Improving Offshore Wind Speed Forecasting with a CRGWAA-Enhanced Adaptive Neuro-Fuzzy Inference System
Abstract
:1. Introduction
- CRGWAA integrates Chebyshev initialization, an elite-guided reflection refinement operator, and quadratic interpolation to enhance convergence, diversity, and local exploitation in ANFIS.
- CRGWAA achieves superior accuracy, convergence speed, and robustness on the CEC2022 benchmark suite.
- ANFIS-CRGWAA outperforms conventional and hybrid models in real-world offshore wind speed forecasting, demonstrating strong generalization.
2. Methodology
2.1. ANFIS
2.2. Weighted Averaging Algorithm
2.3. Improved CRGWAA for Optimization
2.3.1. Chebyshev Mapping Initialization
2.3.2. Elite-Guided Reflection Refinement Operator
2.3.3. Generalized Quadratic Interpolation
2.4. Proposed ANFIS-CRGWAA for Offshore Wind Speed Prediction
3. Experiment Results
3.1. Benchmark Function Test for CRGWAA
3.1.1. Experimental Settings
3.1.2. Test Results of CEC2022
3.1.3. Stability and Convergence Speed
3.1.4. Search History Trajectory
3.2. Offshore Wind Speed Prediction Performance
3.2.1. Dataset Introduction
3.2.2. Data Preprocessing
3.2.3. Performance Metrics
3.2.4. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Mogollón, J.M.; Tukker, A.; Dong, J.; Von Terzi, D.; Zhang, C.; Steubing, B. Future Material Requirements for Global Sustainable Offshore Wind Energy Development. Renew. Sustain. Energy Rev. 2022, 164, 112603. [Google Scholar] [CrossRef]
- Gong, Z.; Wan, A.; Ji, Y.; AL-Bukhaiti, K.; Yao, Z. Improving Short-Term Offshore Wind Speed Forecast Accuracy Using a VMD-PE-FCGRU Hybrid Model. Energy 2024, 295, 131016. [Google Scholar] [CrossRef]
- Xu, X.; Hu, S.; Shi, P.; Shao, H.; Li, R.; Li, Z. Natural Phase Space Reconstruction-Based Broad Learning System for Short-Term Wind Speed Prediction: Case Studies of an Offshore Wind Farm. Energy 2023, 262, 125342. [Google Scholar] [CrossRef]
- Song, D.; Fan, T.; Li, Q.; Joo, Y.H. Advances in Offshore Wind. J. Mar. Sci. Eng. 2024, 12, 359. [Google Scholar] [CrossRef]
- Cem, E.; Cebi, S. Fuzzy Set-Based Approaches in Wind Energy Research: A Literature Review. In Intelligent and Fuzzy Systems; Kahraman, C., Cevik Onar, S., Cebi, S., Oztaysi, B., Tolga, A.C., Ucal Sari, I., Eds.; Lecture Notes in Networks and Systems; Springer Nature: Cham, Switzerland, 2024; Volume 1090, pp. 425–433. ISBN 978-3-031-67191-3. [Google Scholar]
- Das, P.; Mashiata, M.; Iglesias, G. Big Data Meets Big Wind: A Scientometric Review of Machine Learning Approaches in Offshore Wind Energy. Energy AI 2024, 18, 100418. [Google Scholar] [CrossRef]
- Dong, D.; Wang, S.; Guo, Q.; Ding, Y.; Li, X.; You, Z. Short-Term Marine Wind Speed Forecasting Based on Dynamic Graph Embedding and Spatiotemporal Information. J. Mar. Sci. Eng. 2024, 12, 502. [Google Scholar] [CrossRef]
- Dong, L.; Wang, L.; Khahro, S.F.; Gao, S.; Liao, X. Wind Power Day-Ahead Prediction with Cluster Analysis of NWP. Renew. Sustain. Energy Rev. 2016, 60, 1206–1212. [Google Scholar] [CrossRef]
- Tuy, S.; Lee, H.S.; Chreng, K. Integrated Assessment of Offshore Wind Power Potential Using Weather Research and Forecast (WRF) Downscaling with Sentinel-1 Satellite Imagery, Optimal Sites, Annual Energy Production and Equivalent CO2 Reduction. Renew. Sustain. Energy Rev. 2022, 163, 112501. [Google Scholar] [CrossRef]
- Torres, J.L.; García, A.; De Blas, M.; De Francisco, A. Forecast of Hourly Average Wind Speed with ARMA Models in Navarre (Spain). Sol. Energy 2005, 79, 65–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Kong, C.; Chen, B. A New Prediction Method Based on VMD-PRBF-ARMA-E Model Considering Wind Speed Characteristic. Energy Convers. Manag. 2020, 203, 112254. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Xu, X.; Li, R.; Shi, P. GAOformer: An Adaptive Spatiotemporal Feature Fusion Transformer Utilizing GAT and Optimizable Graph Matrixes for Offshore Wind Speed Prediction. Energy 2024, 292, 130404. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, J. Spatial-Temporal Offshore Wind Speed Characteristics Prediction Based on an Improved Purely 2D CNN Approach in a Large-Scale Perspective Using Reanalysis Dataset. Energy Convers. Manag. 2024, 299, 117880. [Google Scholar] [CrossRef]
- Hou, M.; Jin, S.; Cui, X.; Peng, C.; Zhao, K.; Song, L.; Zhang, G. Protein Multiple Conformation Prediction Using Multi-Objective Evolution Algorithm. Interdiscip. Sci. Comput. Life Sci. 2024, 16, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, D.; Yang, C.; Zhou, C. H-ACO with Consecutive Bases Pairing Constraint for Designing DNA Sequences. Interdiscip. Sci. Comput. Life Sci. 2024, 16, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, S.; Zhu, D.; Hu, G.; Zhou, C. DNA Sequence Optimization Design of Arithmetic Optimization Algorithm Based on Billiard Hitting Strategy. Interdiscip. Sci. Comput. Life Sci. 2023, 15, 231–248. [Google Scholar] [CrossRef]
- Kooshari, A.; Fartash, M.; Mihannezhad, P.; Chahardoli, M.; AkbariTorkestani, J.; Nazari, S. An Optimization Method in Wireless Sensor Network Routing and IoT with Water Strider Algorithm and Ant Colony Optimization Algorithm. Evol. Intel. 2024, 17, 1527–1545. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Wang, D.; Xu, Y.; Hua, G. WOAD3QN-RP: An Intelligent Routing Protocol in Wireless Sensor Networks—A Swarm Intelligence and Deep Reinforcement Learning Based Approach. Expert Syst. Appl. 2024, 246, 123089. [Google Scholar] [CrossRef]
- Miao, F.; Li, H.; Yan, G.; Mei, X.; Wu, Z.; Zhao, W.; Liu, T.; Zhang, H. Optimizing UAV Path Planning in Maritime Emergency Transportation: A Novel Multi-Strategy White Shark Optimizer. J. Mar. Sci. Eng. 2024, 12, 1207. [Google Scholar] [CrossRef]
- Miao, F.; Li, H.; Mei, X. Three-Dimensional Path Planning of UAVs for Offshore Rescue Based on a Modified Coati Optimization Algorithm. J. Mar. Sci. Eng. 2024, 12, 1676. [Google Scholar] [CrossRef]
- Ling, L.; Huang, L.; Wang, J.; Zhang, L.; Wu, Y.; Jiang, Y.; Xia, K. An Improved Soft Subspace Clustering Algorithm Based on Particle Swarm Optimization for MR Image Segmentation. Interdiscip. Sci. Comput. Life Sci. 2023, 15, 560–577. [Google Scholar] [CrossRef]
- Tuo, S.; Jiang, J. A Novel Detection Method for High-Order SNP Epistatic Interactions Based on Explicit-Encoding-Based Multitasking Harmony Search. Interdiscip. Sci. Comput. Life Sci. 2024, 16, 688–711. [Google Scholar] [CrossRef]
- Zhu, A.; Zhao, Q.; Yang, T.; Zhou, L.; Zeng, B. Wind Speed Prediction and Reconstruction Based on Improved Grey Wolf Optimization Algorithm and Deep Learning Networks. Comput. Electr. Eng. 2024, 114, 109074. [Google Scholar] [CrossRef]
- Jang, J.-S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Nguyen, T.-L.; Kavuri, S.; Park, S.-Y.; Lee, M. Attentive Hierarchical ANFIS with Interpretability for Cancer Diagnostic. Expert Syst. Appl. 2022, 201, 117099. [Google Scholar] [CrossRef]
- Saraswathi, K.; Vijayaraghavan, S. Design of TITO System Using ANFIS-PID Controller for Polymerization Industry. Meas. Sens. 2024, 31, 100996. [Google Scholar] [CrossRef]
- Urošević, V. Determining the Model for Short-Term Load Forecasting Using Fuzzy Logic and ANFIS. Soft Comput. 2024, 28, 11457–11470. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, Y.; Luo, Q.; Wei, Y. Complex-Valued Artificial Hummingbird Algorithm for Global Optimization and Short-Term Wind Speed Prediction. Expert Syst. Appl. 2024, 246, 123160. [Google Scholar] [CrossRef]
- Rashed, B.M.; Popescu, N. Medical Image-Based Diagnosis Using a Hybrid Adaptive Neuro-Fuzzy Inferences System (ANFIS) Optimized by GA with a Deep Network Model for Features Extraction. Mathematics 2024, 12, 633. [Google Scholar] [CrossRef]
- Cheng, J.; De Waele, W. Weighted Average Algorithm: A Novel Meta-Heuristic Optimization Algorithm Based on the Weighted Average Position Concept. Knowl.-Based Syst. 2024, 305, 112564. [Google Scholar] [CrossRef]
- Wu, B.; Zeng, H.; Hu, H.; Wang, L. A Novel Data-Driven Model for Explainable Hog Price Forecasting. Appl. Intell. 2025, 55, 444. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Q.; Bu, X.; Zhang, H. Quadruple Parameter Adaptation Growth Optimizer with Integrated Distribution, Confrontation, and Balance Features for Optimization. Expert Syst. Appl. 2024, 235, 121218. [Google Scholar] [CrossRef]
- Kumar, A.; Price, K.V.; Mohamed, A.W.; Hadi, A.A. Problem Definitions and Evaluation Criteria for the CEC 2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization; Technical Report; Nanyang Technological University: Singapore, 2022. [Google Scholar]
- Montana, D.J.; Davis, L. Training Feedforward Neural Networks Using Genetic Algorithms. Int. Jt. Conf. Artif. Intell. 1989, 89, 762–767. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand Cat Swarm Optimization: A Nature-Inspired Algorithm to Solve Global Optimization Problems. Eng. Comput. 2023, 39, 2627–2651. [Google Scholar] [CrossRef]
- Hamad, R.K.; Rashid, T.A. GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond. Evol. Syst. 2024, 15, 1249–1274. [Google Scholar] [CrossRef]
- Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M. A Novel Algorithm for Global Optimization: Rat Swarm Optimizer. J. Ambient. Intell. Hum. Comput. 2021, 12, 8457–8482. [Google Scholar] [CrossRef]
Classification | NO. | Functions | Dim | Range | Fmin |
---|---|---|---|---|---|
Unimodal Function | F1 | Shifted and full Rotated Zakharov Function | 2/10/20 | 300 | |
Basic Functions | F2 | Shifted and full Rotated Rosenbrock’s Function | 2/10/20 | 400 | |
F3 | Shifted and full Rotated Expanded Schaffer’s f6 Function | 2/10/20 | 600 | ||
F4 | Shifted and full Rotated Non-Continuous Rastrigin’s Function | 2/10/20 | 800 | ||
F5 | Shifted and full Rotated Levy Function | 2/10/20 | 900 | ||
Hybrid Functions | F6 | Hybrid Function 1 (N = 3) | 2/10/20 | 1800 | |
F7 | Hybrid Function 2 (N = 6) | 2/10/20 | 2000 | ||
F8 | Hybrid Function 3 (N = 5) | 2/10/20 | 2200 | ||
Composition Functions | F9 | Composition Function 1 (N = 5) | 2/10/20 | 2300 | |
F10 | Composition Function 2 (N = 4) | 2/10/20 | 2400 | ||
F11 | Composition Function 3 (N = 5) | 2/10/20 | 2600 | ||
F12 | Composition Function 4 (N = 6) | 2/10/20 | 2700 |
No. | Stat | GA | WOA | SCSO | GOOSE | RSO | WAA | CRGWAA |
---|---|---|---|---|---|---|---|---|
F1 | Mean | 8477.760 | 16,064.177 | 4745.204 | 300.000 | 3225.753 | 300.084 | 300.078 |
Std | 2566.059 | 5535.131 | 2230.214 | 0.000 | 2234.883 | 0.028 | 0.038 | |
F2 | Mean | 677.185 | 425.330 | 703.286 | 415.000 | 806.363 | 411.715 | 402.517 |
Std | 136.532 | 31.731 | 196.240 | 21.185 | 320.430 | 21.080 | 3.498 | |
F3 | Mean | 640.073 | 634.336 | 640.371 | 652.013 | 642.696 | 651.389 | 601.541 |
Std | 7.067 | 12.595 | 5.357 | 13.698 | 5.681 | 7.129 | 1.630 | |
F4 | Mean | 866.384 | 842.257 | 838.943 | 845.107 | 840.808 | 845.880 | 823.294 |
Std | 3.883 | 18.575 | 5.383 | 13.786 | 8.309 | 7.965 | 9.950 | |
F5 | Mean | 1650.559 | 1342.316 | 1331.817 | 1923.003 | 1352.254 | 1422.314 | 900.338 |
Std | 215.895 | 228.057 | 174.359 | 542.590 | 118.284 | 95.842 | 0.380 | |
F6 | Mean | 15,498,903.935 | 4632.498 | 5,403,959.233 | 4040.535 | 3,580,019.482 | 2088.455 | 2082.712 |
Std | 10,902,578.496 | 2351.846 | 4,416,652.765 | 2201.385 | 11,217,258.356 | 114.715 | 138.942 | |
F7 | Mean | 2080.820 | 2065.884 | 2067.971 | 2141.462 | 2083.177 | 2114.503 | 2025.952 |
Std | 13.659 | 15.689 | 11.672 | 59.053 | 11.595 | 40.738 | 7.562 | |
F8 | Mean | 2238.839 | 2231.678 | 2238.244 | 2338.419 | 2244.722 | 2331.311 | 2217.833 |
Std | 4.843 | 2.982 | 5.597 | 128.580 | 9.905 | 105.448 | 9.783 | |
F9 | Mean | 2651.262 | 2551.513 | 2642.342 | 2551.062 | 2640.728 | 2529.288 | 2529.511 |
Std | 19.900 | 46.257 | 47.350 | 34.244 | 50.692 | 0.004 | 4.622 | |
F10 | Mean | 2519.387 | 2555.184 | 2591.663 | 2595.787 | 2509.281 | 2812.168 | 2592.348 |
Std | 6.199 | 72.228 | 87.182 | 163.284 | 0.858 | 587.895 | 48.673 | |
F11 | Mean | 21,511.482 | 2900.556 | 3552.559 | 10,430.731 | 3264.259 | 2874.247 | 2601.872 |
Std | 5018.380 | 57.975 | 340.590 | 13,175.498 | 324.504 | 95.755 | 0.274 | |
F12 | Mean | 2918.025 | 2884.943 | 2885.626 | 2967.311 | 2913.544 | 2994.105 | 2869.334 |
Std | 12.735 | 29.572 | 12.868 | 62.262 | 32.814 | 94.439 | 2.139 |
No. | GA | WOA | SCSO | GOOSE | RSO | WAA |
---|---|---|---|---|---|---|
F1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.076 |
F2 | 0.000 | 0.162 | 0.000 | 0.623 | 0.000 | 0.038 |
F3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
F4 | 0.000 | 0.473 | 0.007 | 0.140 | 0.005 | 0.003 |
F5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
F6 | 0.000 | 0.004 | 0.000 | 0.001 | 0.000 | 0.571 |
F7 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
F8 | 0.000 | 0.045 | 0.000 | 0.000 | 0.000 | 0.000 |
F9 | 0.000 | 0.121 | 0.000 | 0.571 | 0.000 | 0.021 |
F10 | 0.473 | 0.064 | 0.104 | 0.011 | 0.473 | 0.011 |
F11 | 0.000 | 0.000 | 0.000 | 0.140 | 0.000 | 0.005 |
F12 | 0.000 | 0.970 | 0.005 | 0.000 | 0.006 | 0.000 |
Matric | Meanings | Matric |
---|---|---|
MAE | Mean Absolute Error | |
MBE | Mean Bias Error | |
RMSE | Root Mean Square Error | |
MAPE | Mean Absolute Percentage Error | |
R-squared | Coefficient Of Determination | |
Accuracy | Accuracy Ratio |
Modals | Stat | MAE | MBE | RMSE | MAPE | R2 |
---|---|---|---|---|---|---|
LSTM | Mean | 0.109 | 0.000 | 0.179 | 3.297 | 0.996 |
Std | 0.004 | 0.015 | 0.021 | 0.160 | 0.001 | |
CNN | Mean | 0.179 | −0.056 | 0.232 | 6.043 | 0.992 |
Std | 0.075 | 0.076 | 0.091 | 2.804 | 0.005 | |
Transformer | Mean | 0.179 | 0.117 | 0.233 | 0.039 | 0.994 |
Std | 0.063 | 0.077 | 0.067 | 0.013 | 0.003 | |
BP-CRGWAA | Mean | 0.388 | −0.098 | 0.569 | 9.894 | 0.965 |
Std | 0.083 | 0.122 | 0.141 | 1.872 | 0.015 | |
RBF-CRGWAA | Mean | 0.381 | −0.141 | 0.555 | 9.578 | 0.967 |
Std | 0.122 | 0.127 | 0.135 | 4.010 | 0.017 | |
ELM-CRGWAA | Mean | 0.067 | 0.000 | 0.120 | 2.108 | 0.998 |
Std | 0.033 | 0.000 | 0.042 | 0.880 | 0.001 | |
ANFIS-GA | Mean | 1.799 | −0.741 | 2.245 | 36.151 | 0.402 |
Std | 0.976 | 1.817 | 0.936 | 11.592 | 0.521 | |
ANFIS-GOOSE | Mean | 0.498 | −0.053 | 0.886 | 15.688 | 0.910 |
Std | 0.171 | 0.071 | 0.312 | 5.465 | 0.055 | |
ANFIS-RSO | Mean | 0.314 | 0.085 | 0.453 | 8.414 | 0.975 |
Std | 0.163 | 0.207 | 0.213 | 3.756 | 0.026 | |
ANFIS-SCSO | Mean | 0.230 | −0.005 | 0.388 | 7.157 | 0.979 |
Std | 0.160 | 0.032 | 0.257 | 4.886 | 0.030 | |
ANFIS-WOA | Mean | 0.520 | 0.123 | 0.726 | 17.823 | 0.853 |
Std | 0.833 | 0.482 | 1.005 | 31.776 | 0.382 | |
ANFIS-WAA | Mean | 0.159 | −0.010 | 0.196 | 3.255 | 0.995 |
Std | 0.094 | 0.171 | 0.097 | 1.436 | 0.005 | |
ANFIS-CRGWAA | Mean | 0.065 | 0.015 | 0.107 | 1.830 | 0.999 |
Std | 0.035 | 0.057 | 0.031 | 0.600 | 0.001 |
Modals | Stat | MAE | MBE | RMSE | MAPE | R2 |
---|---|---|---|---|---|---|
LSTM | Mean | 0.134 | −0.002 | 0.224 | 3.324 | 0.997 |
Std | 0.007 | 0.013 | 0.027 | 0.264 | 0.001 | |
CNN | Mean | 0.228 | −0.095 | 0.295 | 6.186 | 0.993 |
Std | 0.108 | 0.113 | 0.127 | 3.654 | 0.006 | |
Transformer | Mean | 0.252 | 0.190 | 0.293 | 0.046 | 0.994 |
Std | 0.155 | 0.211 | 0.167 | 0.020 | 0.007 | |
BP-CRGWAA | Mean | 0.550 | −0.072 | 0.810 | 11.157 | 0.960 |
Std | 0.149 | 0.251 | 0.287 | 4.839 | 0.027 | |
RBF-CRGWAA | Mean | 0.635 | −0.220 | 0.907 | 12.084 | 0.941 |
Std | 0.390 | 0.528 | 0.530 | 4.525 | 0.074 | |
ELM-CRGWAA | Mean | 0.078 | 0.000 | 0.145 | 2.044 | 0.999 |
Std | 0.046 | 0.000 | 0.062 | 0.984 | 0.001 | |
ANFIS-GA | Mean | 1.616 | −0.220 | 2.155 | 28.925 | 0.702 |
Std | 0.667 | 1.153 | 0.940 | 13.080 | 0.245 | |
ANFIS-GOOSE | Mean | 0.509 | −0.008 | 0.895 | 13.137 | 0.934 |
Std | 0.435 | 0.082 | 0.675 | 11.808 | 0.077 | |
ANFIS-RSO | Mean | 0.293 | −0.009 | 0.439 | 6.300 | 0.989 |
Std | 0.070 | 0.090 | 0.094 | 1.321 | 0.004 | |
ANFIS-SCSO | Mean | 0.335 | −0.076 | 0.482 | 7.064 | 0.982 |
Std | 0.255 | 0.190 | 0.326 | 4.834 | 0.021 | |
ANFIS-WOA | Mean | 0.586 | 0.105 | 0.798 | 17.004 | 0.883 |
Std | 1.083 | 0.371 | 1.291 | 35.410 | 0.336 | |
ANFIS-WAA | Mean | 0.132 | −0.072 | 0.183 | 2.267 | 0.998 |
Std | 0.103 | 0.130 | 0.106 | 1.164 | 0.003 | |
ANFIS-CRGWAA | Mean | 0.084 | −0.007 | 0.138 | 1.883 | 0.999 |
Std | 0.029 | 0.055 | 0.030 | 0.572 | 0.001 |
Datasets | Criteria (%) | LSTM vs. ANFIS-CRGWAA | ELM-CRGWAA vs. ANFIS-CRGWAA | ANFIS-WAA vs. ANFIS-CRGWAA |
---|---|---|---|---|
10 m offshore wind speed | 40.58% | 2.58% | 59.05% | |
40.54% | 11.15% | 45.71% | ||
44.51% | 13.21% | 43.79% | ||
0.28% | 0.04% | 0.36% | ||
100 m offshore wind speed | 37.68% | −7.52% | 36.76% | |
38.32% | 4.71% | 24.48% | ||
43.36% | 7.90% | 16.96% | ||
0.22% | 0.03% | 0.13% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Miao, F. Improving Offshore Wind Speed Forecasting with a CRGWAA-Enhanced Adaptive Neuro-Fuzzy Inference System. J. Mar. Sci. Eng. 2025, 13, 908. https://doi.org/10.3390/jmse13050908
Liu Y, Miao F. Improving Offshore Wind Speed Forecasting with a CRGWAA-Enhanced Adaptive Neuro-Fuzzy Inference System. Journal of Marine Science and Engineering. 2025; 13(5):908. https://doi.org/10.3390/jmse13050908
Chicago/Turabian StyleLiu, Yingjie, and Fahui Miao. 2025. "Improving Offshore Wind Speed Forecasting with a CRGWAA-Enhanced Adaptive Neuro-Fuzzy Inference System" Journal of Marine Science and Engineering 13, no. 5: 908. https://doi.org/10.3390/jmse13050908
APA StyleLiu, Y., & Miao, F. (2025). Improving Offshore Wind Speed Forecasting with a CRGWAA-Enhanced Adaptive Neuro-Fuzzy Inference System. Journal of Marine Science and Engineering, 13(5), 908. https://doi.org/10.3390/jmse13050908