An Underwater Low-Light Image Enhancement Algorithm Based on Image Fusion and Color Balance
Abstract
1. Introduction
2. Proposed Method
2.1. Color Compensation
2.2. Underwater Defogging
| Algorithm 1. Pseudocode of the dual channel prior |
| Input: The input image Ic, color compensation underwater dataset Output: Dual channel prior processed J(x) Initialization: A, = 0.75, t0 = 0.1 For Ic in color compensation underwater dataset do: Calculate via Equation (5) Calculate via Equation (6) Calculate via Equation (12) Calculate Calculate via Eqn. (13) If < 0.4 then: Calculate via Equation (14) Else: Calculate = Calculate the guided filtering of Calculate via Equation (15) End for |
2.3. Multi-Scale Fusion
3. Experiment and Analysis
3.1. Evaluation Metrics
3.2. Experimentation and Analysis of Color Compensation
3.3. Experiments and Analysis of Dual-Channel Priors
3.4. Experiments and Analysis of Fused Images
3.4.1. Ablation Experiment
3.4.2. Visual Quality Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Ren, X.; Fu, L.; Yun, Q.; Yang, J. UWS-YOLO: Advancing Underwater Sonar Object Detection Via Transfer Learning and Orthogonal-Snake Convolution Mechanisms. J. Mar. Sci. Eng. 2025, 13, 1847. [Google Scholar] [CrossRef]
- Noah, J.A.; Zhang, X.Z.; Dravida, S.; DiCocco, C.; Suzuki, T.; Aslin, R.N.; Tachtsidis, I.; Hirsch, J. Comparison Of Short-Channel Separation And Spatial Domain Filtering For Removal Of Non-Neural Components In Functional Near-Infrared Spectroscopy Signals. Neurophotonics 2021, 8, 015004. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.; Sakhare, A.; Chavhan, N.; Lokulwar, P.P. A Review On Image Enhancement Techniques Using Histogram Equalization. In Proceedings of the AIDE-2023 and PCES-2023, Bengaluru, India, 27–28 October 2023; Hinweis Research: Trivandrum, India, 2023; pp. 497–502. [Google Scholar]
- Pu, M.; Huang, Y.; Liu, Y.; Guan, Q.; Ling, H. Edter: Edge Detection With Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 1402–1412. [Google Scholar]
- Paul, A. Adaptive Tri-Plateau Limit Tri-Histogram Equalization Algorithm For Digital Image Enhancement. Vis. Comput. 2023, 39, 297–318. [Google Scholar] [CrossRef]
- Bury, T. GAN-CLAHE: Generative Adversarial Networks Enhanced with CLAHE For Image Generation Process. In Information and Software Technologies; Springer Nature: Cham, Switzerland, 2024; pp. 61–70. [Google Scholar]
- Xu, R.; Zhu, D.; Chen, M. A Novel Underwater Object Detection Enhanced Algorithm Based On Yolov5-MH. IET Image Process. 2024, 18, 3415–3429. [Google Scholar] [CrossRef]
- Xue, X.; Ma, T.; Han, Y.; Ma, L.; Liu, R. Learning Deep Scene Curve For Fast And Robust Underwater Image Enhancement. IEEE Signal Process. Lett. 2023, 31, 6–10. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, J.; Wen, W. ALAN: Self-Attention Is Not All You Need For Image Super-Resolution. IEEE Signal Process. Lett. 2023, 31, 11–15. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Wang, Q.; He, Y.; Xie, S. Research On Water Surface Object Detection Method Based On Image Fusion. J. Mar. Sci. Eng. 2025, 13, 1832. [Google Scholar] [CrossRef]
- Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-World Underwater Enhancement: Challenges, Benchmarks, And Solutions Under Natural Light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, Z.; Zhang, Y. Underwater Image Enhancement Based On Colour Correction And Fusion. IET Image Process. 2021, 15, 2591–2603. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance And Fusion For Underwater Image Enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset And Beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Zhang, L.; Serikawa, S. Contrast Enhancement For Images In Turbid Water. J. Opt. Soc. Am. A 2015, 32, 886–893. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuo, S.; Tao, D.; Bu, J.; Li, N. Automatic Local Exposure Correction Using Bright Channel Prior For Under-Exposed Images. Signal Process. 2013, 93, 3227–3238. [Google Scholar] [CrossRef]
- Korhonen, J.; You, J. Peak Signal-To-Noise Ratio Revisited: Is Simple Beautiful? In Proceedings of the 2012 Fourth International Workshop on Quality of Multimedia Experience, Melbourne, Australia, 5–7 July 2012; pp. 37–38. [Google Scholar]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On The Mathematical Properties Of The Structural Similarity Index. IEEE Trans. Image Process. 2011, 21, 1488–1499. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-Visual-System-Inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Yang, M.; Sowmya, A. An Underwater Color Image Quality Evaluation Metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef]
- Tan, X.; Lai, S.; Wang, B.; Zhang, M.; Xiong, Z. A Simple Gray-Edge Automatic White Balance Method With FPGA Implementation. J. Real-Time Image Process. 2015, 10, 207–217. [Google Scholar] [CrossRef]
- Adams, R.J.; Smart, P.; Huff, A.S. Shades Of Grey: Guidelines For Working With The Grey Literature In Systematic Reviews For Management And Organizational Studies. Int. J. Manag. Rev. 2017, 19, 432–454. [Google Scholar] [CrossRef]
- Hussain, M.A.; Akbari, A.S. Max-RGB Based Colour Constancy Using The Sub-Blocks Of The Image. In Proceedings of the 2016 9th International Conference on Developments in eSystems Engineering (DeSE), Liverpool, UK, 31 August–1 September 2016; pp. 289–294. [Google Scholar]
- Liu, C.; Chen, X.; Wu, Y. Modified Grey World Method To Detect And Restore Colour Cast Images. IET Image Process. 2019, 13, 1090–1096. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, M.; Choudhry, M.S. Fusion Of Multiscale Gradient Domain Enhancement And Gamma Correction For Underwater Image/Video Enhancement And Restoration. Opt. Lasers Eng. 2024, 178, 108154. [Google Scholar] [CrossRef]
- Iqbal, K.; Salam, R.A.; Osman, A.; Talib, A.Z. Underwater Image Enhancement Using an Integrated Colour Model. IAENG Int. J. Comput. Sci. 2007, 34, 529–534. [Google Scholar]
- Huang, D.; Wang, Y.; Song, W.; Sequeira, J.; Mavromatis, S. Shallow-Water Image Enhancement Using Relative Global Histogram Stretching Based On Adaptive Parameter Acquisition. In MultiMedia Modeling; Springer International Publishing: Cham, Switzerland, 2018; pp. 453–465. [Google Scholar]
- Iqbal, K.; Odetayo, M.; James, A.; Salam, R.A.; Talib, A.Z.H. Enhancing The Low Quality Images Using Unsupervised Colour Correction Method. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1703–1709. [Google Scholar]
- Carlevaris-Bianco, N.; Mohan, A.; Eustice, R.M. Initial Results In Underwater Single Image Dehazing. In Proceedings of the Oceans 2010 Mts/IEEE Seattle, Seattle, WA, USA, 20–23 September 2010; pp. 1–8. [Google Scholar]
- Katoch, S.; Singh, V.; Tiwary, U.S. Indian Sign Language Recognition System Using SURF With SVM And CNN. Array 2022, 14, 100141. [Google Scholar] [CrossRef]








| Image | PSNR | SSIM | UIQM | UCIQE |
|---|---|---|---|---|
| Original | 27.71 | 0.8031 | 0.7192 | 0.5159 |
| Gray Edge | 27.88 | 0.6317 | 0.8046 | 0.5000 |
| Shade of Gray | 27.74 | 0.6292 | 0.6656 | 0.4806 |
| MAX RGB | 27.72 | 0.8031 | 0.7099 | 0.5138 |
| Gray World | 28.08 | 0.7829 | 0.7303 | 0.5474 |
| Ours | 28.15 | 0.8318 | 0.8394 | 0.5888 |
| Image | PSNR | SSIM | UIQM | UCIQE |
|---|---|---|---|---|
| Original | 27.88 | 0.6696 | 0.5027 | 0.5325 |
| DCP | 27.89 | 0.6606 | 0.5858 | 0.5615 |
| Dual channel prior | 28.42 | 0.8232 | 0.6554 | 0.5687 |
| Color Compensation | Dual Channel Prior | USM | PSNR | SSIM | UIQM | UCIQE |
|---|---|---|---|---|---|---|
| × | × | × | 28.15 | 0.8125 | 0.5432 | 0.5435 |
| √ | × | × | 28.22 | 0.8246 | 0.6119 | 0.5661 |
| √ | √ | × | 28.32 | 0.8994 | 0.7619 | 0.6194 |
| √ | × | √ | 28.26 | 0.8313 | 1.1628 | 0.5688 |
| √ | √ | √ | 28.62 | 0.8753 | 0.8831 | 0.5928 |
| Original | CLAHE [6] | HE [3] | GC [26] | ICM [27] | RGHS [28] | UCM [29] | MIP [30] | Ours | |
|---|---|---|---|---|---|---|---|---|---|
| PSNR | 28.15 | 28.29 | 28.17 | 27.95 | 28.73 | 28.73 | 28.59 | 28.06 | 28.62 |
| SSIM | 0.8125 | 0.8025 | 0.7274 | 0.6972 | 0.7852 | 0.8129 | 0.7560 | 0.6364 | 0.8753 |
| UIQM | 0.5432 | 0.8519 | 1.0454 | 0.5020 | 0.7102 | 0.8358 | 0.8656 | 0.6755 | 0.8831 |
| UCIQE | 0.5435 | 0.5836 | 0.6648 | 0.5214 | 0.5683 | 0.6205 | 0.6307 | 0.5871 | 0.5928 |
| Original | CLAHE | HE | GC | ICM | RGHS | UCM | MIP | Ours | |
|---|---|---|---|---|---|---|---|---|---|
| Matched feature points | 123 | 121 | 127 | 102 | 149 | 136 | 135 | 148 | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Zhu, D.; Pang, W.; Chen, M. An Underwater Low-Light Image Enhancement Algorithm Based on Image Fusion and Color Balance. J. Mar. Sci. Eng. 2025, 13, 2049. https://doi.org/10.3390/jmse13112049
Xu R, Zhu D, Pang W, Chen M. An Underwater Low-Light Image Enhancement Algorithm Based on Image Fusion and Color Balance. Journal of Marine Science and Engineering. 2025; 13(11):2049. https://doi.org/10.3390/jmse13112049
Chicago/Turabian StyleXu, Ruishen, Daqi Zhu, Wen Pang, and Mingzhi Chen. 2025. "An Underwater Low-Light Image Enhancement Algorithm Based on Image Fusion and Color Balance" Journal of Marine Science and Engineering 13, no. 11: 2049. https://doi.org/10.3390/jmse13112049
APA StyleXu, R., Zhu, D., Pang, W., & Chen, M. (2025). An Underwater Low-Light Image Enhancement Algorithm Based on Image Fusion and Color Balance. Journal of Marine Science and Engineering, 13(11), 2049. https://doi.org/10.3390/jmse13112049

