Airflow Dynamics, Sediment Transport, and Morphological Change on a Low-Relief Dune Under Offshore Wind Forcing
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Wind Flow
2.3. Sediment Transport
2.4. Sedimentological Data
2.5. Topographic Change
3. Results
3.1. Meteorological Conditions
3.2. Spatial Structure of Wind Variability
3.2.1. Near-Surface Wind Flow Across the Dune-Beach Profile

3.2.2. Vertical Wind Flow Across the Dune-Beach Profile

3.3. Sand Transport Dynamics

3.4. Moisture and Grain Size Evolution
3.5. Beach-Dune Morphological Adjustments
4. Discussion
4.1. Flow-Form Interactions
4.2. Cross-Shore Variability in Aeolian Transport over Low-Relief Dune-Beach Systems
- 1.
- Station e, located immediately downstream of the crest, records sediment transport during only the strongest wind (>10 m/s at the reference station). Normally, this zone would be sheltered by the dune and stabilized by vegetation [7,48], but at Barcarès, sparse vegetation and the low dune permit entrainment. Transport distances remain limited, with sand redeposited almost immediately on the lee slopes of each crest (stations d and e), without significantly feeding the upper beach (Figure 5 and Figure 8).
- 2.
- Although winds accelerate at station d, sand fluxes are lightly loaded due to the presence of a mixed sand-gravel patch, which limits sediment availability [49]. Under similar wind conditions, aeolian transport can vary by over an order of magnitude depending on grain size [34]. Consequently, the highest fluxes are recorded on the lower beach (stations i and j), where finer coarse sands dominate, and NWS is strongest.
- 3.
- Moisture further constrained transport by increasing inter-grain cohesion. For a grain size of 0.40–0.50 mm, sands are mobilized below 1.29% moisture [50]. This threshold decreases as grain size increases [50]. At Barcarès, antecedent rainfall produced initial moisture above 1.5%, which then decreased rapidly during subsequent runs. This drying explains the differences in transport between runs 1 and 5 despite similar wind conditions. The wind speed-transport relationship weakens significantly under wet sand conditions [51]. Because offshore winds are typically dry, rainfall during these events is uncommon [34].
- 4.
- Progressive coarsening on the beach surface through selective entrainment [34,52] further reduced fluxes in later runs. These site-specific factors explain why the wind speed-transport relationship is strongest on the berm (stations i and j, R2 = 0.91), where sediment availability and aerodynamic conditions are most uniform. In contrast, the dune-mid beach sector (stations g to d) is affected by local controls (sheltering, mixed sand-gravel patches or vegetation) that weaken the overall correlation (R2 = 0.64).
4.3. Topographic Response to Wind Events
5. Conclusions
- 1.
- Small dunes (<1 m) disturb the wind profile through the same fundamental mechanisms observed in larger forms: flow stagnation at the toe, acceleration at the crest, and deflection toward the dune-normal direction.
- 2.
- The magnitude of these flow adjustments scales with dune height. Over small dunes, wind speed variations are modest and deflection angles remain low, even under highly oblique winds. Vertical profiles show significant deviations only within the near-surface layer (0.20–0.30 m). The strongest perturbations occur immediately downwind of the crest, over elevations roughly equivalent to the dune height.
- 3.
- Low dunes fail to generate an effective sheltered zone capable of trapping landward-moving sand. During strong wind events, sediment transport resumes almost immediately past the crest and contributes to offshore-directed fluxes, feeding the swash and shallow water zones (sink area).
- 4.
- System stability depends on more than dune height. Mixed sand-gravel patches, vegetation, and slope breaks locally alter the pressure gradient, modulating both airflow and sediment transport. Consequently, secondary source areas are spatially restricted and do not extend across the entire beach profile.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Small, C.; Nicholls, R.J. A Global Analysis of Human Settlement in Coastal Zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Sabatier, F.; Chaïbi, M.; Chauvelon, P. Transport Éolien Par Vent de Mer et Alimentation Sédimentaire Des Dunes de Camargue. Méditerranée 2007, 108, 83–90. [Google Scholar] [CrossRef]
- Nicolae Lerma, A.; Castelle, B.; Rosebery, D.; Bouchet, C.; Billy, J.; Ayache, B.; Burvingt, O.; Robin, N. Foredune Guided Remobilization Experiments along the Southwest Coast of France. In Coastal Sediments 2023; World Scientific: New Orleans, LA, USA, 2023; pp. 642–646. [Google Scholar] [CrossRef]
- Amarouche, K.; Akpınar, A. Increasing Trend on Storm Wave Intensity in the Western Mediterranean. Climate 2021, 9, 11. [Google Scholar] [CrossRef]
- Bertin, X.; Prouteau, E.; Letetrel, C. A Significant Increase in Wave Height in the North Atlantic Ocean over the 20th Century. Glob. Planet. Change 2013, 106, 77–83. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A New Climate Index Controlling Winter Wave Activity along the Atlantic Coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392. [Google Scholar] [CrossRef]
- Lamy, A.; Smyth, T.A.G.; Robin, N.; Hesp, P.A. Using Computational Fluid Dynamics (CFD) to Investigate Airflow and Sand Transport on a Human-Made Coastal Foredune Dominated by Offshore Wind: Impact of the Shape Variability. Coast. Eng. 2024, 191, 104534. [Google Scholar] [CrossRef]
- Robin, N.; Raynal, O.; Balouin, Y.; Rene, C.; Palvadeau, E.; Valentini, N. Investigating the Early Stages of a Dune Restoration in Front of a Dyke on a Microtidal Urban Beach Affected by Chronical Erosion. J. Coast. Res. 2024, 113, 130–134. [Google Scholar] [CrossRef]
- René, C.; Robin, N.; Smyth, T.A.G.; Hesp, P.A.; Lamy, A.; Raynal, O.; Heurtefeux, H. Dynamics and Sediment Transport in a Path-Induced Blowout in Opposing Wind Conditions. Sci. Total Environ. 2025, 978, 179340. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; Brinkkemper, J.; Ruessink, G. Feedbacks between Biotic and Abiotic Processes Governing the Development of Foredune Blowouts: A Review. J. Mar. Sci. Eng. 2018, 7, 2. [Google Scholar] [CrossRef]
- Bauer, B.O.; Davidson-Arnott, R.G.D.; Walker, I.J.; Hesp, P.A.; Ollerhead, J. Wind Direction and Complex Sediment Transport Response across a Beach–Dune System. Earth Surf. Process. Landf. 2012, 37, 1661–1677. [Google Scholar] [CrossRef]
- Walker, I.J.; Hesp, P.A.; Davidson-Arnott, R.G.D.; Ollerhead, J. Topographic Steering of Alongshore Airflow over a Vegetated Foredune: Greenwich Dunes, Prince Edward Island, Canada. J. Coast. Res. 2006, 225, 1278–1291. [Google Scholar] [CrossRef]
- Montreuil, A.-L.; Robin, N.; Raynal, O.; Houthuys, R.; Chen, M. Mechanism of Coastal Foredune Formation and Evolution at Multi-Decadal Scale. J. Coast. Res. 2024, 113, 478–482. [Google Scholar] [CrossRef]
- Ruz, M.-H.; Meur-Ferec, C. Influence of High Water Levels on Aeolian Sand Transport: Upper Beach/Dune Evolution on a Macrotidal Coast, Wissant Bay, Northern France. Geomorphology 2004, 60, 73–87. [Google Scholar] [CrossRef]
- Strypsteen, G.; Houthuys, R.; Rauwoens, P. Dune Volume Changes at Decadal Timescales and Its Relation with Potential Aeolian Transport. J. Mar. Sci. Eng. 2019, 7, 357. [Google Scholar] [CrossRef]
- Smyth, T.A.G.; Hesp, P.A. Aeolian Dynamics of Beach Scraped Ridge and Dyke Structures. Coast. Eng. 2015, 99, 38–45. [Google Scholar] [CrossRef]
- Pourteimouri, P.; Jonkheer, A.J.; Campmans, G.H.P.; Hulscher, S.J.M.H. Numerical Modelling of Airflow and Sediment Transport Patterns over Aeolian Coastal Sand Dunes: Effects of Dune Slope and Wind Direction. Geomorphology 2025, 486, 109883. [Google Scholar] [CrossRef]
- Hesp, P.A.; Smyth, T.A.G. CFD Flow Dynamics over Model Scarps and Slopes. Phys. Geogr. 2021, 42, 1–24. [Google Scholar] [CrossRef]
- Hesp, P.A.; Smyth, T.A.G. Jet Flow over Foredunes. Earth Surf. Process. Landf. 2016, 41, 1727–1735. [Google Scholar] [CrossRef]
- Piscioneri, N.; Smyth, T.A.G.; Hesp, P.A. Flow Dynamics over a Foredune Scarp. Earth Surf. Process. Landf. 2019, 44, 1064–1076. [Google Scholar] [CrossRef]
- Sweet, M.L.; Kocurek, G. An Empirical Model of Aeolian Dune Lee-face Airflow. Sedimentology 1990, 37, 1023–1038. [Google Scholar] [CrossRef]
- Davidson, S.G.; Hesp, P.A.; DaSilva, M.; Da Silva, G.M. Flow Dynamics over a High, Steep, Erosional Coastal Dune Slope. Geomorphology 2022, 402, 108111. [Google Scholar] [CrossRef]
- Robin, N.; René, C.; Lamy, A.; Nicolae Lerma, A.; Castelle, B.; Hesp, P.A.; Raynal, O.; Burvingt, O.; Rosebery, D. Storm Wind Flow and Sediment Dynamics on Adjacent Coastal1 Dunes with Contrasting Morphologies during One Storm Event. J. Geophys. Res. Earth Surf. 2025; submitted. [Google Scholar]
- Jackson, D.W.T.; Beyers, J.H.M.; Lynch, K.; Cooper, J.A.G.; Baas, A.C.W.; Delgado-Fernandez, I. Investigation of Three-dimensional Wind Flow Behaviour over Coastal Dune Morphology under Offshore Winds Using Computational Fluid Dynamics (CFD) and Ultrasonic Anemometry. Earth Surf. Process. Landf. 2011, 36, 1113–1124. [Google Scholar] [CrossRef]
- Walker, I.J.; Shugar, D.H. Secondary Flow Deflection in the Lee of Transverse Dunes with Implications for Dune Morphodynamics and Migration. Earth Surf. Process. Landf. 2013, 38, 1642–1654. [Google Scholar] [CrossRef]
- Parsons, D.R.; Walker, I.J.; Wiggs, G.F.S. Numerical Modelling of Flow Structures over Idealized Transverse Aeolian Dunes of Varying Geometry. Geomorphology 2004, 59, 149–164. [Google Scholar] [CrossRef]
- Smyth, T.A.G.; Rooney, P.; Yates, K.L. Dune Slope, Not Wind Speed, Best Predicts Bare Sand in Vegetated Coastal Dunes. J. Coast. Conserv. 2023, 27, 27. [Google Scholar] [CrossRef]
- Lynch, K.; Jackson, D.W.T.; Cooper, J.A.G. Foredune Accretion under Offshore Winds. Geomorphology 2009, 105, 139–146. [Google Scholar] [CrossRef]
- Lamy, A.; Robin, N.; Hesp, P.A.; Smyth, T.; René, C.; Raynal, O.; Hebert, B. Modification of Offshore Wind Flow and Aeolian Sand Transport by Artificial Foredunes. Geomorphology, 2025; in press. [Google Scholar]
- Sabatier, F.; Anthony, E.J.; Héquette, A.; Suanez, S.; Musereau, J.; Ruz, M.-H.; Regnauld, H. Morphodynamics of Beach/Dune Systems: Examples from the Coast of France. Géomorphologie 2009, 15, 3–22. [Google Scholar] [CrossRef]
- Certain, R. Morphodynamique d’une Côte Sableuse Microtidale à Barres: Le Golfe Du Lion (Languedoc Roussillon). Ph.D. Thesis, Université de Perpignan, Perpignan, France, 2002. [Google Scholar]
- Meslard, F.; Balouin, Y.; Robin, N.; Bourrin, F. Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics. Water 2022, 14, 2463. [Google Scholar] [CrossRef]
- Feyssat, P.; Certain, R.; Robin, N.; Barusseau, J.-P.; Lamy, A.; Raynal, O.; Hebert, B. Morphodynamics of Two Mediterranean Microtidal Beaches Presenting Permanent Megacusps under the Influence of Waves and Strong Offshore Winds. Cont. Shelf Res. 2024, 272, 105160. [Google Scholar] [CrossRef]
- Lamy, A.; Robin, N.; Smyth, T.A.G.; Hesp, P.A.; René, C.; Feyssat, P.; Raynal, O.; Hebert, B. Impact of Temporal Beach Grain Size Variability on Aeolian Sediment Transport and Topographic Evolution in a Microtidal Environment. Geomorphology 2024, 453, 109126. [Google Scholar] [CrossRef]
- Nguyen, D.; Hilton, M.; Wakes, S. Wind Flow Dynamics and Sand Deposition behind Excavated Foredune Notches on Developed Coasts. Earth Surf. Process. Landf. 2022, 47, 1698–1719. [Google Scholar] [CrossRef]
- Lynch, K.; Jackson, D.W.T.; Cooper, J.A.G. Coastal Foredune Topography as a Control on Secondary Airflow Regimes under Offshore Winds. Earth Surf. Process. Landf. 2010, 35, 344–353. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Wolfe, S.A. Form–Flow Interactions of an Aeolian Saucer Blowout. Earth Surf. Process. Landf. 2009, 34, 919–928. [Google Scholar] [CrossRef]
- Hilton, M.; Nickling, B.; Wakes, S.; Sherman, D.; Konlechner, T.; Jermy, M.; Geoghegan, P. An Efficient, Self-Orienting, Vertical-Array, Sand Trap. Aeolian Res. 2017, 25, 11–21. [Google Scholar] [CrossRef]
- Lamy, A.; Robin, N.; Smyth, T.A.G.; Hesp, P. Impact of the Beach Grain Size Variability on Observed and Calculated Aeolian Transport Rates. J. Coast. Res. 2024, 113, 483–487. [Google Scholar] [CrossRef]
- Hesp, P.A.; Dong, Y.; Cheng, H.; Booth, J.L. Wind Flow and Sedimentation in Artificial Vegetation: Field and Wind Tunnel Experiments. Geomorphology 2019, 337, 165–182. [Google Scholar] [CrossRef]
- Schwarz, C.; Van Starrenburg, C.; Donker, J.; Ruessink, G. Wind and Sand Transport Across a Vegetated Foredune Slope. JGR Earth Surf. 2020, 126, e2020JF005732. [Google Scholar] [CrossRef]
- Hesp, P.A.; Davidson-Arnott, R.; Walker, I.J.; Ollerhead, J. Flow Dynamics over a Foredune at Prince Edward Island, Canada. Geomorphology 2005, 65, 71–84. [Google Scholar] [CrossRef]
- Walker, I.J.; Hesp, P.A.; Davidson-Arnott, R.G.D.; Bauer, B.O.; Namikas, S.L.; Ollerhead, J. Responses of Three-Dimensional Flow to Variations in the Angle of Incident Wind and Profile Form of Dunes: Greenwich Dunes, Prince Edward Island, Canada. Geomorphology 2009, 105, 127–138. [Google Scholar] [CrossRef]
- Jarmalavičius, D.; Satkūnas, J.; Žilinskas, G.; Pupienis, D. The Influence of Coastal Morphology on Wind Dynamics. Est. J. Earth Sci. 2012, 61, 120. [Google Scholar] [CrossRef]
- Gargari, S.F.; Karssenberg, D.; Ruessink, G. The Influence of Foredune Geometry on Wind Flow Quantified from Computational Fluid Dynamics Simulations. Aeolian Res. 2025, 74, 101001. [Google Scholar] [CrossRef]
- Arens, S.M.; Van Kaam-Peters, H.M.E.; Van Boxel, J.H. Air Flow over Foredunes and Implications for Sand Transport. Earth Surf. Process. Landf. 1995, 20, 315–332. [Google Scholar] [CrossRef]
- Udo, K. Wind Turbulence Effects on Dune Sand Transport. J. Coast. Res. 2016, 75, 333–337. [Google Scholar] [CrossRef]
- Hesp, P.A.; Walker, I.J.; Chapman, C.; Davidson-Arnott, R.; Bauer, B.O. Aeolian Dynamics over a Coastal Foredune, Prince Edward Island, Canada. Earth Surf. Process. Landf. 2013, 38, 1566–1575. [Google Scholar] [CrossRef]
- Rotnicka, J.; Dłużewski, M. Vertical Profiles of Aeolian Mass Flux above Different Sand Surfaces and Sand Surfaces Covered with Pebbles. CATENA 2022, 212, 106006. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, X.; Wang, X. Wind Initiation Thresholds of the Moistened Sands. Geophys. Res. Lett. 2002, 29, 25-1–25-4. [Google Scholar] [CrossRef]
- Rotnicka, J. Impact of Beach Surface Type on the Rate of Sand Transport by Wind. J. Coast. Res. 2011, 64, 2058–2062. [Google Scholar]
- Wal, A.; McManus, J. Wind Regime and Sand Transport on a Coastal Beach-Dune Complex, Tentsmuir, Eastern Scotland. SP 1993, 72, 159–171. [Google Scholar] [CrossRef]
- Fontán-Bouzas, Á.; Andriolo, U.; Silva, P.A.; Baptista, P. Wave Impact Analysis on a Beach-Dune System to Support Coastal Management and Nourishment Works: The Showcase of Mira, Portugal. Front. Mar. Sci. 2022, 9, 861569. [Google Scholar] [CrossRef]
- Vandenhove, M.; Castelle, B.; Nicolae Lerma, A.; Marieu, V.; Mazeiraud, V. Beach-Dune Dynamics and Coastal Management along the North-Médoc Coastline, Southwest France: A Decade of Morphological Change and Erosion Mitigation. Geomorphology 2025, 482, 109758. [Google Scholar] [CrossRef]
- Zamani, S.; Mahmoodabadi, M.; Yazdanpanah, N.; Farpoor, M.H. Meteorological Application of Wind Speed and Direction Linked to Remote Sensing Images for the Modelling of Sand Drift Potential and Dune Morphology. Meteorol. Appl. 2020, 27, e1851. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. Dune Field Patterns and Their Control Factors in the Middle Areas of China’s Hexi Corridor Desert. Front. Earth Sci. 2022, 10, 818338. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, Z. Characteristics of Aeolian Sediment Transport over Different Land Surfaces in Northern China. Soil Tillage Res. 2014, 143, 106–115. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
René, C.; Robin, N.; Roubio, T.; Lamy, A.; Dell’Oste, T. Airflow Dynamics, Sediment Transport, and Morphological Change on a Low-Relief Dune Under Offshore Wind Forcing. J. Mar. Sci. Eng. 2025, 13, 2235. https://doi.org/10.3390/jmse13122235
René C, Robin N, Roubio T, Lamy A, Dell’Oste T. Airflow Dynamics, Sediment Transport, and Morphological Change on a Low-Relief Dune Under Offshore Wind Forcing. Journal of Marine Science and Engineering. 2025; 13(12):2235. https://doi.org/10.3390/jmse13122235
Chicago/Turabian StyleRené, Camille, Nicolas Robin, Thomas Roubio, Antoine Lamy, and Tristan Dell’Oste. 2025. "Airflow Dynamics, Sediment Transport, and Morphological Change on a Low-Relief Dune Under Offshore Wind Forcing" Journal of Marine Science and Engineering 13, no. 12: 2235. https://doi.org/10.3390/jmse13122235
APA StyleRené, C., Robin, N., Roubio, T., Lamy, A., & Dell’Oste, T. (2025). Airflow Dynamics, Sediment Transport, and Morphological Change on a Low-Relief Dune Under Offshore Wind Forcing. Journal of Marine Science and Engineering, 13(12), 2235. https://doi.org/10.3390/jmse13122235

