Geomorphometric Analysis of Submarine Mud Volcanoes: Variability, Evolutionary Trends, and Geohazard Implications
Abstract
:1. Introduction
2. Materials and Methods
- i.
- Size parameters: maximum (Dmax), minimum (Dmin), mean diameter (Dmean), basic area, basal perimeter, height, and volume. The basic perimeters are respectively calculated as 2π(√(Dmax2 + Dmin2)/2) or 2πR, the basic areas as πDmaxDmin/4 or πDmean2/4, and the volumes as πDmaxDminH/12 or πDmean2H/12 (Figure 2).
- ii.
- Shape parameters: basal ratio (bsr, d/D), axis ratio (Dmax/ Dmin), height versus radius of the mud volcano’s body (H/R ratio), vertical relief to area ratio (Height/Area), compactness factor (comf = Perimeter/(√4*π*Area)), ellipticity index (ei = (π*(Dmax /2)2)/Area), dissection index (di = (Perimeter/2*Area)*(√(Area/π)), and eccentricity (e = (√(Dmax/2)2 − (Dmin/2)2/Dmax/2).
- iii.
- Slope parameters: mean slope (arctan(H/R)).
3. Results and Discussion
3.1. Global Morphometric Characters of Submarine MVs
- Small mud volcanoes (N = 94; area < 0.5 km2), bound to a weak driving force, show a mean height of ~41 m (range = 2–183 m), a mean diameter of ~472 m (range = 10–800 m), a mean volume of ~0.004 km3 (range = 100 m3–0.02 km3), and a mean slope of ~10.8° (range = 0.7–38.7°). Note that some documented cases can reach heights up to ~340 m (e.g., El Cid in the Gulf of Cadiz was excluded from the analysis as complete morphometric values are not available).
- Medium mud volcanoes (N = 486; area 0.5–9 km2) show a mean height of ~138 m (range = 10–477 m), a mean diameter of ~2069 m (range = 800–3380 m), a mean volume of ∼0.21 km3 (range = 0.002–1.06 km3), and a mean slope of ∼8° (range = 1–26.5°).
- Large to giant mud volcanoes (N = 202; area > 9 km2), related to massive upwellings of mud breccia, show a mean height of ∼ 325 m (range = 14–2364 m), a mean diameter of ∼6006 m (3990–42,000 m), a mean volume of ∼20 km3 (range = 0.06–1092 km3), and a mean slope of ∼6.1° (range = 0.4–15.9°).
- The mud cones (N = 570; mean slope > 5°) show extremely variable heights from 4 m up to 2364 m, with a mean height of ~203 m. Their mean diameters are between 10 m and ~42 km, with a mean diameter equal to ~2804 m. The mean slope value is ~9.5°. The mud cones are characterized by an H/D ratio between 0.02 and 0.4 and a vertical relief to an area up to 0.05 m−1. Of these, 153 mud cones show an ellipticity index (ei) between 1 and 2.74 and a dissection index (di) included between 1 and 1.25. Their basal ratio (bsr) ranges from 0.37 to 1.
- The mud pies (N = 212; mean slope < 5°) show lower heights from only 2 m up to 828 m, with a mean height of ~97 m. Their diameters range between hundreds of meters and ~22 km and the mean diameter is ~3136 m. The mean slope value is ~3.5°. The mud pies are characterized by an H/D ratio between 0.003 and 0.07 and a vertical relief to an area up to 0.00017 m−1. Of these, 78 mud pies show an ellipticity index (ei) between 1 and 5.82 and a dissection index (di) between 1 and 1.73. Their basal ratio (bsr) ranges from 0.17 to 1.
3.2. Geomorphometric Comparison and Evolutionary Trends
3.3. Submarine MVs in the Mediterranean Sea
3.4. Submarine MVs Frequency–Area Distribution
3.5. Geohazard Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loncke, L.; Mascle, J. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): Geophysical evidences. Mar. Pet. Geol. 2004, 21, 669–689. [Google Scholar] [CrossRef]
- Judd, A.; Hovland, M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ma, G.; Zhan, L.; Lu, H.; Hou, G. Structures in Shallow Marine Sediments Associated with Gas and Fluid Migration. J. Mar. Sci. Eng. 2021, 9, 396. [Google Scholar] [CrossRef]
- Hovland, M.; Gardner, J.V.; Judd, A.G. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2002, 2, 127–136. [Google Scholar] [CrossRef]
- Picard, K.; Radke, L.C.; Williams, D.K.; Nicholas, W.A.; Siwabessy, P.J.; Howard, F.J.F.; Gafeira, J.; Przeslawski, R.; Huang, Z.; Nichol, S. Origin of high density seabed pockmark fields and their use in inferring bottom currents. Geosciences 2018, 8, 195. [Google Scholar] [CrossRef]
- Spatola, D.; Dahal, A.; Lombardo, L.; Casalbore, D.; Chiocci, F.L. First Pockmark susceptibility map of the Italian continental margins. Mar. Pet. Geol. 2025, 176, 107337. [Google Scholar] [CrossRef]
- Cita, M.B.; Ryan, W.B.F.; Paggi, L. Prometheus mud breccia: An example of shale diapirism in the western Mediterranean ridge. Ann. Geol. Pays Hell. 1981, 30, 543–570. [Google Scholar]
- Kopf, A.J. Significance of mud volcanism. Rev. Geophys. 2002, 40, 2-1–2-52. [Google Scholar] [CrossRef]
- Sauter, E.J.; Muyakshin, S.I.; Charlou, J.L.; Schlüter, M.; Boetius, A.; Jerosch, K.; Damm, E.; Foucher, J.P.; Klages, M. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet. Sci. Lett. 2006, 243, 354–365. [Google Scholar] [CrossRef]
- Milkov, A.V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 2000, 167, 29–42. [Google Scholar] [CrossRef]
- Napoli, S.; Spatola, D.; Casalbore, D.; Chiocci, F.L. Global Inventory of Submarine Mud Volcanoes [Data Set]; Zenodo: Geneva, Switzerland, 2025. [Google Scholar] [CrossRef]
- Mazzini, A.; Etiope, G. Mud volcanism: An updated review. Earth-Sci. Rev. 2017, 168, 81–112. [Google Scholar] [CrossRef]
- Dimitrov, L. Mud volcanoes—The most important pathways for degassing deeply buried sediments. Earth Sci. Rev. 2002, 59, 49–76. [Google Scholar] [CrossRef]
- Niemann, H.; Boetius, A. Mud Volcanoes. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 205–214. [Google Scholar]
- Murton, B.J.; Biggs, J. Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz. Mar. Geol. 2003, 195, 223–236. [Google Scholar] [CrossRef]
- Menapace, W.; Kopf, A.; Zabel, M.; de Beer, D. 3. Mud volcanoes as dynamic sedimentary phenomena that host marine ecosystems. In Life at Vents Seeps; De Gruyter: Berlin, Germany, 2017; pp. 53–84. [Google Scholar]
- Bonini, M. Mud volcanoes: Indicators of stress orientation and tectonic controls. Earth-Sci. Rev. 2012, 115, 121–152. [Google Scholar]
- Kioka, A.; Tsuji, T.; Otsuka, H.; Ashi, J. Methane concentration in mud conduits of submarine mud volcanoes: A coupled geochemical and geophysical approach. Geochem. Geophys. Geosystems 2019, 20, 792–813. [Google Scholar]
- Asada, M.; Moore, G.F.; Kawamura, K.; Noguchi, T. Mud volcano possibly linked to seismogenic faults in the Kumano Basin, Nankai Trough, Japan. Mar. Geophys. Res. 2021, 42, 4. [Google Scholar] [CrossRef]
- Camerlenghi, A.; Pini, G.A. Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region. Sedimentology 2009, 56, 319–365. [Google Scholar] [CrossRef]
- León, R.; Somoza, L.; Medialdea, T.; Vázquez, J.T.; González, F.J.; López-González, N.; Casas, D.; del Pilar Mata, M.; del Fernández-Puga, M.C.; Giménez-Moreno, C.J.; et al. New discoveries of mud volcanoes on the Moroccan Atlantic continental margin (Gulf of Cádiz): Morpho-structural characterization. Geo-Mar. Lett. 2012, 32, 473–488. [Google Scholar] [CrossRef]
- Kirkham, C.; Cartwright, J.; Hermanrud, C.; Jebsen, C. The spatial, temporal and volumetric analysis of a large mud volcano province within the Eastern Mediterranean. Mar. Pet. Geol. 2017, 81, 1–16. [Google Scholar]
- Camerlenghi, A.; Cita, M.; Vedova, B.D.; Fusi, N.; Mirabile, L.; Pellis, G. Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Mar. Geophys. Res. 1995, 17, 115–141. [Google Scholar] [CrossRef]
- Etiope, G.; Milkov, A.V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ. Geol. 2004, 46, 997–1002. [Google Scholar] [CrossRef]
- Dóniz-Páez, J. Volcanic geomorphological classification of the cinder cones of Tenerife (Canary Islands, Spain). Geomorphology 2015, 228, 432–447. [Google Scholar] [CrossRef]
- Bonini, M.; Mazzarini, F. Mud volcanoes as potential indicators of regional stress and pressurized layer depth. Tectonophysics 2010, 494, 32–47. [Google Scholar]
- Komatsu, G.; Okubo, C.H.; Wray, J.J.; Ojha, L.; Cardinale, M.; Murana, A.; Orosei, R.; Chan, M.A.; Ormö, J.; Gallagher, R. Small edifice features in Chryse Planitia, Mars: Assessment of a mud volcano hypothesis. Icarus 2016, 268, 56–75. [Google Scholar]
- Napoli, S.; Spatola, D.; Casalbore, D.; Lombardo, L.; Tanyas, H.; Chiocci, F.L. Comprehensive global inventory of submarine mud volcanoes. Sci. Data 2025, 12, 382. [Google Scholar] [CrossRef]
- Sulli, A.; Zizzo, E.; Spatola, D.; Morticelli, M.G.; Agate, M.; Iacono, C.L.; Gargano, F.; Pepe, F.; Ciaccio, G. Growth and geomorphic evolution of the Ustica volcanic complex at the Africa-Europe plate margin (Tyrrhenian Sea). Geomorphology 2020, 374, 107526. [Google Scholar] [CrossRef]
- Spatola, D.; Sulli, A.; Basilone, L.; Casalbore, D.; Napoli, S.; Basilone, G.; Chiocci, F.L. Morphology of the submerged Ferdinandea Island, the ‘Neverland’ of the Sicily Channel (central Mediterranean Sea). J. Maps 2023, 19, 2243305. [Google Scholar] [CrossRef]
- Rappaport, Y.; Naar, D.F.; Barton, C.C.; Liu, Z.J.; Hey, R.N. Morphology and distribution of seamounts surrounding Easter Island. J. Geophys. Res. 1997, 102, 24713–24728. [Google Scholar] [CrossRef]
- Grosse, P.; van Wyk de Vries, B.; Euillades, P.A.; Kervyn, M.; Petrinovic, I.A. Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 2012, 136, 114–131. [Google Scholar] [CrossRef]
- Grosse, P.; van Wyk de Vries, B.; Petrinovic, I.A.; Euillades, P.A.; Alvarado, G.E. Morphometry and evolution of arc volcanoes. Geology 2009, 37, 651–654. [Google Scholar] [CrossRef]
- Sánchez-Guillamón, O.; Palomino, D.; Vázquez, J.T.; León, R.; Fernández-Puga, M.d.C.; López-González, N.; Medialdea, T.; Fernández-Salas, L.M.; Somoza, L. Morpho-sedimentary structure of new mud volcanoes on the Moroccan Atlantic continental margin (Gulf of Cadiz). Mar. Pet. Geol. 2023, 148, 106031. [Google Scholar]
- Fujioka, K. Serpentinite seamounts in the Izu-Bonin-Mariana Trenches and serpentinite bodies in the Outer zone of the Southwest Japan. Res. Rep. Kanagawa Pref. Mus. Nat. Hist 2012, 14, 181–192. [Google Scholar]
- Fryer, P.; Wheat, C.; Mottl, M. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology 1999, 27, 103–106. [Google Scholar]
- Lance, S.; Henry, P.; Le Pichon, X.; Lallemant, S.; Chamley, H.; Rostek, F.; Faugères, J.-C.; Gonthier, E.; Olu, K. Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: Sedimentology, structure and rheology. Mar. Geol. 1998, 145, 255–292. [Google Scholar] [CrossRef]
- Feyzullayev, A.A. Mud volcanoes in the South Caspian basin: Nature and estimated depth of its products. Nat. Sci. 2012, 4, 445–453. [Google Scholar] [CrossRef]
- Odonne, F.; Imbert, P.; Dupuis, M.; Aliyev, A.A.; Abbasov, O.R.; Baloglanov, E.E.; Vendeville, B.C.; Gabalda, G.; Remy, D.; Bichaud, V. Mud volcano growth by radial expansion: Examples from onshore Azerbaijan. Mar. Pet. Geol. 2020, 112, 104051. [Google Scholar]
- Wang, C.Y.; Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 2010, 10, 206–216. [Google Scholar]
- Yergin, D. The Prize: The Epic Quest for Oil, Money & Power; Simon and Schuster: New York, NY, USA, 2011. [Google Scholar]
- Wheat, C.G.; Seewald, J.S.; Takai, K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount. Geochim. Cosmochim. Acta 2020, 269, 413–428. [Google Scholar]
- Kioka, A.; Ashi, J. Episodic massive mud eruptions from submarine mud volcanoes examined through topographical signatures. Geophys. Res. Lett. 2015, 42, 8406–8414. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, J.; Luo, J.; Yuan, Y.; Su, P. Geological characteristics of mud volcanoes and diapirs in the Northern Continental Margin of the South China Sea: Implications for the mechanisms controlling the genesis of fluid leakage structures. Geofluids 2021, 2021, 5519264. [Google Scholar]
- Praeg, D.; Ceramicola, S.; Barbieri, R.; Unnithan, V.; Wardell, N. Tectonically-driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea. Mar. Pet. Geol. 2009, 26, 1849–1865. [Google Scholar]
- Dupré, S.; Woodside, J.; Foucher, J.-P.; de Lange, G.; Mascle, J.; Boetius, A.; Mastalerz, V.; Stadnitskaia, A.; Ondréas, H.; Huguen, C.; et al. Seafloor geological studies above active gas chimneys off Egypt (Central Nile Deep Sea Fan). Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 1146–1172. [Google Scholar] [CrossRef]
- Limonov, A.F.; Woodside, J.M.; Cita, M.B.; Ivanov, M.K. The Mediterranean Ridge and related mud diapirism: A background. Mar. Geol. 1996, 132, 7–19. [Google Scholar] [CrossRef]
- Kopf, A.; Behrmann, J.H. Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex. Geol. Soc. Lond. Spec. Publ. 2000, 174, 169–204. [Google Scholar]
- Kioka, A.; Ashi, J.; Sakaguchi, A.; Sato, T.; Muraoka, S.; Yamaguchi, A.; Hamamoto, H.; Wang, K.; Tokuyama, H. Possible mechanism of mud volcanism at the prism-backstop contact in the western Mediterranean Ridge Accretionary Complex. Mar. Geol. 2015, 363, 52–64. [Google Scholar]
- Miramontes, E.; Pellegrini, C.; Casalbore, D.; Dupré, S. Active geological processes in the Mediterranean Sea. In Oceanography of the Mediterranean Sea; Schroeder, K., Chiggiato, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 453–499. [Google Scholar]
- Lykousis, V.; Alexandri, S.; Woodside, J.; De Lange, G.; Dählmann, A.; Perissoratis, C.; Heeschen, K.; Ioakim, C.; Sakellariou, D.; Nomikou, P. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Mar. Pet. Geol. 2009, 26, 854–872. [Google Scholar] [CrossRef]
- Ceramicola, S.; Praeg, D.; Cova, A.; Accettella, D.; Zecchin, M. Seafloor distribution and last glacial to postglacial activity of mud volcanoes on the Calabrian accretionary prism, Ionian Sea. Geo-Mar. Lett. 2014, 34, 111–129. [Google Scholar]
- Somoza, L.; Medialdea, T.; León, R.; Ercilla, G.; Vázquez, J.T.; Hernández-Molina, J.; González, J.; Juan, C.; Fernández-Puga, M.C. Structure of mud volcano systems and pockmarks in the region of the Ceuta Contourite Depositional System (Western Alborán Sea). Mar. Geol. 2012, 332, 4–26. [Google Scholar]
- White, E.P.; Enquist, B.J.; Green, J.L. On estimating the exponent of power-law frequency distributions. Ecology 2008, 89, 905–912. [Google Scholar]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar]
- McGuire, J.B.; Schneeweis, T.; Branch, B. Perceptions of firm quality: A cause or result of firm performance. J. Manag. 1990, 16, 167–180. [Google Scholar]
- Corral, Á.; González, Á. Power law size distributions in geoscience revisited. Earth Space Sci. 2019, 6, 673–697. [Google Scholar]
- Turcotte, D.L. How does Venus lose heat? J. Geophys. Res. Planets 1995, 100, 16931–16940. [Google Scholar]
- Casas, D.; Chiocci, F.L.; Casalbore, D.; Ercilla, G.; De Urbina, J.O. Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea). Geo-Mar. Lett. 2016, 36, 405–414. [Google Scholar]
- Hieke, W. The August 27, 1886 earthquake in Messenia (Peloponnesus) and reported flames over the Ionian Sea a Mediterranean Ridge gas escape event? Mar. Geol. 2004, 207, 259–265. [Google Scholar] [CrossRef]
- Casalbore, D.; Ingrassia, M.; Pierdomenico, M.; Beaubien, S.E.; Martorelli, E.; Bigi, S.; Ivaldi, R.; DeMarte, M.; Chiocci, F.L. Morpho-acoustic characterization of a shallow-water mud volcano offshore Scoglio d’Affrica (Northern Tyrrhenian Sea) responsible for a violent gas outburst in 2017. Mar. Geol. 2020, 428, 106277. [Google Scholar] [CrossRef]
- Ustyugov, G.; Ershov, V. Mud volcanism as a dangerous phenomenon for oil and gas facilities. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Jakarta, Indonesia, 23–25 March 2021; p. 012030. [Google Scholar]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kishankov, A. Complex of geophysical studies of the Seyakha catastrophic gas blowout crater on the Yamal Peninsula, Russian Arctic. Geosciences 2020, 10, 215. [Google Scholar] [CrossRef]
- Spatola, D.; Casalbore, D.; Pierdomenico, M.; Conti, A.; Bigi, S.; Ingrassia, M.; Ivaldi, R.; Demarte, M.; Napoli, S.; Chiocci, F. Seafloor characterisation of the offshore sector around Scoglio d’Affrica islet (Tuscan Archipelago, northern Tyrrhenian Sea). J. Maps 2023, 19, 2120836. [Google Scholar]
- Kordella, S.; Christodoulou, D.; Fakiris, E.; Geraga, M.; Kokkalas, S.; Marinaro, G.; Iatrou, M.; Ferentinos, G.; Papatheodorou, G. Gas seepage-induced features in the hypoxic/anoxic, shallow, marine environment of amfilochia bay, amvrakikos gulf (Western Greece). Geosciences 2021, 11, 27. [Google Scholar] [CrossRef]
- Fagents, S.A.; Lanagan, P.; Greeley, R. Rootless cones on Mars: A consequence of lava-ground ice interaction. In Volcano–Ice Interaction on Earth and Mars; Geological Society of London: London, UK, 2002; Volume 202, pp. 295–317. [Google Scholar]
- Wang, L.; Zhao, J.; Huang, J.; Xiao, L. An explosive mud volcano origin for the pitted cones in southern Utopia Planitia, Mars. Sci. China Earth Sci. 2023, 66, 2045–2056. [Google Scholar]
- Di Bella, L.; Pierdomenico, M.; Conte, A.M.; Cornacchia, I.; Ruspandini, T.; Spatola, D.; Beaubien, S.E.; Bigi, S.; Conti, A.; Gaglianone, G.; et al. The influence of shallow-water methane emissions on foraminiferal assemblages: The case of Scoglio d’Affrica (Northern Tyrrhenian Sea, Mediterranean Sea). Mar. Pet. Geol. 2024, 170, 107130. [Google Scholar]
Submarine MVs (N = 782) | Height (m) | Perimeter (m) | Area (km2) | Volume (km3) | Mean Diameter (m) | Radius (m) | Height/Area (m−1) | H/R | Mean Slope (°) |
---|---|---|---|---|---|---|---|---|---|
min | 2.00 | 31.00 | 0.00 | 0.00 | 10.00 | 5.00 | 0.000 | 0.01 | 0.38 |
max | 2364.00 | 131,947.00 | 1385.44 | 1091.73 | 42,000.00 | 21,000.00 | 0.051 | 0.80 | 38.70 |
mean | 174.49 | 9155.87 | 15.41 | 5.30 | 2893.82 | 1446.92 | 0.000 | 0.14 | 7.84 |
median | 130.00 | 7620.07 | 4.56 | 0.20 | 2420.00 | 1210.00 | 0.000 | 0.12 | 7.10 |
std | 214.92 | 10,799.20 | 73.80 | 48.76 | 3405.73 | 1702.86 | 0.003 | 0.08 | 4.47 |
var | 46,192.39 | 116,622,700.00 | 5445.83 | 2377.99 | 11,598,990.00 | 2,899,726.00 | 0.000 | 0.01 | 19.97 |
skew | 5.54 | 5.63 | 11.80 | 16.75 | 5.67 | 5.67 | 19.584 | 2.59 | 1.98 |
kurt | 40.05 | 42.78 | 178.17 | 337.33 | 43.43 | 43.43 | 384.429 | 14.85 | 8.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napoli, S.; Spatola, D.; Casalbore, D.; Chiocci, F.L. Geomorphometric Analysis of Submarine Mud Volcanoes: Variability, Evolutionary Trends, and Geohazard Implications. J. Mar. Sci. Eng. 2025, 13, 622. https://doi.org/10.3390/jmse13030622
Napoli S, Spatola D, Casalbore D, Chiocci FL. Geomorphometric Analysis of Submarine Mud Volcanoes: Variability, Evolutionary Trends, and Geohazard Implications. Journal of Marine Science and Engineering. 2025; 13(3):622. https://doi.org/10.3390/jmse13030622
Chicago/Turabian StyleNapoli, Simone, Daniele Spatola, Daniele Casalbore, and Francesco Latino Chiocci. 2025. "Geomorphometric Analysis of Submarine Mud Volcanoes: Variability, Evolutionary Trends, and Geohazard Implications" Journal of Marine Science and Engineering 13, no. 3: 622. https://doi.org/10.3390/jmse13030622
APA StyleNapoli, S., Spatola, D., Casalbore, D., & Chiocci, F. L. (2025). Geomorphometric Analysis of Submarine Mud Volcanoes: Variability, Evolutionary Trends, and Geohazard Implications. Journal of Marine Science and Engineering, 13(3), 622. https://doi.org/10.3390/jmse13030622