Assessing Light Pollution Exposure for the Most Important Sea Turtle Nesting Area in the Mediterranean Region
Abstract
1. Introduction
2. Methods
2.1. Study Site
2.2. UAV Survey
2.3. Light Pollution Measurements
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davies, T.W.; Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 2018, 24, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Gaston, S.; Bennie, J.; Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev. 2015, 23, 14–23. [Google Scholar] [CrossRef]
- Marangoni, L.F.; Davies, T.; Smyth, T.; Rodríguez, A.; Hamann, M.; Duarte, C.; Pendoley, K.; Berge, J.; Maggi, E.; Levy, O. Impacts of artificial light at night in marine ecosystems—A review. Glob. Change Biol. 2022, 28, 5346–5367. [Google Scholar] [CrossRef]
- Bará, S.; Castro-Torres, J.J. Diverging evolution of light pollution indicators: Can the globe at night and VIIRS-DNB measurements be reconciled? J. Quant. Spectrosc. Radiat. Transf. 2025, 335, 109378. [Google Scholar] [CrossRef]
- Pulgar, J.; Zeballos, D.; Vargas, J.; Aldana, M.; Manriquez, P.H.; Manriquez, K.; Quijón, P.A.; Widdicombe, S.; Anguita, C.; Quintanilla, D.; et al. Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN). Environ. Pollut. 2019, 244, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The state of the world’s beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. Stemming the tide of light pollution encroaching into marine protected areas. Conserv. Lett. 2016, 9, 164–171. [Google Scholar] [CrossRef]
- Dimitriadis, C.; Fournari-Konstantinidou, I.; Sourbès, L.; Koutsoubas, D.; Mazaris, A.D. Reduction of sea turtle population recruitment caused by nightlight: Evidence from the Mediterranean region. Ocean Coast. Manag. 2018, 153, 108–115. [Google Scholar] [CrossRef]
- Rich, C.; Longcore, T. Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Di Bari, D.; Tiberti, C.; Mazzei, E.; Pagli, D. Light Pollution and Sea Turtles Nest-Site Selection. Is it Possible a Practical Management of the Problem? Eur. J. Sustain. Dev. 2023, 12, 35. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef]
- Becker, A.; Whitfield, A.K.; Cowley, P.D.; Järnegren, J.; Næsje, T.F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 2013, 50, 43–50. [Google Scholar] [CrossRef]
- Luarte, T.; Bonta, C.; Silva-Rodriguez, E.; Quijón, P.; Miranda, C.; Farias, A.; Duarte, C. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate. Environ. Pollut. 2016, 218, 1147–1153. [Google Scholar] [CrossRef]
- Perry, G.; Fisher, R.N. Night lights and reptiles: Observed and potential effects. In Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2006; pp. 169–191. [Google Scholar]
- Berge, J.; Geoffroy, M.; Daase, M.; Cottier, F.; Priou, P.; Cohen, J.H.; Johnsen, G.; McKee, D.; Kostakis, I.; Renaud, P.E.; et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 2020, 3, 102. [Google Scholar] [CrossRef]
- Gaston, K.J.; Ackermann, S.; Bennie, J.; Cox, D.T.; Phillips, B.B.; Sánchez de Miguel, A.; Sanders, D. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 2021, 61, 1098–1110. [Google Scholar] [CrossRef]
- Reece, J.S.; Castoe, T.A.; Parkinson, C.L. Historical perspectives on population genetics and conservation of three marine turtle species. Conserv. Genet. 2005, 6, 235–251. [Google Scholar] [CrossRef]
- Schofield, G.; Lilley, M.K.; Bishop, C.M.; Brown, P.; Katselidis, K.A.; Dimopoulos, P.; Pantis, J.D.; Hays, G.C. Conservation hotspots: Implications of intense spatial area use by breeding male and female loggerheads at the Mediterranean’s largest rookery. Endanger. Species Res. 2009, 10, 191–202. [Google Scholar] [CrossRef]
- Schofield, G.; Dimadi, A.; Fossette, S.; Katselidis, K.A.; Koutsoubas, D.; Lilley, M.K.; Luckman, A.; Pantis, J.D.; Karagouni, A.D.; Hays, G.C. Satellite tracking large numbers of individuals to infer population level dispersal and core areas for the protection of an endangered species. Divers. Distrib. 2013, 19, 834–844. [Google Scholar] [CrossRef]
- Bolten, A.B.; Lutz, P.; Musick, J.; Wyneken, J. Variation in sea turtle life history patterns: Neritic vs. oceanic developmental stages. Biol. Sea Turtles 2003, 2, 243–257. [Google Scholar]
- Limpus, C.; Kamrowski, R.L. Ocean-finding in marine turtles: The importance of low horizon elevation as an orientation cue. Behaviour 2013, 150, 863–893. [Google Scholar] [CrossRef]
- Dimitriadis, C.; Karditsa, A.; Almpanidou, V.; Anastasatou, M.; Petrakis, S.; Poulos, S.; Koutsoubas, D.; Sourbes, L.; Mazaris, A.D. Sea level rise threatens critical nesting sites of charismatic marine turtles in the Mediterranean. Reg. Environ. Chang. 2022, 22, 56. [Google Scholar] [CrossRef]
- Pike, D.A. Forecasting the viability of sea turtle eggs in a warming world. Glob. Change Biol. 2014, 20, 7–15. [Google Scholar] [CrossRef]
- Salmon, M.; Hamann, M.; Wyneken, J.; Schauble, C. Early swimming activity of hatchling flatback sea turtles Natator depressus: A test of the ‘predation risk’hypothesis. Endanger. Species Res. 2009, 9, 41–47. [Google Scholar] [CrossRef]
- Polovina, J.J.; Balazs, G.H.; Howell, E.A.; Parker, D.M.; Seki, M.P.; Dutton, P.H. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr. 2004, 13, 36–51. [Google Scholar] [CrossRef]
- Simantiris, N. The impact of climate change on sea turtles: Current knowledge, scientometrics, and mitigation strategies. Sci. Total Environ. 2024, 923, 171354. [Google Scholar] [CrossRef] [PubMed]
- Patrício, A.R.; Varela, M.R.; Barbosa, C.; Broderick, A.C.; Catry, P.; Hawkes, L.A.; Regalla, A.; Godley, B.J. Climate change resilience of a globally important sea turtle nesting population. Glob. Change Biol. 2019, 25, 522–535. [Google Scholar] [CrossRef]
- Hays, G.C.; Laloë, J.O.; Seminoff, J.A. Status, trends and conservation of global sea turtle populations. Nat. Rev. Biodivers. 2025, 1, 119–133. [Google Scholar] [CrossRef]
- Simantiris, N. Sea turtles swim in warmer and saltier waters than 30 years ago. Estuar. Coast. Shelf Sci. 2025, 323, 109384. [Google Scholar] [CrossRef]
- Casale, P.; Broderick, A.C.; Camiñas, J.A.; Cardona, L.; Carreras, C.; Demetropoulos, A.; Fuller, W.J.; Godley, B.J.; Hochscheid, S.; Kaska, Y.; et al. Mediterranean sea turtles: Current knowledge and priorities for conservation and research. Endanger. Species Res. 2018, 36, 229–267. [Google Scholar] [CrossRef]
- Simantiris, N. Single-use plastic or paper products? A dilemma that requires societal change. Clean. Waste Syst. 2024, 7, 100128. [Google Scholar] [CrossRef]
- Ostiategui-Francia, P.; Usategui-Martín, A.; Liria-Loza, A. Microplastics presence in sea turtles. In Fate and Impact of Microplastics in Marine Ecosystems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 34–35. [Google Scholar]
- Papafitsoros, K.; Adam, L.; Schofield, G. A social media-based framework for quantifying temporal changes to wildlife viewing intensity. Ecol. Model. 2023, 476, 110223. [Google Scholar] [CrossRef]
- Solomando, A.; Pujol, F.; Sureda, A.; Pinya, S. Ingestion and characterization of plastic debris by loggerhead sea turtle, Caretta caretta, in the Balearic Islands. Sci. Total Environ. 2022, 826, 154159. [Google Scholar] [CrossRef]
- Fuentes, M.M.; Meletis, Z.A.; Wildermann, N.E.; Ware, M. Conservation interventions to reduce vessel strikes on sea turtles: A case study in Florida. Mar. Policy 2021, 128, 104471. [Google Scholar] [CrossRef]
- Simantiris, N.; Dimitriadis, C.; Xirouchakis, S.; Voulgaris, M.D.; Beka, E.; Vardaki, M.Z.; Karris, G. Combining methods for detection of bycatch hotspot areas of marine megafauna species in and around critical rookeries and foraging areas. Mar. Environ. Res. 2025, 210, 107299. [Google Scholar] [CrossRef]
- Simantiris, N.; Vardaki, M.Z.; Kourkoumelis, N.; Avlonitis, M.; Theocharis, A. Microplastics in the Mediterranean and elsewhere in coastal seas. In Treatise on Estuarine and Coastal Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Windle, A.E.; Hooley, D.S.; Johnston, D.W. Robotic vehicles enable high-resolution light pollution sampling of sea turtle nesting beaches. Front. Mar. Sci. 2018, 5, 493. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, H.; Huang, Y. Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data. Environ. Pollut. 2018, 239, 30–42. [Google Scholar] [CrossRef]
- Price, J.T.; Drye, B.; Domangue, R.J.; Paladino, F.V. Exploring the role of artificial lighting in loggerhead turtle (Caretta caretta) nest-site selection and hatchling disorientation. Herpetol. Conserv. Biol. 2018, 13, 415–422. [Google Scholar]
- Berry, M.; Booth, D.T.; Limpus, C.J. Artificial lighting and disrupted sea-finding behaviour in hatchling loggerhead turtles (Caretta caretta) on the Woongarra coast, south-east Queensland, Australia. Aust. J. Zool. 2013, 61, 137–145. [Google Scholar] [CrossRef]
- Silva, E.; Marco, A.; da Graça, J.; Pérez, H.; Abella, E.; Patino-Martinez, J.; Martins, S.; Almeida, C. Light pollution affects nesting behavior of loggerhead turtles and predation risk of nests and hatchlings. J. Photochem. Photobiol. B Biol. 2017, 173, 240–249. [Google Scholar] [CrossRef]
- Truscott, Z.; Booth, D.T.; Limpus, C.J. The effect of on-shore light pollution on sea-turtle hatchlings commencing their off-shore swim. Wildl. Res. 2017, 44, 127–134. [Google Scholar] [CrossRef]
- Pilcher, N.; Enderby, S.; Stringell, T.; Bateman, L. Nearshore turtle hatchling distribution and predation. In Sea Turtles of the Indo-Pacific; ASEAN Academic Press: London, UK, 2000; pp. 151–166. [Google Scholar]
- Wyneken, J.; Salmon, M.; Fisher, L.; Weege, S. Managing relocated sea turtle nests in open-beach hatcheries. Lessons in hatchery design and implementation in Hillsboro Beach, Broward County, Florida. In Proceedings of the 19 th Annual Sea Turtle Symposium H. Kalb and T. Wibbels (Compilers). US Department of Commerce, NOAA Technical Memorandum NMFS-SEFSC-443, South Padre Island, TX, USA, 2–6 March 1999. [Google Scholar]
- Putman, N.F.; Bane, J.M.; Lohmann, K.J. Sea turtle nesting distributions and oceanographic constraints on hatchling migration. Proc. R. Soc. B Biol. Sci. 2010, 277, 3631–3637. [Google Scholar] [CrossRef]
- Hamann, M.; Grech, A.; Wolanski, E.; Lambrechts, J. Modelling the fate of marine turtle hatchlings. Ecol. Model. 2011, 222, 1515–1521. [Google Scholar] [CrossRef]
- Lorne, J.K.; Salmon, M. Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endanger. Species Res. 2007, 3, 23–30. [Google Scholar] [CrossRef]
- Margaritoulis, D.; Rees, A.F.; Riggall, T.E. Exponential Increase in a Loggerhead Sea Turtle Nesting Population: Investigating the Role of Multi-decadal Nest Protection in Kyparissia Bay, Greece. Zool. Stud. 2025, 64, 29. [Google Scholar]
- Simantiris, N.; Andreanidou, K.; Sampson, G. Over 30 years of monitoring and implementing the Bern Convention’s recommendations for the protection of Mediterranean sea turtles. Mar. Policy 2024, 168, 106319. [Google Scholar] [CrossRef]
- Kamrowski, R.L.; Limpus, C.; Pendoley, K.; Hamann, M. Influence of industrial light pollution on the sea-finding behaviour of flatback turtle hatchlings. Wildl. Res. 2015, 41, 421–434. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef]
- Papazekou, M.; Kyprioti, A.; Chatzimentor, A.; Dimitriadis, C.; Vallianos, N.; Mazaris, A.D. Advancing Sea Turtle Monitoring at Nesting and Near Shore Habitats with UAVs, Data Loggers, and State of the Art Technologies. Diversity 2024, 16, 153. [Google Scholar] [CrossRef]
- Malaperdas, G. Practical Methods of GIS for Archaeologists: Spatial Division in a Large Area. SSRG Int. J. Geoinform. Geol. Sci. (SSRG-IJGGS) 2019, 6, 1–6. [Google Scholar]
- Tomczak, M. Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. J. Geogr. Inf. Decis. Anal. 1998, 2, 18–30. [Google Scholar]
- Setianto, A.; Triandini, T. Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J. Appl. Geol. 2013, 5. [Google Scholar] [CrossRef]
- Malaperdas, G.; Panagopoulos, N. Mapping shoreline changes over the years: The case study of Navarino bay, Pylos, Messenia, Greece. World J. Geomat. Geosci. 2021, 1, 28–35. [Google Scholar] [CrossRef]
- Vandersteen, J.; Kark, S.; Sorrell, K.; Levin, N. Quantifying the impact of light pollution on sea turtle nesting using ground-based imagery. Remote Sens. 2020, 12, 1785. [Google Scholar] [CrossRef]
- Yen, C.H.; Chan, Y.T.; Peng, Y.C.; Chang, K.H.; Cheng, I.J. The effect of light pollution on the sea finding behavior of green turtle hatchlings on Lanyu Island, Taiwan. Zool. Stud. 2023, 62, e47. [Google Scholar] [PubMed]
- Cruz, L.M.; Shillinger, G.L.; Robinson, N.J.; Tomillo, P.S.; Paladino, F.V. Effect of light intensity and wavelength on the in-water orientation of olive ridley turtle hatchlings. J. Exp. Mar. Biol. Ecol. 2018, 505, 52–56. [Google Scholar] [CrossRef]
- Witherington, B.E.; Bjorndal, K.A. Influences of artificial lighting on the seaward orientation of hatchling loggerhead turtles Caretta caretta. Biol. Conserv. 1991, 55, 139–149. [Google Scholar] [CrossRef]
- Magyar, T. The impact of artificial lights and anthropogenic noise on loggerheads (Caretta caretta) and green turtles (Chelonia mydas), assessed at index nesting beaches in Turkey and Mexico. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2009. [Google Scholar]
- Flores Turcios, M. Relación entre la Intensidad Lumínica de Fuentes de luz Artificial y la Densidad de Huellas de Anidación de Tortuga Parlama (Lepidochelys olivacea) en el Litoral Costero de la Playa de Hawaii, Santa Rosa, Guatemala. Bachelor’s Thesis, Universidad del Valle de Guatemala, Guatemala City, Guatemala, 2021. [Google Scholar]
- Witherington, B.E.; Martin, R.E. Understanding, assessing, and resolving light-pollution problems on sea turtle nesting beaches. In Florida Marine Research Institute Technical Report; FWRI: St. Petersburg, FL, USA, 2000; pp. 2–73. [Google Scholar]
- Lopez, G.G.; Saliés, E.d.C.; Lara, P.H.; Tognin, F.; Marcovaldi, M.A.; Serafini, T.Z. Coastal development at sea turtles nesting ground: Efforts to establish a tool for supporting conservation and coastal management in northeastern Brazil. Ocean Coast. Manag. 2015, 116, 270–276. [Google Scholar] [CrossRef]
- Pendoley, K.; Kamrowski, R.L. Sea-finding in marine turtle hatchlings: What is an appropriate exclusion zone to limit disruptive impacts of industrial light at night? J. Nat. Conserv. 2016, 30, 1–11. [Google Scholar] [CrossRef]
- Arthur, K.; Whiting, S.; Pendoley, K. Indian Ocean Turtle Newsletter-Issue 32. Department of Agriculture, Australia. Available online: https://www.iotn.org/wp-content/uploads/2020/08/IOTN-32.pdf (accessed on 10 September 2025).
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 2011, 92, 2714–2722. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J. Reducing the ecological consequences of night-time light pollution: Options and developments. J. Appl. Ecol. 2012, 49, 1256–1266. [Google Scholar] [CrossRef]
- Kamrowski, R.L.; Limpus, C.; Jones, R.; Anderson, S.; Hamann, M. Temporal changes in artificial light exposure of marine turtle nesting areas. Glob. Change Biol. 2014, 20, 2437–2449. [Google Scholar] [CrossRef]
- Bourgeois, S.; Gilot-Fromont, E.; Viallefont, A.; Boussamba, F.; Deem, S.L. Influence of artificial lights, logs and erosion on leatherback sea turtle hatchling orientation at Pongara National Park, Gabon. Biol. Conserv. 2009, 142, 85–93. [Google Scholar] [CrossRef]
- Salmon, M. Artificial night lighting and sea turtles. Biologist 2003, 50, 163–168. [Google Scholar]







| Sampling Station | Lux | Sampling Station | Lux | Sampling Station | Lux |
|---|---|---|---|---|---|
| M1 | ≤0.1 | M11 | ≤0.1 | M21 | ≤0.1 |
| M2 | 0.3 | M12 | ≤0.1 | M22 | ≤0.1 |
| M3 | 4.5 | M13 | 11.1 | M23 | ≤0.1 |
| M4 | 2.7 | M14 | 1.1 | M24 | ≤0.1 |
| M5 | 3.8 | M15 | ≤0.1 | M25 | ≤0.1 |
| M6 | 0.7 | M16 | ≤0.1 | M26 | ≤0.1 |
| M7 | ≤0.1 | M17 | ≤0.1 | M27 | ≤0.1 |
| M8 | ≤0.1 | M18 | ≤0.1 | M28 | ≤0.1 |
| M9 | ≤0.1 | M19 | ≤0.1 | M29 | ≤0.1 |
| M10 | 4.1 | M20 | ≤0.1 | - | - |
| Region | Species | Light Intensity (Lux) | Reference |
|---|---|---|---|
| Kyparissia (Greece) | Caretta caretta | 3.5 | Current study |
| Zakynthos (Greece) | Caretta caretta | 0.08 | [8] |
| St. George Island, FL (USA) | Caretta caretta | 1.5 | [40] |
| Heron Island (Australia) | Caretta caretta | 2 | [58] |
| Castiglione della Pescaia (Italy) | Caretta caretta | 10 | [10] |
| Boa Vista (Cape Verde) | Caretta caretta | 7 | [42] |
| Lanyu Island (Taiwan) | Chelonia mydas | 15 | [59] |
| Playa Grande (Costa Rica) | Lepidochelys olivacea | 69 | [60] |
| Indian River, FL (USA) | Caretta caretta | 1.9 | [61] |
| Xcacel (Mexico) | Caretta caretta | 21.5 | [62] |
| Santa Rosa (Guatemala) | Lepidochelys olivacea | 4.5 | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simantiris, N.; Vardaki, M.Z.; Dimitriadis, C.; Netzipi, O.; Malaperdas, G. Assessing Light Pollution Exposure for the Most Important Sea Turtle Nesting Area in the Mediterranean Region. J. Mar. Sci. Eng. 2025, 13, 2020. https://doi.org/10.3390/jmse13102020
Simantiris N, Vardaki MZ, Dimitriadis C, Netzipi O, Malaperdas G. Assessing Light Pollution Exposure for the Most Important Sea Turtle Nesting Area in the Mediterranean Region. Journal of Marine Science and Engineering. 2025; 13(10):2020. https://doi.org/10.3390/jmse13102020
Chicago/Turabian StyleSimantiris, Nikolaos, Martha Z. Vardaki, Charalampos Dimitriadis, Onteta Netzipi, and George Malaperdas. 2025. "Assessing Light Pollution Exposure for the Most Important Sea Turtle Nesting Area in the Mediterranean Region" Journal of Marine Science and Engineering 13, no. 10: 2020. https://doi.org/10.3390/jmse13102020
APA StyleSimantiris, N., Vardaki, M. Z., Dimitriadis, C., Netzipi, O., & Malaperdas, G. (2025). Assessing Light Pollution Exposure for the Most Important Sea Turtle Nesting Area in the Mediterranean Region. Journal of Marine Science and Engineering, 13(10), 2020. https://doi.org/10.3390/jmse13102020

