Detection of Seismic and Acoustic Sources Using Distributed Acoustic Sensing Technology in the Gulf of Catania
Abstract
:1. Introduction
2. Materials and Methods
2.1. INFN–LNS Deep–Sea Optical Fiber Infrastructures
2.2. Experimental Setup
3. Results and Discussion
3.1. Seismic Event Detection
3.2. Anthropogenic Signals: Shipping Traffic Monitoring
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Gorshkov, B.G.; Yüksel, K.; Fotiadi, A.A.; Wuilpart, M.; Korobko, D.A.; Zhirnov, A.A.; Stepanov, K.V.; Turov, A.T.; Konstantinov, Y.A.; Lobach, I.A. Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective. Sensors 2022, 22, 1033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xie, S.; Li, Y.; Yuan, M.; Qian, X. Detection of Gas Pipeline Leakage Using Distributed Optical Fiber Sensors: Multi-Physics Analysis of Leakage-Fiber Coupling Mechanism in Soil Environment. Sensors 2023, 23, 5430. [Google Scholar] [CrossRef] [PubMed]
- Gietz, H.; Sharma, J.; Tyagi, M. Machine Learning for Automated Sand Transport Monitoring in a Pipeline Using Distributed Acoustic Sensor Data. IEEE Sensors J. 2024, 24, 22444–22457. [Google Scholar] [CrossRef]
- Ghazali, M.F.; Mohamad, H.; Nasir, M.Y.M.; Hamzh, A.; Abdullah, M.A.; Aziz, N.F.A.; Thansirichaisree, P.; Zan, M.S.D. State-of-The-Art application and challenges of optical fibre distributed acoustic sensing in civil engineering. Opt. Fiber Technol. 2024, 87, 103911. [Google Scholar] [CrossRef]
- Dejdar, P.; Záviška, P.; Valach, S.; Münster, P.; Horváth, T. Image Edge Detection Methods in Perimeter Security Systems Using Distributed Fiber Optical Sensing. Sensors 2022, 22, 4573. [Google Scholar] [CrossRef]
- Gao, Y.; Cai, Q. Application of Smart Fiber Optic Sensor Technology in Feature Extraction, Recognition, and Detection. Wirel. Commun. Mob. Comput. 2022, 2022, 4552388. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, M.R.; Martins, H.F.; Williams, E.F.; Becerril, C.; Magalhaes, R.; Costa, L.; Martin-Lopez, S.; Jia, Z.; Zhan, Z.; Gonzalez-Herraez, M. Seismic Monitoring With Distributed Acoustic Sensing From the Near-Surface to the Deep Oceans. J. Light. Technol. 2022, 40, 1453–1463. [Google Scholar] [CrossRef]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, W.; Li, J.; Biondi, E.; Miao, Y.; Spica, Z.J.; Viens, L.; Shinohara, M.; Ide, S.; Mochizuki, K.; et al. Earthquake Magnitude With DAS: A Transferable Data-Based Scaling Relation. Geophys. Res. Lett. 2023, 50, e2023GL103045. [Google Scholar] [CrossRef]
- Miao, Y.; Salaree, A.; Spica, Z.J.; Nishida, K.; Yamada, T.; Shinohara, M. Assessing the Earthquake Recording Capability of an Ocean-Bottom Distributed Acoustic Sensing Array in the Sanriku Region, Japan. Seismol. Res. Lett. 2025, 96, 631–650. [Google Scholar] [CrossRef]
- Gök, R.; Walter, W.R.; Barno, J.; Downie, C.; Mellors, R.J.; Mayeda, K.; Roman-Nieves, J.; Templeton, D.; Ajo-Franklin, J. Reliable Earthquake Source Parameters Using Distributed Acoustic Sensing Data Derived from Coda Envelopes. Seismol. Res. Lett. 2024, 95, 2208–2220. [Google Scholar] [CrossRef]
- Lior, I.; Rivet, D.; Ampuero, J.P.; Sladen, A.; Barrientos, S.; Sánchez-Olavarría, R.; Villarroel Opazo, G.A.; Bustamante Prado, J.A. Magnitude estimation and ground motion prediction to harness fiber optic distributed acoustic sensing for earthquake early warning. Sci. Rep. 2023, 13, 424. [Google Scholar] [CrossRef]
- Carlino, S.; Mirabile, M.; Troise, C.; Sacchi, M.; Zeni, L.; Minardo, A.; Caccavale, M.; Darányi, V.; De Natale, G. Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring. Remote Sens. 2016, 8, 674. [Google Scholar] [CrossRef]
- Wilcock, W.S.; Abadi, S.; Lipovsky, B.P. Distributed acoustic sensing recordings of low-frequency whale calls and ship noise offshore Central Oregon. JASA Express Lett. 2023, 3, 026002. [Google Scholar] [CrossRef] [PubMed]
- Rivet, D.; de Cacqueray, B.; Sladen, A.; Roques, A.; Calbris, G. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 2021, 149, 2615–2627. [Google Scholar] [CrossRef]
- Xiao, H.; Spica, Z.J.; Li, J.; Zhan, Z. Detection of Earthquake Infragravity and Tsunami Waves With Underwater Distributed Acoustic Sensing. Geophys. Res. Lett. 2024, 51, e2023GL106767. [Google Scholar] [CrossRef]
- Landrø, M.; Bouffaut, L.; Kriesell, H.J.; Potter, J.R.; Rørstadbotnen, R.A.; Taweesintananon, K.; Johansen, S.E.; Brenne, J.K.; Haukanes, A.; Schjelderup, O.; et al. Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable. Sci. Rep. 2022, 12, 19226. [Google Scholar] [CrossRef]
- Lior, I.; Sladen, A.; Rivet, D.; Ampuero, J.P.; Hello, Y.; Becerril, C.; Martins, H.F.; Lamare, P.; Jestin, C.; Tsagkli, S.; et al. On the detection capabilities of underwater distributed acoustic sensing. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020925. [Google Scholar] [CrossRef]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef]
- Howe, B.M.; Angove, M.; Aucan, J.; Barnes, C.R.; Barros, J.S.; Bayliff, N.; Becker, N.C.; Carrilho, F.; Fouch, M.J.; Fry, B.; et al. SMART Subsea Cables for Observing the Earth and Ocean, Mitigating Environmental Hazards, and Supporting the Blue Economy. Front. Earth Sci. 2022, 9, 775544. [Google Scholar] [CrossRef]
- Favali, P.; Beranzoli, L.; D’Anna, G.; Gasparoni, F.; Gerber, H.W. NEMO-SN-1 the first “real-time” seafloor observatory of ESONET. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 567, 462–467. [Google Scholar] [CrossRef]
- Pulvirenti, S.; Viola, S. The INFN-LNS Fibre optic infrastructure. In Proceedings of the Galileo Conference: Fibre Optic Sensing in Geosciences, Catania, Italy, 16–20 June 2024. [Google Scholar] [CrossRef]
- Azzaro, R. Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics. J. Geodyn. 1999, 28, 193–213. [Google Scholar] [CrossRef]
- Gutscher, M.A.; Quetel, L.; Murphy, S.; Riccobene, G.; Royer, J.Y.; Barreca, G.; Aurnia, S.; Klingelhoefer, F.; Cappelli, G.; Urlaub, M.; et al. Detecting strain with a fiber optic cable on the seafloor offshore Mount Etna, Southern Italy. Earth Planet. Sci. Lett. 2023, 616, 118230. [Google Scholar] [CrossRef]
- Viola, S.; Grammauta, R.; Sciacca, V.; Bellia, G.; Beranzoli, L.; Buscaino, G.; Caruso, F.; Chierici, F.; Cuttone, G.; D’Amico, A.; et al. Continuous monitoring of noise levels in the Gulf of Catania (Ionian Sea). Study of correlation with ship traffic. Mar. Pollut. Bull. 2017, 121, 97–103. [Google Scholar] [CrossRef]
- Sciacca, V.; Caruso, F.; Beranzoli, L.; Chierici, F.; De Domenico, E.; Embriaco, D.; Favali, P.; Giovanetti, G.; Larosa, G.; Marinaro, G.; et al. Annual Acoustic Presence of Fin Whale (Balaenoptera physalus) Offshore Eastern Sicily, Central Mediterranean Sea. PLoS ONE 2015, 10, e0141838. [Google Scholar] [CrossRef]
- Caruso, F.; Alonge, G.; Bellia, G.; De Domenico, E.; Grammauta, R.; Larosa, G.; Mazzola, S.; Riccobene, G.; Pavan, G.; Papale, E.; et al. Long-term monitoring of dolphin biosonar activity in deep pelagic waters of the Mediterranean Sea. Sci. Rep. 2017, 7, 4321. [Google Scholar] [CrossRef]
- Favali, P.; Chierici, F.; Marinaro, G.; Giovanetti, G.; Azzarone, A.; Beranzoli, L.; De Santis, A.; Embriaco, D.; Monna, S.; Lo Bue, N.; et al. NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea. IEEE J. Ocean. Eng. 2013, 38, 358–374. [Google Scholar] [CrossRef]
- Di Mauro, L.S.; Diego-Tortosa, D.; Riccobene, G.; D’Amato, C.; Leonora, E.; Longhitano, F.; Orlando, A.; Viola, S. The IPANEMA Project: Underwater Acoustic Structure for Volcanic Activity and Natural CO2 Emissions Monitoring. Eng. Proc. 2023, 58, 9. [Google Scholar] [CrossRef]
- Gutscher, M.A.; Royer, J.Y.; Graindorge, D.; Murphy, S.; Klingelhoefer, F.; Aiken, C.; Cattaneo, A.; Barreca, G.; Quetel, L.; Riccobene, G.; et al. Fiber optic monitoring of active faults at the seafloor: I the FOCUS project. Photoniques 2019, 32–37. [Google Scholar] [CrossRef]
- Dean, T.; Cuny, T.; Hartog, A.H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing. Geophys. Prospect. 2017, 65, 184–193. [Google Scholar] [CrossRef]
- Hubbard, P.G.; Vantassel, J.P.; Cox, B.R.; Rector, J.W.; Yust, M.B.S.; Soga, K. Quantifying the Surface Strain Field Induced by Active Sources with Distributed Acoustic Sensing: Theory and Practice. Sensors 2022, 22, 4589. [Google Scholar] [CrossRef] [PubMed]
- Istituto Nazionale di Geofisica e Vulcanologia (INGV). Earthquake Report: Event ID 36866661. INGV Terremoti 2023. Available online: https://terremoti.ingv.it/en/event/36866661 (accessed on 24 March 2025).
- Calò, M.; Parisi, L.; Luzio, D. Lithospheric P- and S-wave velocity models of the Sicilian area using WAM tomography: Procedure and assessments. Geophys. J. Int. 2013, 195, 625–649. [Google Scholar] [CrossRef]
- Diego-Tortosa, D.; Bonanno, D.; Bou-Cabo, M.; Di Mauro, L.S.; Idrissi, A.; Lara, G.; Riccobene, G.; Sanfilippo, S.; Viola, S. Effective Strategies for Automatic Analysis of Acoustic Signals in Long-Term Monitoring. J. Mar. Sci. Eng. 2025, 13, 454. [Google Scholar] [CrossRef]
- Celli, N.L.; Bean, C.J.; O’Brien, G.S. Full-waveform simulation of DAS records, response and cable-ground coupling. Geophys. J. Int. 2023, 236, 659–674. [Google Scholar] [CrossRef]
- Williams, E.F.; Fernández-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef]
- McKenna, M.F.; Ross, D.; Wiggins, S.M.; Hildebrand, J.A. Underwater radiated noise from modern commercial ships. J. Acoust. Soc. Am. 2012, 131, 92–103. [Google Scholar] [CrossRef]
- Traverso, F.; Gaggero, T.; Rizzuto, E.; Trucco, A. Spectral analysis of the underwater acoustic noise radiated by ships with controllable pitch propellers. In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Dekeling, R.; Tasker, M.; Van der Graaf, S.; Ainslie, M.; Andersson, M.; André, M.; Borsani, J.; Brensing, K.; Castellote, M.; Cronin, D.; et al. Monitoring Guidance for Underwater Noise in European Seas—Part I: Executive Summary; Number JRC88733 in EUR 26557; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Dekeling, R.; Tasker, M.; Van der Graaf, S.; Ainslie, M.; Andersson, M.; André, M.; Borsani, J.; Brensing, K.; Castellote, M.; Cronin, D.; et al. Monitoring Guidance for Underwater Noise in European Seas—Part II: Monitoring Guidance Specifications; Number JRC88045 in EUR 26555; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Halliday, W.D.; Insley, S.J.; Hilliard, R.C.; de Jong, T.; Pine, M.K. Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Mar. Pollut. Bull. 2017, 123, 73–82. [Google Scholar] [CrossRef]
- Matsumoto, H.; Araki, E.; Kimura, T.; Fujie, G.; Shiraishi, K.; Tonegawa, T.; Obana, K.; Arai, R.; Kaiho, Y.; Nakamura, Y.; et al. Detection of hydroacoustic signals on a fiber-optic submarine cable. Sci. Rep. 2021, 11, 2797. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idrissi, A.; Bonanno, D.; Di Mauro, L.S.; Diego-Tortosa, D.; Gómez-García, C.; Ker, S.; Le Pape, F.; Murphy, S.; Pulvirenti, S.; Riccobene, G.; et al. Detection of Seismic and Acoustic Sources Using Distributed Acoustic Sensing Technology in the Gulf of Catania. J. Mar. Sci. Eng. 2025, 13, 658. https://doi.org/10.3390/jmse13040658
Idrissi A, Bonanno D, Di Mauro LS, Diego-Tortosa D, Gómez-García C, Ker S, Le Pape F, Murphy S, Pulvirenti S, Riccobene G, et al. Detection of Seismic and Acoustic Sources Using Distributed Acoustic Sensing Technology in the Gulf of Catania. Journal of Marine Science and Engineering. 2025; 13(4):658. https://doi.org/10.3390/jmse13040658
Chicago/Turabian StyleIdrissi, Abdelghani, Danilo Bonanno, Letizia S. Di Mauro, Dídac Diego-Tortosa, Clara Gómez-García, Stephan Ker, Florian Le Pape, Shane Murphy, Sara Pulvirenti, Giorgio Riccobene, and et al. 2025. "Detection of Seismic and Acoustic Sources Using Distributed Acoustic Sensing Technology in the Gulf of Catania" Journal of Marine Science and Engineering 13, no. 4: 658. https://doi.org/10.3390/jmse13040658
APA StyleIdrissi, A., Bonanno, D., Di Mauro, L. S., Diego-Tortosa, D., Gómez-García, C., Ker, S., Le Pape, F., Murphy, S., Pulvirenti, S., Riccobene, G., Sanfilippo, S., & Viola, S. (2025). Detection of Seismic and Acoustic Sources Using Distributed Acoustic Sensing Technology in the Gulf of Catania. Journal of Marine Science and Engineering, 13(4), 658. https://doi.org/10.3390/jmse13040658