4.5) | C1 (Shape 1) |
2 | A1 (2.4) | B2 (5.0) | C3 (Shape 3) |
3 | A1 (2.4) | B3 (5.5) | C2 (Shape 2) |
4 | A2 (1.4) | B1 (4.5) | C3 (Shape 3) |
5 | A2 (1.4) | B2 (5.0) | C2 (Shape 2) |
6 | A2 (1.4) | B3 (5.5) | C1 (Shape 1) |
7 | A3 (0.4) | B1 (4.5) | C2 (Shape 2) |
8 | A3 (0.4) | B2 (5.0) | C1 (Shape 1) |
9 | A3 (0.4) | B3 (5.5) | C3 (Shape 3) |
Factors | at x/h = 10 | at x/h = 15 | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
8.14 | 6.44 | 12.56 | 5.41 | 4.83 | 7.90 | |
10.59 | 7.85 | 9.11 | 5.90 | 6.92 | 6.66 | |
6.72 | 11.15 | 3.78 | 6.32 | 5.87 | 3.06 | |
Dominant level | 2 | 3 | 1 | 3 | 2 | 1 |
3.87 | 4.71 | 8.78 | 0.91 | 2.09 | 4.84 | |
The influence order of factors | C > B > A | C > B > A |
Source of Variance | SSj | fj | MSj | Fj | Fcrit | Significant |
---|---|---|---|---|---|---|
Factor A | 22.90 × 10−4 | 2 | 11.49 × 10−4 | 4.21 | F0.05(2,2) = 19 F0.01(2,2) = 99 | Generally significant |
Factor B | 35.04 × 10−4 | 2 | 17.52 × 10−4 | 6.42 | ||
Factor C | 117.51 × 10−4 | 2 | 58.76 × 10−4 | 21.52 | ||
Random error | 5.46 × 10−4 | 2 | 2.73 × 10−4 | |||
Sum | 180.99 × 10−4 | 8 |
Source of Variance | SSj | fj | MSj | Fj | Fcrit | Significant |
---|---|---|---|---|---|---|
Factor A | 1.25 × 10−4 | 2 | 0.62 × 10−4 | 0.75 | F0.05(2,4) = 6.94 F0.01(2,4) = 18 | Extremely significant |
Factor B | 6.57 × 10−4 | 2 | 3.28 × 10−4 | 3.96 | ||
Factor C | 37.87 × 10−4 | 2 | 18.94 × 10−4 | 22.81 | ||
Random error | 3.31 × 10−4 | 4 | 0.83 × 10−4 | |||
Sum | 47.75 × 10−4 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Lian, J.; Liu, F.; Zhang, S.; Zhang, Y. Influencing Factors and Wavelet Coherence of Waves Generated by Submerged Jet. J. Mar. Sci. Eng. 2025, 13, 1027. https://doi.org/10.3390/jmse13061027
Li J, Lian J, Liu F, Zhang S, Zhang Y. Influencing Factors and Wavelet Coherence of Waves Generated by Submerged Jet. Journal of Marine Science and Engineering. 2025; 13(6):1027. https://doi.org/10.3390/jmse13061027
Chicago/Turabian StyleLi, Jinxuan, Jijian Lian, Fang Liu, Shuguang Zhang, and Yang Zhang. 2025. "Influencing Factors and Wavelet Coherence of Waves Generated by Submerged Jet" Journal of Marine Science and Engineering 13, no. 6: 1027. https://doi.org/10.3390/jmse13061027
APA StyleLi, J., Lian, J., Liu, F., Zhang, S., & Zhang, Y. (2025). Influencing Factors and Wavelet Coherence of Waves Generated by Submerged Jet. Journal of Marine Science and Engineering, 13(6), 1027. https://doi.org/10.3390/jmse13061027