VIOS-Net: A Multi-Task Fusion System for Maritime Surveillance Through Visible and Infrared Imaging
Abstract
:1. Introduction
- Integrated Multi-Task Fusion Learning Neural Network (VIOS-Net): This study introduces a multi-task fusion learning neural network (VIOS-Net) based on visible and infrared imaging for ship classification. To the best of our knowledge, this is the first model to integrate visible and infrared multi-information sources into a unified framework for complementary feature fusion and joint reinforcement within a deep ship recognition model. Our model achieves effective ship recognition using only an optical camera and an infrared imager, greatly enhancing recognition accuracy over single-sensor systems. This approach is particularly suited to the complex and dynamic maritime environment, ensuring around-the-clock maritime safety.
- Superior Performance on Real-World Datasets: Using two real-world ship-monitoring datasets (visible and infrared), VIOS-Net achieves the best performance among the existing networks, with an accuracy of 96.199% on both datasets. Compared to the baseline ResNet-34 model, VIOS-Net shows significant improvements—25.688% in visible image recognition accuracy and 28.047% in infrared image recognition accuracy. Furthermore, compared to the simple linear weighted decision fusion of multiple information sources, VIOS-Net demonstrates a 6.00% improvement in accuracy on the visible dataset and a 10.80% improvement on the infrared dataset, highlighting the model’s generalization capabilities and its reduced risk of overfitting.
- Impact of Weighting Coefficients on Performance: Through experimentation, we identified the influence of weighting coefficients on model accuracy. The accuracy of both visible and infrared tasks reached 96.199%, and adjustments to the weighting settings during training affected the highest accuracy by 4.150% for visible information sources and 4.650% for infrared information sources. The use of weight coefficients allows the model to more effectively transfer learned features from one task to another, addressing the limitations of neural networks in learning underlying features from a single task.
- Effectiveness of Transfer Learning and Data Augmentation: Our experiments confirmed the effectiveness of transfer learning and data augmentation in improving model performance. Specifically, the use of transfer learning increased accuracy by 5.505% compared to not using it, while data augmentation led to a 2.097% increase in accuracy. These techniques enhance the model’s ability to generalize and improve overall recognition performance.
2. Related Works
2.1. Traditional-Based Vessel Monitoring Methods
2.2. Image Information Source Vessel Monitoring Method
2.2.1. Single-Source-Based Vessel Monitoring Method
2.2.2. Multi-Source-Based Vessel Monitoring Method
3. VIOS-Net System
3.1. Problem Statement
3.2. Preprocessing and Augmentation Unit
Algorithm 1 Preprocess and Augmentation for Visible Light Images Algorithm |
Input: Outboard Profile Visible Light Ship Inspection Dataset ,; |
Require: Random rotation function, Random Rotation(); Flipping function, Flipping(); Scaling function, Scaling(); Cropping function, Cropping(). |
1. #Mean normalization |
2. |
3. for in do |
4. |
5. end for |
6. # Data standardization |
7. # is the standard deviation |
8. for in do |
9. |
10. end for |
11. # Augmentation 12. SetRandomSeed(seed_value) |
13. for in 1 do |
14. # Simulate vessel orientation variations under wave disturbances |
15. # Leverage port-starboard symmetry in ship structures |
16. # Emulate multi-scale observation from varying distances |
17. # Simulate partial occlusion in camera-captured scenarios |
18. end for 19. # Merge the original dataset of four data augmentation methods Output: preprocess and augmented visible light dataset |
Algorithm 2 Preprocess and Augmentation for Infrared Images Algorithm |
Input: Outboard Profile Infrared Ship Inspection Dataset ; |
Require: Random rotation function, RandomRotation(); Flipping function, Flipping(); Scaling function, Scaling(); Cropping function, Cropping();Grayscale inversion function(); Contrast adjusting function();Pseudo-color mapping function, Pseudo ColorMapping(). |
1. # Mean normalization |
2. |
3. for in do 4. |
5. end for |
6. # Data standardization |
7. |
8. for in do |
9. |
10. end for |
11. # Augmentation 12. SetRandomSeed(seed_value) |
13. for in do |
14. # Simulate vessel orientation variations under wave disturbances |
15. # Leverage port-starboard symmetry in ship structures |
16. # Emulate multi-scale observation from varying distances |
17. # Simulate partial occlusion in camera-captured scenarios |
18. end for |
19. # Merge the original dataset of four data augmentation methods |
20. for in do |
21. |
22. |
23. |
24. end for |
Output: preprocess and augmented infrared dataset |
3.2.1. Preprocessing and Augmentation Unit for Visible Light Images
- 1.
- Zero-Centering Normalization
- 2.
- Data Standardization
- 3.
- Rotating
- 4.
- Horizontal flipping
- 5.
- Scaling
- 6.
- Cropping
3.2.2. Preprocessing and Augmentation Unit for Infrared Images
- 1.
- Basic Preprocessing and Data Augmentation for Infrared Images
- 2.
- Pseudo-color Mapping
- Grayscale Inversion
- Histogram Equalization
3.3. Shared Feature Extractor
3.3.1. Residual Networks Block Unit
Algorithm 3 Residual Networks for Shared Feature Extractor |
Input: Preprocessed visible light image set ; |
Require: basic block of residual networks, Residual(); convolution layer, Conv(); max pooling function, Maxpool(); avgpooling function, Avgpool(), Fully Connected Layer, FC() |
1. # Visible Image Feature Extracting |
2. |
3. |
4. for in [3,4,6,3] do #[3,4,6,3] is the number of the residual basic block |
5. for in 1 do |
6. |
7. endfor |
8. endfor |
9. |
10. # Infrared Images Feature Extracting |
11. |
12. |
13. for in [3,4,6,3] do #[3,4,6,3] is the number of the residual basic block |
14. for in 1 do |
15. |
16. end for |
17. end for |
18. |
Output: Infrared images feature ; visible light images feature |
3.3.2. Shared Feature Extracting Block Unit
3.4. Unique Feature Extractor
3.4.1. Unique Feature Extracting Block Unit
3.4.2. Unique Feature Extracting Weight Factor
4. Experiments and Results
4.1. Dataset
4.2. Experiment Setup
4.3. Performance Comparison
5. Quantitative Analysis
5.1. Preprocessing and Augmentation Unit Impact Study
5.2. Transfer Learning Impact Study
5.3. Shared Feature Extraction Impact Study
5.4. Weight Coefficient Impact Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, Z. biSAMNet: A Novel Approach in Maritime Data Completion Using Deep Learning and NLP Techniques. J. Mar. Sci. Eng. 2024, 12, 868. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Wan, Z.; Yu, M.; Shu, Y.; Tan, Z.; Liu, J. Challenges and Countermeasures for International Ship Waste Management: IMO, China, United States, and EU. Ocean Coast. Manag. 2021, 213, 105836. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Li, X.; Yang, Y.; Jiang, X.; Li, R. LFLD-CLbased NET: A Curriculum-Learning-Based Deep Learning Network with Leap-Forward-Learning-Decay for Ship Detection. J. Mar. Sci. Eng. 2023, 11, 1388. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Li, R.; Wu, L.; Cao, L.; Sun, M. Addressing unfamiliar ship type recognition in real-scenario vessel monitoring: A multi-angle metric networks framework. Front. Mar. Sci. 2025, 11, 1516586. [Google Scholar] [CrossRef]
- Feng, Y.; Yin, H.; Zhang, H.; Wu, L.; Dong, H.; Li, J. Independent Tri-Spectral Integration for Intelligent Ship Monitoring in Ports: Bridging Optical, Infrared, and Satellite Insights. J. Mar. Sci. Eng. 2024, 12, 2203. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Liu, H.; Wan, J.; Chen, Z.; Liu, Q. A-BFPN: An Attention-Guided Balanced Feature Pyramid Network for SAR Ship Detection. Remote Sens. 2022, 14, 3829. [Google Scholar] [CrossRef]
- Li, W.; Ning, C.; Fang, Y.; Yuan, G.; Zhou, P.; Li, C. An Algorithm for Ship Detection in Complex Observation Scenarios Based on Mooring Buoys. J. Mar. Sci. Eng. 2024, 12, 1226. [Google Scholar] [CrossRef]
- Połap, D.; Włodarczyk-Sielicka, M.; Wawrzyniak, N. Automatic Ship Classification for a Riverside Monitoring System Using a Cascade of Artificial Intelligence Techniques Including Penalties and Rewards. ISA Trans. 2022, 121, 232–239. [Google Scholar] [CrossRef]
- Baek, W.-K.; Kim, E.; Jeon, H.-K.; Lee, K.-J.; Kim, S.-W.; Lee, Y.-K.; Ryu, J.-H. Monitoring Maritime Ship Characteristics Using Satellite Remote Sensing Data from Different Sensors. Ocean Sci. J. 2024, 59, 8. [Google Scholar] [CrossRef]
- Šaparnis, L.; Rapalis, P.; Daukšys, V. Ship Emission Measurements Using Multirotor Unmanned Aerial Vehicles: Review. J. Mar. Sci. Eng. 2024, 12, 1197. [Google Scholar] [CrossRef]
- Jiang, X.; Li, J.; Huang, Z.; Huang, J.; Li, R. Exploring the performance impact of soft constraint integration on reinforcement learning-based autonomous vessel navigation: Experimental insights. Int. J. Nav. Archit. Ocean. Eng. 2024, 16, 100609. [Google Scholar] [CrossRef]
- Li, J.; Jiang, X.; Zhang, H.; Wu, L.; Cao, L.; Li, R. Multi-joint adaptive control enhanced reinforcement learning for unmanned ship. Ocean Eng. 2025, 318, 120121. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.; Park, B.; Lee, S.-M. Artificial Intelligence Vision-Based Monitoring System for Ship Berthing. IEEE Access 2020, 8, 227014–227023. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Huo, L.; Fan, Y. GT-YOLO: Nearshore Infrared Ship Detection Based on Infrared Images. J. Mar. Sci. Eng. 2024, 12, 213. [Google Scholar] [CrossRef]
- Wang, R.; Miao, K.; Deng, H.; Sun, J. Application of Computer Image Recognition Technology in Ship Monitoring Direction. In New Approaches for Multidimensional Signal Processing; Kountchev, R., Mironov, R., Nakamatsu, K., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2022; Volume 270, pp. 233–241. ISBN 9789811685576. [Google Scholar]
- Zhang, Z.; Zhang, L.; Wu, J.; Guo, W. Optical and Synthetic Aperture Radar Image Fusion for Ship Detection and Recognition: Current State, Challenges, and Future Prospects. IEEE Geosci. Remote Sens. Mag. 2024, 12, 132–168. [Google Scholar] [CrossRef]
- Wang, J.; Li, S. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Zhao, W.; Xiao, N. Performance Analysis of Radar Detection for Fluctuating Targets Based on Coherent Demodulation. Digit. Signal Process 2022, 122, 103371. [Google Scholar] [CrossRef]
- Chen, X.; Su, N.; Huang, Y.; Guan, J. False-Alarm-Controllable Radar Detection for Marine Target Based on Multi Features Fusion via CNNs. IEEE Sens. J. 2021, 21, 9099–9111. [Google Scholar] [CrossRef]
- Su, N.; Chen, X.; Guan, J.; Huang, Y. Maritime Target Detection Based on Radar Graph Data and Graph Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Jing, H.; Cheng, Y.; Wu, H.; Wang, H. Radar Target Detection With Multi-Task Learning in Heterogeneous Environment. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; You, L.; Huang, Z. A New Deep Learning Framework for HF Signal Detection in Wideband Spectrogram. IEEE Signal Process. Lett. 2022, 29, 1342–1346. [Google Scholar] [CrossRef]
- Lin, H.; Dai, X. Real-Time Multisignal Detection and Identification in Known and Unknown HF Channels: A Deep Learning Method. Wirel. Commun. Mob. Comput. 2022, 2022, 1–29. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Wang, Y.; Ye, X. Short-Term Prediction Method of HF Frequency Based on Deep Learning Network. In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), IEEE, Dublin, Ireland, 6–9 October 2019; pp. 360–363. [Google Scholar]
- Li, H.; Jiao, H.; Yang, Z. AIS Data-Driven Ship Trajectory Prediction Modelling and Analysis Based on Machine Learning and Deep Learning Methods. Transp. Res. Part E Logist. Transp. Rev. 2023, 175, 103152. [Google Scholar] [CrossRef]
- European Maritime Safety Agency. Annual Overview of Marine Casualties and Incidents 2024. 2024. Available online: https://www.emsa.europa.eu/publications/reports/item/5352-annual-overview-of-marine-casualties-and-incidents-2024.html (accessed on 27 April 2025).
- Liu, B.; Xiao, Q.; Zhang, Y.; Ni, W.; Yang, Z.; Li, L. Intelligent Recognition Method of Low-Altitude Squint Optical Ship Target Fused with Simulation Samples. Remote Sens. 2021, 13, 2697. [Google Scholar] [CrossRef]
- Meng, H.; Tian, Y.; Ling, Y.; Li, T. Fine-Grained Ship Recognition for Complex Background Based on Global to Local and Progressive Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xu, M.-Z.; Yao, Z.-X.; Kong, X.-P.; Xu, Y.-C. Ships Classification Using Deep Neural Network Based on Attention Mechanism. In Proceedings of the 2021 OES China Ocean Acoustics (COA), IEEE, Harbin, China, 14 July 2021; pp. 1052–1055. [Google Scholar]
- Zhang, T.; Zhang, X.; Shi, J.; Wei, S.; Wang, J.; Li, J.; Su, H.; Zhou, Y. Balance Scene Learning Mechanism for Offshore and Inshore Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wu, P.; Huang, H.; Qian, H.; Su, S.; Sun, B.; Zuo, Z. SRCANet: Stacked Residual Coordinate Attention Network for Infrared Ship Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Xiong, J.; Jia, M.; Zhang, W. Infrared Ship Detection Based on Latent Low-Rank Decomposition and Salient Feature Fusion. In Proceedings of the 5th International Conference on Computer Information Science and Application Technology (CISAT 2022); Zhao, F., Ed.; SPIE: Chongqing, China, 2022; p. 233. [Google Scholar]
- Chen, X.; Qiu, C.; Zhang, Z. A Multiscale Method for Infrared Ship Detection Based on Morphological Reconstruction and Two-Branch Compensation Strategy. Sensors 2023, 23, 7309. [Google Scholar] [CrossRef]
- Li, L.; Yu, J.; Chen, F. TISD: A Three Bands Thermal Infrared Dataset for All Day Ship Detection in Spaceborne Imagery. Remote Sens. 2022, 14, 5297. [Google Scholar] [CrossRef]
- Wu, P.; Su, S.; Tong, X.; Guo, R.; Sun, B.; Zuo, Z.; Zhang, J. SARFB: Strengthened Asymmetric Receptive Field Block for Accurate Infrared Ship Detection. IEEE Sens. J. 2023, 23, 5028–5044. [Google Scholar] [CrossRef]
- Zeng, L.; Zhu, Q.; Lu, D.; Zhang, T.; Wang, H.; Yin, J.; Yang, J. Dual-Polarized SAR Ship Grained Classification Based on CNN With Hybrid Channel Feature Loss. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, J.; Qu, C.; Shao, J. Ship Detection in SAR Images Based on an Improved Faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), IEEE, Beijing, China, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Zhenzhen, L.; Baojun, Z.; Linbo, T.; Zhen, L.; Fan, F. Ship Classification Based on Convolutional Neural Networks. J. Eng. 2019, 2019, 7343–7346. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, X.; Yang, J. Maritime Ship Recognition Based on Convolutional Neural Network and Linear Weighted Decision Fusion for Multimodal Images. Math. Biosci. Eng. 2023, 20, 18545–18565. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Chen, Y.-T.; Hung, M.-H.; Wang, J.-H.; Chang, Y.-L. YOLOV3 Based Ship Detection in Visible and Infrared Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, Brussels, Belgium, 11 July 2021; pp. 3549–3552. [Google Scholar]
- Li, J.; Yang, Y.; Li, X.; Sun, J.; Li, R. Knowledge-Transfer-Based Bidirectional Vessel Monitoring System for Remote and Nearshore Images. J. Mar. Sci. Eng. 2023, 11, 1068. [Google Scholar] [CrossRef]
- Pan, B.; Jiang, Z.; Wu, J.; Zhang, H.; Luo, P. Ship Recognition Based on Active Learning and Composite Kernel SVM. In Advances in Image and Graphics Technologies; Tan, T., Ruan, Q., Wang, S., Ma, H., Di, K., Eds.; Communications in Computer and Information Science; Springer: Berlin, Germany, 2015; Volume 525, pp. 198–207. ISBN 978-3-662-47790-8. [Google Scholar]
- Chang, L.; Chen, Y.-T.; Wang, J.-H.; Chang, Y.-L. Modified Yolov3 for Ship Detection with Visible and Infrared Images. Electronics 2022, 11, 739. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H. Combining a Single Shot Multibox Detector with Transfer Learning for Ship Detection Using Sentinel-1 SAR Images. Remote Sens. Lett. 2018, 9, 780–788. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Boston, MA, USA, 8–10 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, Seoul, Republic of Korea, 7–10 October 2019; pp. 1314–1324. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11218, pp. 122–138. ISBN 978-3-030-01263-2. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50× Fewer Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545. [Google Scholar]
Dataset | Category | Train | Test | All |
---|---|---|---|---|
Visible Dataset | medium ‘other’ | 148 | 37 | 185 |
medium passenger | 112 | 28 | 140 | |
merchant | 144 | 36 | 180 | |
sailing | 330 | 82 | 412 | |
small | 524 | 131 | 655 | |
tug | 80 | 20 | 100 | |
Infrared Dataset | medium ‘other’ | 148 | 37 | 185 |
medium passenger | 112 | 28 | 140 | |
merchant | 144 | 36 | 180 | |
sailing | 330 | 82 | 412 | |
small | 524 | 131 | 655 | |
tug | 80 | 20 | 100 |
Category | Original Data | Balanced Data | Category | Original Data | Balanced Data |
---|---|---|---|---|---|
medium ‘other’ | 185 | 650 | medium ‘other’ | 185 | 650 |
medium passenger | 140 | 560 | medium passenger | 140 | 560 |
merchant | 180 | 650 | merchant | 180 | 650 |
sailing | 412 | 650 | sailing | 412 | 650 |
small | 655 | 655 | small | 655 | 655 |
tug | 100 | 650 | tug | 100 | 650 |
Dataset | Visible | Infrared | ||
---|---|---|---|---|
Category | Train Set1 | Test Set1 | Train Set2 | Test Set2 |
medium ‘other’ | 520 | 130 | 520 | 130 |
medium passenger | 448 | 112 | 448 | 112 |
merchant | 520 | 130 | 520 | 130 |
sailing | 520 | 130 | 520 | 130 |
small | 524 | 131 | 524 | 131 |
tug | 520 | 130 | 520 | 130 |
Method | Visible Images (%) | Infrared Images (%) | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | Accuracy | Precision | Recall | F1-Score | |
Alex Net [45] | 88.976 | 89.500 | 88.650 | 88.820 | 86.239 | 86.380 | 86.210 | 85.950 |
VGG-11 [46] | 83.202 | 83.790 | 83.300 | 83.040 | 84.142 | 84.600 | 84.220 | 83.780 |
VGG-13 [46] | 84.514 | 89.980 | 84.340 | 84.820 | 84.535 | 84.460 | 84.430 | 84.400 |
GoogLeNet [47] | 88.451 | 89.630 | 88.510 | 88.550 | 85.714 | 79.990 | 78.790 | 78.200 |
ResNet-18 [48] | 88.189 | 88.500 | 88.050 | 88.140 | 88.467 | 88.520 | 88.450 | 88.320 |
ResNet-34 [48] | 91.339 | 91.620 | 91.410 | 91.280 | 87.156 | 86.920 | 87.220 | 86.960 |
MobileNetV2 [49] | 86.089 | 86.790 | 85.920 | 85.970 | 84.928 | 84.700 | 85.020 | 84.700 |
MobileNetV3 Small [49] | 90.814 | 91.190 | 90.780 | 90.820 | 85.452 | 85.380 | 85.390 | 85.100 |
ShuffleNetV2_x0_5 [50] | 89.238 | 89.780 | 89.280 | 89.250 | 87.139 | 88.230 | 87.190 | 87.210 |
SqueezeNet [51] | 86.352 | 86.800 | 86.380 | 85.910 | 76.016 | 75.200 | 75.840 | 74.860 |
ConvNeXt [52] | 89.501 | 91.050 | 89.210 | 89.470 | 84.928 | 85.630 | 84.980 | 84.880 |
Improved CNN [39] | 90.200 | 91.600 | 89.100 | 90.000 | 85.400 | 82.900 | 85.800 | 83.500 |
Dual CNN [39] | 93.600 | 95.500 | 92.000 | 93.500 | 93.600 | 95.500 | 92.000 | 93.500 |
VIOS-Net | 96.199 | 96.214 | 96.241 | 96.227 | 96.199 | 96.238 | 96.263 | 96.250 |
Visible Images (%) | Infrared Images (%) | |||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | Accuracy | Precision | Recall | F1-Score | |
With Data Augmentation Technique | 96.199 | 96.214 | 96.241 | 96.227 | 96.199 | 96.238 | 96.263 | 96.250 |
Without Data Augmentation Technique | 94.102 | 94.484 | 94.132 | 94.308 | 94.233 | 94.498 | 94.281 | 94.389 |
Visible Images (%) | Infrared Images (%) | |||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | Accuracy | Precision | Recall | F1-Score | |
With Transfer Learning Technique | 96.199 | 96.214 | 96.241 | 96.227 | 96.199 | 96.238 | 96.263 | 96.250 |
Without Transfer Learning Technique | 90.694 | 91.042 | 90.324 | 90.682 | 90.825 | 91.150 | 90.475 | 90.811 |
Method | Alex Net | VGG-11 | VGG-13 | GoogLeNet | ResNet-18 | ResNet-34 | MobileNetV2 | MobileNetV3 Small | ShuffleNetV2_x0_5 | SqueezeNet | ConvNeXt | VIOS-Net (OURS) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Visible | 61.10M | 128.14M | 128.32M | 6.99M | 11.68M | 21.79M | 3.96M | 662.032k | 641.46k | 6.49M | 2.81M | 11.11M |
Infrared | 61.10M | 128.14M | 128.32M | 6.99M | 11.68M | 21.79M | 3.96M | 662.032k | 641.46k | 6.49M | 2.81M | 11.11M |
Total Parameters | 122.20M | 256.38M | 256.65M | 13.99M | 23.39M | 43.59M | 7.92M | 1.32M | 1.28M | 12.98M | 5.62M | 22.31M |
Acc | 87.607 | 83.672 | 84.525 | 87.083 | 88.328 | 89.247 | 85.509 | 88.133 | 88.189 | 81.184 | 87.215 | 96.199 |
Parameter/Acc (M/%) | 1.39 | 3.06 | 3.04 | 0.16 | 0.26 | 0.49 | 0.09 | 0.01 | 0.01 | 0.16 | 0.06 | 0.23 |
Weight Coefficients Pair | 0.1,0.9 | 0.2,0.8 | 0.3,0.7 | 0.4,0.6 | 0.5,0.5 | 0.6,0.4 | 0.7,0.3 | 0.8,0.2 | 0.9,0.1 |
Visible accuracy (%) | 92.049 | 95.569 | 96.059 | 96.199 | 96.019 | 95.739 | 95.739 | 95.589 | 92.049 |
Infrared accuracy (%) | 91.549 | 95.269 | 95.879 | 96.199 | 95.899 | 95.669 | 95.549 | 95.489 | 95.349 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, J.; Li, J.; Wu, L.; Sun, J.; Yin, H. VIOS-Net: A Multi-Task Fusion System for Maritime Surveillance Through Visible and Infrared Imaging. J. Mar. Sci. Eng. 2025, 13, 913. https://doi.org/10.3390/jmse13050913
Zhan J, Li J, Wu L, Sun J, Yin H. VIOS-Net: A Multi-Task Fusion System for Maritime Surveillance Through Visible and Infrared Imaging. Journal of Marine Science and Engineering. 2025; 13(5):913. https://doi.org/10.3390/jmse13050913
Chicago/Turabian StyleZhan, Junquan, Jiawen Li, Langtao Wu, Jiahua Sun, and Hui Yin. 2025. "VIOS-Net: A Multi-Task Fusion System for Maritime Surveillance Through Visible and Infrared Imaging" Journal of Marine Science and Engineering 13, no. 5: 913. https://doi.org/10.3390/jmse13050913
APA StyleZhan, J., Li, J., Wu, L., Sun, J., & Yin, H. (2025). VIOS-Net: A Multi-Task Fusion System for Maritime Surveillance Through Visible and Infrared Imaging. Journal of Marine Science and Engineering, 13(5), 913. https://doi.org/10.3390/jmse13050913