Cyclostratigraphic Analysis and Depositional Environment Evolution of the Third Member of Eocene Shahejie Formation in the Laizhou Bay Sag, Southern Bohai Bay
Abstract
1. Introduction
2. Regional Geological Features
3. Materials and Methods
3.1. Astronomical Orbital Parameters
3.2. Data Selection and Time Series Analysis
4. Results
4.1. Biostratigraphic Framework
4.2. Time Series Analysis
4.3. Astronomical Chronology Analysis
4.4. Sedimentary Noise Models and Astronomical Forcing

5. Discussion
5.1. Response Characteristics of the Middle Eocene Climatic Optimum (MECO)
5.2. Astronomically Forced Sea-Level Variations
5.3. Sedimentation Rate Control and Depositional Architecture
6. Conclusions
- (1)
- Using well B-2 as a case study, this paper conducts an astronomical cycle analysis based on gamma-ray (GR) data. Sedimentation rates were quantitatively constrained by integrating spectral peak ratio analysis, correlation coefficient methods, and null hypothesis (H0) significance testing. we identified the optimal sedimentation rate of the Member 3 of the Shahejie Formation in well B-2 to be 3.5~6.5 cm/kyr. The age model for Member 3 was initially constrained using biostratigraphic data and further refined using the La2010d astronomical solution. This enabled the establishment of an absolute astronomical timescale ranging from 33.9 to 41.6 ± 0.2 Ma for Member 3 in well B-2.
- (2)
- Sea-level fluctuations during the deposition of Member 3 were analyzed using DYNOT and ρ1 sediment noise models in combination with geochemical proxies. The analysis identified the ~1.2 Myr obliquity modulation cycle as a critical driver of long-term sea-level variation. Furthermore, analysis of δ13C and δ18O records revealed the occurrence of the Middle Eocene Climatic Optimum (MECO) event. These findings suggest that the MECO response can serve as a reliable stratigraphic marker for regional correlation in the southern Laizhouwan Sag.
- (3)
- A climate-controlled depositional model for Member 3 of the Eocene in the southern Bohai Sea was established. The model highlights the dominant role of orbital cyclicity in driving coupled climate responses—such as temperature, sea level, and precipitation—in mid- to low-latitude regions. Phase-specific astro–climate–sedimentation response models were developed for different stages of Member 3 evolution.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Yang, H.; Wang, D.; Zhao, D.; Wang, L. Formation conditions of Neogene large-scale high-abundance lithologic reservoir in the Laibei low uplift, Bohai Sea, East China. Pet. Explor. Dev. 2021, 48, 15–29. [Google Scholar] [CrossRef]
- Duan, Y.; Xie, J.; Su, Y.; Liang, H.; Hu, X.; Wang, Q.; Pan, Z. Application of the Decision Tree Method to Lithology Identification of Volcanic Rocks-Taking the Mesozoic in the Laizhouwan Sag as an Example. Sci. Rep. 2020, 10, 19209. [Google Scholar] [CrossRef]
- Niu, C.; Yang, H.; Zhao, D.; Zhang, C.; Peng, J. Study on the Ultra-Late Hydrocarbon Accumulation and Migration Lagging Effect in Laizhouwan Sag, Bohai Sea. Earth Sci. 2022, 47, 464–478. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S.; Liu, Q.; Zhang, Z.; Xu, C.; Du, X.; Li, H.; Shi, W. Source to Sink Studies between the Shaleitian Uplift and Surrounding Sags: Perspectives on the Importance of Hinterland Relief and Catchment Area for Sediment Budget, Western Bohai Bay Basin, China. Interpretation 2017, 5, ST65–ST84. [Google Scholar] [CrossRef]
- Yin, J.; Xu, C.; Hao, F.; Wang, Q.; Miao, Q.; Wang, Z.; Zou, H. Controls on Organic Matter Enrichment in Source Rocks of the Shahejie Formation in the Southwestern Bozhong Sag, Bohai Bay Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 560, 110026. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, H.; Zhang, X.; Liu, Q.; Qiu, X.; Li, M. Geomorphologic Reconstruction of an Uplift in a Continental Basin with a Source-to-Sink Balance: An Example from the Huizhou-Lufeng Uplift, Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2021, 128, 104984. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, M.; Liu, X. Reservoir Characteristics and Controlling Factors of the Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin. J. Earth Sci. 2021, 32, 919–926. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, X.; Liu, K.; Zhou, X. Seismic-Based Sediment Provenance Analysis in Continental Lacustrine Rift Basins: An Example from the Bohai Bay Basin, China. Bulletin 2014, 98, 1995–2018. [Google Scholar] [CrossRef]
- Wang, H.; Hu, J.; Zhou, M.; He, M.; Wang, S.; Tang, H. Volcanic Facies Models and Reservoir Characteristics of Mesozoic Volcanic Rocks in the Southern Slope of Laizhou Bay Depression, Bohai Bay Basin. Acta 2024, 98, 1814–1828. [Google Scholar] [CrossRef]
- Du, X.; Zhang, S.; Guan, D.; Wang, Y.; Su, W.; Su, A. The Effect of Thermal Fluid Activity in the W16 Structure, Laizhou Bay Depression, Bohai Bay Basin on Reservoir Modification. Earth Sci. 2024, 49, 3459–3470. [Google Scholar]
- Xu, S.; Cong, F.; Hao, F.; Xu, C.; Zou, H.; Zhang, X.; Xu, S. Shelf-Edge Trajectory and Sediment Dispersal in a Lacustrine Setting: A Case Study from Qinnan Depression, Bohai Bay Basin, China. Mar. Pet. Geol. 2018, 91, 562–575. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Zhu, H.; Jia, D.; Xu, W.; Lu, H. Source-to-Sink System and Its Sedimentary Records in the Continental Rift Basins: An Example from the Paleogene in the Bohai Sea Area, China. Interpretation 2017, 5, ST35–ST51. [Google Scholar] [CrossRef]
- Xia, S.; Liu, J.; Liu, Z.; Ye, D.; Chang, Y.; Gao, N.; Li, H.; Liang, X. The Geophysical Identification, Characteristics, and Petroliferous Significance of Sublacustrine Fan Deposits in the Second Member of Dongying Formation in Liaozhong Depression, Bohai Bay Basin. Geol. J. 2018, 53, 692–706. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, X.; Zhou, X.; Liu, K. Three-Dimensional Facies Architecture Analysis Using Sequence Stratigraphy and Seismic Sedimentology: Example from the Paleogene Dongying Formation in the BZ3-1 Block of the Bozhong Sag, Bohai Bay Basin, China. Mar. Pet. Geol. 2014, 51, 20–33. [Google Scholar] [CrossRef]
- Yang, H.; Shi, W.; Zhang, Z.; Wang, Q.; Wang, H.; Liang, X. Enrichment Mechanism of Shallow Stratigraphic Oil Reservoirs and New Discoveries of Billion-Ton-Scale Oilfields in the Laizhou Bay Depression Belt—A Case Study of Kenli 10-2 Oilfield. China Offshore Oil Gas. 2024, 36, 23–36. [Google Scholar]
- Duan, Y.; Xie, J.; Li, B.; Wang, M.; Zhang, T.; Zhou, Y. Lithology Identification and Reservoir Characteristics of the Mixed Siliciclastic-Carbonate Rocks of the Lower Third Member of the Shahejie Formation in the South of the Laizhouwan Sag, Bohai Bay Basin, China. Carbonates Evaporites 2020, 35, 55. [Google Scholar] [CrossRef]
- Wang, R.; Xie, J.; Ran, A.; Wang, S.; Wang, J.; Hu, X.; Cai, W.; Zhou, Y. Comparison of INPEFA Technology and Wavelet Transform in Sequence Stratigraphic Division of Mixed Reservoir: A Case Study of Lower Es3 of KL Oilfield in Laizhouwan Sag. J. Pet. Explor. Prod. Technol. 2022, 12, 3213–3225. [Google Scholar] [CrossRef]
- Liu, M.; Hao, F.; Wang, Q.; Niu, C.; Tian, J. Light Hydrocarbon Geochemical Characteristics and Geological Significance of Buried Hill Condensate Oil in Bozhong 19-6 Structural Belt. Earth Sci. 2021, 46, 3645–3656. [Google Scholar] [CrossRef]
- Niu, C. Tectonic evolution and hydrocarbon accumulation of Laizhouwan depression in southern Bohai Sea. Oil Gas Geol. 2012, 33, 424–431. [Google Scholar]
- Plancq, J.; Mattioli, E.; Pittet, B.; Baudin, F.; Duarte, L.V.; Boussaha, M.; Grossi, V. A Calcareous Nannofossil and Organic Geochemical Study of Marine Palaeoenvironmental Changes across the Sinemurian/Pliensbachian (Early Jurassic, ~191 Ma) in Portugal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 449, 1–12. [Google Scholar] [CrossRef]
- Zhang, R.; Kemp, D.B.; Thibault, N.; Jelby, M.E.; Li, M.; Huang, C.; Sui, Y.; Wang, Z.; Liu, D.; Jia, S. Astrochronology and Sedimentary Noise Modeling of Pliensbachian (Early Jurassic) Sea-Level Changes, Paris Basin, France. Earth Planet. Sci. Lett. 2023, 614, 118199. [Google Scholar] [CrossRef]
- Ruhl, M.; Hesselbo, S.P.; Hinnov, L.; Jenkyns, H.C.; Xu, W.; Riding, J.B.; Storm, M.; Minisini, D.; Ullmann, C.V.; Leng, M.J. Astronomical Constraints on the Duration of the Early Jurassic Pliensbachian Stage and Global Climatic Fluctuations. Earth Planet. Sci. Lett. 2016, 455, 149–165. [Google Scholar] [CrossRef]
- Liu, J.; Shi, J.; Lu, Y.; Fan, X.; Zhang, Z.; Zhang, R.; Wang, Z.; Xu, K.; Xiao, A.; Kemp, D.B.; et al. Astronomical Forcing of Terrestrial Organic Carbon Burial in East Asia during the Eocene. Earth Planet. Sci. Lett. 2024, 646, 119014. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Xie, L.; Huang, W.; Zheng, Q.; Tan, K.; Hong, Y. Astronomical Tide and Storm Surge Signals Observed in an Isolated Inland Maar Lake Near the Coast. J. Mar. Sci. Eng. 2021, 9, 485. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Zhang, C.; Zheng, L.; Yan, S.; Ma, Y.; Dang, W. Astronomical Time Scale of the Late Pleistocene in the Northern South China Sea Based on Carbonate Deposition Record. J. Mar. Sci. Eng. 2024, 12, 438. [Google Scholar] [CrossRef]
- Aguado, R.; O’Dogherty, L.; Sandoval, J. Calcareous Nannofossil Assemblage Turnover in Response to the Early Bajocian (Middle Jurassic) Palaeoenvironmental Changes in the Subbetic Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 472, 128–145. [Google Scholar] [CrossRef]
- Brazier, J.-M.; Suan, G.; Tacail, T.; Simon, L.; Martin, J.E.; Mattioli, E.; Balter, V. Calcium Isotope Evidence for Dramatic Increase of Continental Weathering during the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth Planet. Sci. Lett. 2015, 411, 164–176. [Google Scholar] [CrossRef]
- Sell, B.; Ovtcharova, M.; Guex, J.; Bartolini, A.; Jourdan, F.; Spangenberg, J.E.; Vicente, J.-C.; Schaltegger, U. Evaluating the Temporal Link between the Karoo LIP and Climatic–Biologic Events of the Toarcian Stage with High-Precision U–Pb Geochronology. Earth Planet. Sci. Lett. 2014, 408, 48–56. [Google Scholar] [CrossRef]
- Peng, C.; Zou, C.; Zhang, S.; Shu, J.; Wang, C. Geophysical Logs as Proxies for Cyclostratigraphy: Sensitivity Evaluation, Proxy Selection, and Paleoclimatic Interpretation. Earth-Sci. Rev. 2024, 252, 104735. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, D.; Zhou, Y.; Liu, Y.; Wu, K.; Zhang, P.; Han, Q.; Li, F.; Ma, C. Astronomical Forcing in the Coal-Bearing Middle Jurassic Dameigou Formation, Qaidam Basin, Northwestern China. Ore Geol. Rev. 2023, 161, 105663. [Google Scholar] [CrossRef]
- Xu, K.; Ren, J.; Kemp, D.B.; Lei, C.; Zhu, H.; Zheng, J.; Sun, Z. Astronomical Pacing of Third-Order Sea-Level Sequences during the Middle Miocene in the Northern South China Sea. Mar. Pet. Geol. 2023, 154, 106335. [Google Scholar] [CrossRef]
- Guo, D.; Jin, Z. Astronomical Time Scale of a Middle Eocene Lacustrine Sequence from the Dongpu Sag, Bohai Bay Basin, Eastern China. J. Asian Earth Sci. 2021, 214, 104747. [Google Scholar] [CrossRef]
- Song, C.; Lv, D.; Chang, J.; Ejembi, J.I.; Tang, L.; Raji, M.; Chen, W.; Zhang, Z. Astronomically Forced Saline Lake Deposition and Paleoclimatic Response in the Huanggang Basin during the Paleogene, Eastern China. Ore Geol. Rev. 2023, 158, 105506. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Liu, H.; Jin, F.; Pu, X.; Sun, B.; Shi, Z. High-Resolution Astronomical Records of Shale Strata in Faulted Lake Basins and Implications for the Sedimentary Process of Laminated Sediments. Geosci. Front. 2024, 16, 101974. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Hicks, D.M. Numerical Modelling of Braided River Morphodynamics: Review and Future Challenges. Geogr. Compass 2016, 10, 102–127. [Google Scholar] [CrossRef]
- Yao, Y.; Xiu, S.; Wei, X.; Meng, S.; Ye, Y.; Diao, S. ESR Dating Study of the Lower Tertiary in the Dongying Depression. Pet. Geol. Recover. Effic. 2002, 3, 31–34. [Google Scholar]
- Xu, W. Identification of High-Frequency Cycles in the Third and Fourth Members of the Shahejie Formation, Dongying Sag and Their Geological Significance. Master’s Thesis, China University of Geosciences, Wuhan, China, 2011. [Google Scholar]
- Liu, Z.; Huang, C.; Algeo, T.J.; Liu, H.; Hao, Y.; Du, X.; Lu, Y.; Chen, P.; Guo, L.; Peng, L. High-Resolution Astrochronological Record for the Paleocene-Oligocene (66–23 Ma) from the Rapidly Subsiding Bohai Bay Basin, Northeastern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 510, 78–92. [Google Scholar] [CrossRef]
- Shi, J.; Jin, Z.; Liu, Q.; Huang, Z.; Zhang, R. High-frequency sequence quantitative division of lacustrine fine-grained sedimentary rocks based on Milankovitch theory. Pet. Nat. Gas. Geol. 2019, 40, 1205–1214. [Google Scholar]
- Zhang, Q.; Fu, X.; Wang, J.; Mansour, A.; Wei, H.; Zhang, T.; Wang, M. Orbitally-Paced Climate Change during the Carnian Pluvial Episode. Earth Planet. Sci. Lett. 2024, 626, 118546. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Fan, T.; Da Silva, A.-C.; Shi, J.; Gao, Q.; Kuang, M.; Liu, W.; Gao, Z.; Li, M. Orbitally-Paced Climate Change in the Early Cambrian and Its Implications for the History of the Solar System. Earth Planet. Sci. Lett. 2022, 583, 117420. [Google Scholar] [CrossRef]
- Liu, X.; Ge, J.; Qu, H.; Ma, C. Sequence Stratigraphy Driven by Tectonic Subsidence and Astronomical Forcing: A Case Study from the Miocene Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2024, 169, 107074. [Google Scholar] [CrossRef]
- Li, S.; Zhu, H.; Yang, X.; Xu, C. Seismic Geomorphology, Architecture and Genesis of Unusual Confined and Semiconfined Sedimentary Units on the Northern Slope of the Bonan Uplift, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2021, 196, 107696. [Google Scholar] [CrossRef]
- Du, W.; Ji, Y.; Chen, G.; Wu, H.; Gao, C.; Li, S.; Zhang, Y. Cyclostratigraphy and Astronomical Tuning during the Oligocene in the Jizhong Depression, Bohai Bay Basin, Northeastern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 554, 109803. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Xu, Y.; Zhang, T.; Mu, L.; Wu, X.; Pu, X.; Yang, P.; Yuan, X. Depositional Model of Clastic and Carbonate Rocks in a Continental Rift Basin: A Case Study of the Paleogene Shahejie Formation in the Cangdong Depression, Bohai Bay Basin. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 117. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.; Li, J.; Guo, R.; Wang, G.; Wang, Y. Effects of Astronomical Cycles on Laminated Shales of the Paleogene Shahejie Formation in the Dongying Sag, Bohai Bay Basin, China. Energies 2023, 16, 3624. [Google Scholar] [CrossRef]
- Jerrett, R.M.; Hodgson, D.M.; Flint, S.S.; Davies, R.C. Control of Relative Sea Level and Climate on Coal Character in the Westphalian C (Atokan) Four Corners Formation, Central Appalachian Basin, U.S.A. J. Sediment. Res. 2011, 81, 420–445. [Google Scholar] [CrossRef]
- Mansour, A.; Geršlová, E.; Sýkorová, I.; Vöröš, D. Hydrocarbon Potential and Depositional Paleoenvironment of a Middle Jurassic Succession in the Falak-21 Well, Shushan Basin, Egypt: Integrated Palynological, Geochemical and Organic Petrographic Approach. Int. J. Coal Geol. 2020, 219, 103374. [Google Scholar] [CrossRef]
- Fielding, C.R. Late Palaeozoic Cyclothems—A Review of Their Stratigraphy and Sedimentology. Earth-Sci. Rev. 2021, 217, 103612. [Google Scholar] [CrossRef]
- Valero, L.; Cabrera, L.; Sáez, A.; Garcés, M. Long-Period Astronomically-Forced Terrestrial Carbon Sinks. Earth Planet. Sci. Lett. 2016, 444, 131–138. [Google Scholar] [CrossRef]
- Diessel, C.; Boyd, R.; Wadsworth, J.; Leckie, D.; Chalmers, G. On Balanced and Unbalanced Accommodationrpeat Accumulation Ratios in the Cretaceous Coals from Gates Formation, Western Canada, and Their Sequence-Stratigraphic Significance. Int. J. Coal Geol. 2000, 43, 143–186. [Google Scholar] [CrossRef]
- Bao, X.; Hu, Y.; Scotese, C.R.; Li, X.; Guo, J.; Lan, J.; Lin, Q.; Yuan, S.; Wei, M.; Li, Z.; et al. Quantifying Climate Conditions for the Formation of Coals and Evaporites. Natl. Sci. Rev. 2023, 10, nwad051. [Google Scholar] [CrossRef]
- Bazhenov, M.L.; Burtman, V.S.; Levashova, N.L. Lower and Middle Jurassic Paleomagnetic Results from the South Lesser Caucasus and the Evolution of the Mesozoic Tethys Ocean. Earth Planet. Sci. Lett. 1996, 141, 79–89. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Besse, J.; Sutheetorn, V.; Bassoullet, J.P.; Fontaine, H.; Buffetaut, E. Lower-Middle Jurassic Paleomagnetic Data from the Mae Sot Area (Thailand): Paleogeographic Evolution and Deformation History of Southeastern Asia. Earth Planet. Sci. Lett. 1995, 136, 325–341. [Google Scholar] [CrossRef]
- Steiner, M.B. Magnetic Polarity during the Middle Jurassic as Recorded in the Summerville and Curtis Formations. Earth Planet. Sci. Lett. 1978, 38, 331–345. [Google Scholar] [CrossRef]
- Li, M.; Hinnov, L.; Kump, L. Acycle: Time-Series Analysis Software for Paleoclimate Research and Education. Comput. Geosci. 2019, 127, 12–22. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Chen, W.; Yi, L. Magnetic Properties and Initiation of Biogenic Reefs in Xisha Islands, South China Sea, at the Oligo–Miocene Boundary. J. Mar. Sci. Eng. 2021, 9, 1031. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Zhao, H.; Ren, Q.; Yang, T.; Wu, H.; Li, H. North China Block Underwent Simultaneous True Polar Wander and Tectonic Convergence in Late Jurassic: New Paleomagnetic Constraints. Earth Planet. Sci. Lett. 2021, 567, 117012. [Google Scholar] [CrossRef]
- Li, M.; Huang, C.; Hinnov, L.; Ogg, J.; Chen, Z.-Q.; Zhang, Y. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology 2016, 44, 623–626. [Google Scholar] [CrossRef]
- Pinault, J.-L. Resonantly Forced Baroclinic Waves in the Oceans: A New Approach to Climate Variability. J. Mar. Sci. Eng. 2020, 9, 13. [Google Scholar] [CrossRef]
- Otofuji, Y.; Mu, C.L.; Tanaka, K.; Miura, D.; Inokuchi, H.; Kamei, R.; Tamai, M.; Takemoto, K.; Zaman, H.; Yokoyama, M. Spatial Gap between Lhasa and Qiangtang Blocks Inferred from Middle Jurassic to Cretaceous Paleomagnetic Data. Earth Planet. Sci. Lett. 2007, 262, 581–593. [Google Scholar] [CrossRef]
- Jackson, M.; Sienra, G.; Santoro, P.; Fossati, M. Temporal and Spatial Variability Scales of Salinity at a Large Microtidal Estuary. J. Mar. Sci. Eng. 2021, 9, 860. [Google Scholar] [CrossRef]
- Krencker, F.-N.; Bodin, S.; Suan, G.; Heimhofer, U.; Kabiri, L.; Immenhauser, A. Toarcian Extreme Warmth Led to Tropical Cyclone Intensification. Earth Planet. Sci. Lett. 2015, 425, 120–130. [Google Scholar] [CrossRef]
- Vickers, M.L.; Fernandez, A.; Hesselbo, S.P.; Price, G.D.; Bernasconi, S.M.; Lode, S.; Ullmann, C.V.; Thibault, N.; Hougaard, I.W.; Korte, C. Unravelling Middle to Late Jurassic Palaeoceanographic and Palaeoclimatic Signals in the Hebrides Basin Using Belemnite Clumped Isotope Thermometry. Earth Planet. Sci. Lett. 2020, 546, 116401. [Google Scholar] [CrossRef]
- Ferreira, J.; Mattioli, E.; Sucherás-Marx, B.; Giraud, F.; Duarte, L.V.; Pittet, B.; Suan, G.; Hassler, A.; Spangenberg, J.E. Western Tethys Early and Middle Jurassic Calcareous Nannofossil Biostratigraphy. Earth-Sci. Rev. 2019, 197, 102908. [Google Scholar] [CrossRef]
- Laskar, J.; Fienga, A.; Gastineau, M.; Manche, H. La2010: A New Orbital Solution for the Long-Term Motion of the Earth. Astron. Astrophys. 2011, 532, A89. [Google Scholar] [CrossRef]
- Shang, X.; Duan, T.; Hou, J.; Li, Y. Spatial Configuration of Sand and Mud in the Lacustrine Nearshore Sand Bar Deposits and Its Geological Implications. Pet. Explor. Dev. 2019, 46, 954–968. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Bircan, C.; Oskay, R.G.; Türkmen, İ.; Querol, X. The Geology, Mineralogy, Petrography, and Geochemistry of the Miocene Dursunbey Coal within Fluvio-Lacustrine Deposits, Balıkesir (Western Turkey). Int. J. Coal Geol. 2020, 228, 103548. [Google Scholar] [CrossRef]
- Zheng, T.; Zieger, L.; Baniasad, A.; Grohmann, S.; Hu, T.; Littke, R. The Shahejie Formation in the Dongpu Depression, Bohai Bay Basin, China: Geochemical Investigation of the Origin, Deposition and Preservation of Organic Matter in a Saline Lacustrine Environment during the Middle Eocene. Int. J. Coal Geol. 2022, 253, 103967. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Y.; Zhang, S.; Liang, Y.; Gong, G.; Han, R. Astronomical Chronology Framework of the Lingshui Formation (Oligocene) in the Northern South China Sea. J. Mar. Sci. Eng. 2025, 13, 86. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhu, H.; Mei, L.; Du, J.; Zeng, H.; Xu, X.; Dong, X. Multilevel Source-to-Sink (S2S) Subdivision and Application of an Ancient Uplift System in South China Sea: Implications for Further Hydrocarbon Exploration. J. Pet. Sci. Eng. 2019, 181, 106220. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, S.; Lin, C.; Wang, Y.; Wang, Z.; Fang, M.; Shen, W. Source-to-Sink System Reconstruction in the Northern Jiaolai Basin, Eastern China, by Multiproxy Provenance Methods and Implications for Exhumation of the Sulu Orogen. Tectonophysics 2019, 754, 18–32. [Google Scholar] [CrossRef]
- Abdul Aziz, H.; Hilgen, F.; Krijgsman, W.; Sanz, E.; Calvo, J.P. Astronomical Forcing of Sedimentary Cycles in the Middle to Late Miocene Continental Calatayud Basin (NE Spain). Earth Planet. Sci. Lett. 2000, 177, 9–22. [Google Scholar] [CrossRef]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.K.; Bohaty, S.M.; De Vleeschouwer, D.; Florindo, F.; et al. An Astronomically Dated Record of Earth’s Climate and Its Predictability over the Last 66 Million Years. Science 2020, 369, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, R.; Fan, A.; Chen, J.; Bilal, A.; Wang, Z. Establishment of a High-Resolution Astronomical Time Scale and High-Frequency Sequence Framework of Paleogene Lacustrine Fine-Grained Sediments Using Logging Data: A Case Study from the Bohai Bay Basin, East China. Mar. Pet. Geol. 2025, 172, 107220. [Google Scholar] [CrossRef]
- Xu, T.-Y.; Peng, J.; Yu, L.-D.; Han, H.-D.; Yang, Y.-M.; Zeng, Y.; Wang, Y.-B. The Control of Astronomical Cycles on Lacustrine Fine-Grained Event Sedimentation—A Case Study of the Chunshang Sub-Member of the Upper Es4 in the Dongying Sag. Pet. Sci. 2023, 20, 1395–1410. [Google Scholar] [CrossRef]
- Berggren, W.A.; Kent, D.V.; Swisher, C.C.; Aubry, M.-P. A Revised Cenozoic Geochronology and Chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 1995; ISBN 978-1-56576-091-2. [Google Scholar]
- Speijer, R.P.; Pälike, H.; Hollis, C.J.; Hooker, J.J.; Ogg, J.G. The Paleogene Period. In Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1087–1140. ISBN 978-0-12-824360-2. [Google Scholar]
- Huang, H.; Gao, Y.; Ma, C.; Niu, L.; Dong, T.; Tian, X.; Cheng, H.; Hei, C.; Tao, H.; Wang, C. Astronomical Constraints on the Development of Alkaline Lake during the Carboniferous-Permian Period in North Pangea. Glob. Planet. Change 2021, 207, 103681. [Google Scholar] [CrossRef]
- Shi, J.; Jin, Z.; Liu, Q.; Zhang, R.; Huang, Z. Cyclostratigraphy and Astronomical Tuning of the Middle Eocene Terrestrial Successions in the Bohai Bay Basin, Eastern China. Glob. Planet. Change 2019, 174, 115–126. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F.; Dehant, V. Influence of the Changing Lunar Orbit on the Astronomical Frequencies of pre-Quaternary Insolation Patterns. Paleoceanography 1989, 4, 555–564. [Google Scholar] [CrossRef]
- Liu, Z.; Algeo, T.J.; Guo, X.; Fan, J.; Du, X.; Lu, Y. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 59–76. [Google Scholar] [CrossRef]
- Bohaty, S.M.; Zachos, J.C.; Florindo, F.; Delaney, M.L. Coupled Greenhouse Warming and Deep-sea Acidification in the Middle Eocene. Paleoceanography 2009, 24, 2008PA001676. [Google Scholar] [CrossRef]
- Westerhold, T.; Röhl, U.; Pälike, H.; Wilkens, R.; Wilson, P.A.; Acton, G. Orbitally Tuned Timescale and Astronomical Forcing in the Middle Eocene to Early Oligocene. Clim. Past 2014, 10, 955–973. [Google Scholar] [CrossRef]
- Lisiecki, L.; Stern, J. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanogr. Paleoclimatology 2016, 31, 1368–1394. [Google Scholar] [CrossRef]
- Maher, K.; Chamberlain, C.P. Hydrologic Regulation of Chemical Weathering and the Geologic Carbon Cycle. Science 2014, 343, 1502–1504. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hinnov, L.A.; Huang, C.; Ogg, J.G. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing. Nat. Commun. 2018, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Jiang, T.; Jia, J.; Deng, L.; Wan, X. Significant Climate Events in Paleogene and Their Biotic Response. Geol. Sci. Technol. Inf. 2012, 31, 31–38. [Google Scholar]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.-E.; Yin, T.; Zhang, Y.; Liu, P.; Sun, Z.; Zhang, C. Cyclostratigraphic Analysis and Depositional Environment Evolution of the Third Member of Eocene Shahejie Formation in the Laizhou Bay Sag, Southern Bohai Bay. J. Mar. Sci. Eng. 2025, 13, 2208. https://doi.org/10.3390/jmse13112208
Ni J-E, Yin T, Zhang Y, Liu P, Sun Z, Zhang C. Cyclostratigraphic Analysis and Depositional Environment Evolution of the Third Member of Eocene Shahejie Formation in the Laizhou Bay Sag, Southern Bohai Bay. Journal of Marine Science and Engineering. 2025; 13(11):2208. https://doi.org/10.3390/jmse13112208
Chicago/Turabian StyleNi, Jun-E, Taiju Yin, Yuqing Zhang, Peng Liu, Zhongheng Sun, and Chengcheng Zhang. 2025. "Cyclostratigraphic Analysis and Depositional Environment Evolution of the Third Member of Eocene Shahejie Formation in the Laizhou Bay Sag, Southern Bohai Bay" Journal of Marine Science and Engineering 13, no. 11: 2208. https://doi.org/10.3390/jmse13112208
APA StyleNi, J.-E., Yin, T., Zhang, Y., Liu, P., Sun, Z., & Zhang, C. (2025). Cyclostratigraphic Analysis and Depositional Environment Evolution of the Third Member of Eocene Shahejie Formation in the Laizhou Bay Sag, Southern Bohai Bay. Journal of Marine Science and Engineering, 13(11), 2208. https://doi.org/10.3390/jmse13112208
