Uncertainty in the Assessment of Wave Overtopping in Mediterranean Moroccan Ports Associated with Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Wave and SLR Data
- Scenario 1: Present sea level.
- Scenario 2: SSP2-4.5—present + 0.48 m ± 90% confidence interval (0.32 m, 0.72 m).
- Scenario 3: SSP5-8.5—present + 0.69 m ± 90% confidence interval (0.51 m, 0.97 m).
2.3. Numerical Modeling
2.4. Overtopping Discharges
- 0.3 L/s/m: for pedestrians to remain on the breakwater crest.
- 1 L/s/m: to prevent damage to breakwaters, equipment, or small boats.
- 5 L/s/m: to prevent small boats from sinking or damage to large yachts.
2.5. Data Availability
3. Results
- i.
- High-impact ports: Kabila, Chmaala, and Cala Iris. For the upper Hs band, these exceed 100 L/s/m.
- o
- Kabila: Discharges range from 61.6–151.0 L/s/m (ensemble Hs) to 292.8–508.7 L/s/m (maximum Hs), though often negligible with lower Hs.
- o
- Chmaala: 21.3–50.4 L/s/m (ensemble Hs) to 147.1–222.0 L/s/m (maximum Hs).
- o
- Cala Iris: 15.9–32.2 L/s/m (ensemble Hs) to 92.7–165.3 L/s/m (maximum Hs).
- ii.
- Moderate-impact ports: M’diq, Jebha, and Al Hoceima show overtopping above 5 L/s/m in some scenarios but lower magnitudes in others.
- o
- M’diq: 1.0–1.9 L/s/m (ensemble Hs) to 7.8–14.6 L/s/m (maximum Hs).
- o
- Jebha and Al Hoceima: Slightly lower but within a comparable range.
- iii.
- Low-impact port: Marina Smir. While overtopping exceeds the 0.3 and 1.0 L/s/m thresholds under upper Hs bands (0.9–2.2 L/s/m), it does not reach the critical 5 L/s/m level.
- -
- q ≤ 0.3 L/s/m, no vulnerability (0).
- -
- 0.3 < q ≤ 1 L/s/m, very low vulnerability (1).
- -
- 1 < q ≤ 5 L/s/m, low vulnerability (2).
- -
- 5 < q ≤ 20 L/s/m, moderate vulnerability (3).
- -
- q > 20 L/s/m, high vulnerability (4).
4. Discussion
- i.
- When only SLR is varied, q variability decreases with increasing return period.
- ii.
- When only Hs is varied, q variability increases with return period.
- -
- Construction of a vertical wall at the crest of the breakwater, potentially incorporating a bullnose.
- -
- Increase in the freeboard of the breakwater by raising its crest elevation.
- -
- Smoothing of the breakwater slope.
- -
- Construction of a berm in the breakwater.
- -
- Installation of a submerged dike in front of the breakwater.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR6 | Sixth Assessment Report |
CNRM | Centre National de Recherches Météorologiques |
CMCC | Centro Euro-Mediterraneo sui Cambiamenti Climatici |
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
GEBCO | General Bathymetric Chart of the Oceans |
GUF | Goethe University Frankfurt |
Hs | Significant Wave Height |
IPCC | Intergovernmental Panel on Climate Change |
LMD | Laboratoire de Météorologie Dynamique |
Med-CORDEX | Mediterranean Coordinated Regional Downscaling Experiment |
NASA | National Aeronautics and Space Administration |
RCP | Representative Concentration Pathway |
SLR | Sea Level Rise |
Tp | Peak Wave Period |
TR | Return Period |
References
- Verschuur, J.; Koks, E.E.; Hall, J.W. Port disruptions due to natural disasters: Insights into port and logistics resilience. Transp. Res. D Transp. Environ. 2020, 85, 102393. [Google Scholar] [CrossRef]
- Becker, A.; Inoue, S.; Fischer, M.; Schwegler, B. Climate change impacts on international seaports: Knowledge, perceptions, and planning efforts among port administrators. Clim. Change 2012, 110, 5–29. [Google Scholar] [CrossRef]
- Izaguirre, C.; Losada, I.J.; Camus, P.; González-Lamuño, P.; Stenek, V. Seaport climate change impact assessment using a multi-level methodology. Marit. Policy Manag. 2020, 47, 544–557. [Google Scholar] [CrossRef]
- Van Houtven, G.; Gallaher, M.; Woollacott, J.; Decker, E. Act Now or Pay Later: The Costs of Climate Inaction for Ports and Shipping; Environmental Defense Fund and RTI International: Research Triangle Park, NC, USA, 2022. [Google Scholar]
- Loh, H.S.; Zhou, Q.; Thai, V.V.; Wong, Y.D.; Yuen, K.F. Fuzzy comprehensive evaluation of port-centric supply chain disruption threats. Ocean Coast. Manag. 2017, 148, 53–62. [Google Scholar] [CrossRef]
- Sierra, J.P.; Genius, A.; Lionello, P.; Mestres, M.; Mösso, C.; Marzo, L. Modelling the impact of climate change on harbour operability: The Barcelona port case study. Ocean Eng. 2017, 141, 64–78. [Google Scholar] [CrossRef]
- Yang, Y.; Ge, Y. Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transp. Policy 2020, 97, 232–244. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.; Iglesias, A.; Lange, A.; Lionello, P.; Llasat, M.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Izaguirre, C.; Losada, I.J.; Camus, P.; Vigh, J.L.; Stenek, V. Climate change risk to global port operations. Nat. Clim. Change 2021, 11, 14–20. [Google Scholar] [CrossRef]
- Snoussi, M.; Ouchani, T.; Niazi, S. Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuar. Coast. Shelf Sci. 2008, 77, 206–213. [Google Scholar] [CrossRef]
- Khouakhi, A.; Snoussi, M.; Niazi, S.; Raji, O. Vulnerability assessment of Al Hoceima bay (Moroccan Mediterranean coast): A coastal management tool to reduce potential impacts of sea-level rise and storm surges. J. Coast. Res. 2013, SI65, 968–973. [Google Scholar] [CrossRef]
- Agharroud, K.; Puddu, M.; Ivčević, A.; Satta, A.; Kolker, A.S.; Snoussi, M. Climate risk assessment of the Tangier-Tetouan-Al Hoceima coastal Region (Morocco). Front. Mar. Sci. 2023, 10, 1176350. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, P.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Jrrar, A.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000763. [Google Scholar] [CrossRef]
- Gracia, V.; Sierra, J.P.; Gómez, M.; Pedrol, M.; Sampé, S.; García-León, M.; Gironella, X. Assessing the impact of sea level rise on port operability using LiDAR-derived digital elevation models. Remote Sens. Environ. 2019, 232, 111318. [Google Scholar] [CrossRef]
- Jebbad, R.; Sierra, J.P.; Mösso, C.; Mestres, M.; Sanchez-Arcilla, A. Assessment of harbour inoperability and adaptation cost due to sea level rise. Application to the port of Tangier-Med (Morocco). Appl. Geogr. 2022, 138, 102623. [Google Scholar] [CrossRef]
- Sierra, J.P.; Sánchez-Arcilla, A.; Gironella, X.; Gracia, V.; Altomare, C. Impact of climate change on berthing areas in ports of the Balearic Islands: Adaptation measures. Front. Mar. Sci. 2023, 10, 1124763. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; Sierra, J.P.; Brown, S.; Casas-Prat, M.; Nicholls, R.J.; Lionello, P.; Conte, D. A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Reg. Environ. Change 2016, 16, 2471–2484. [Google Scholar] [CrossRef]
- Weisse, R.; Storch, H. Marine Climate and Climate Change: Storms, Wind Waves and Storm Surges; Springer: Chichester, UK, 2009. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casas-Prat, M. Analysis of potential impacts on coastal areas due to changes in wave conditions. Clim. Change 2014, 124, 861–876. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casanovas, I.; Mösso, C.; Mestres, M.; Sánchez-Arcilla, A. Vulnerability of Catalan (NW Mediterranean) ports to wave overtopping due to different scenarios of sea level rise. Reg. Environ. Change 2016, 16, 1457–1468. [Google Scholar] [CrossRef]
- Pillai, K.; Lemckert, C.; Etemad-Shadidi, A.; Cappietti, L.; Sigurdarson, S. Effect of the sea level rise on the wave overtopping rate at berm breakwater. J. Waterw. Port Coast. Ocean Eng. 2019, 145, 04019019. [Google Scholar] [CrossRef]
- Pepi, Y.; Streicher, M.; Ricci, C.; Franco, L.; Bellotti, G. The effect of variations in water level on wave overtopping discharge over a dike: An experimental model study. Coast. Eng. 2022, 178, 104199. [Google Scholar] [CrossRef]
- Altomare, C.; Gironella, X.; Suzuki, T.; Viccione, G.; Saponieri, A. Overtopping metrics and coastal safety: A case of study from the Catalan Coast. J. Mar. Sci. Eng. 2020, 8, 556. [Google Scholar] [CrossRef]
- Koosheh, A.; Etemad-Shahidi, A.; Cartwright, N.; Tomlinson, R.; Van Gent, M.R. Wave overtopping layer thickness on the crest of rubble mound seawalls. Coast. Eng. 2023, 188, 104441. [Google Scholar] [CrossRef]
- Pillai, K.; Etemad-Shadidi, A.; Lemckert, C. Wave overtopping at berm breakwaters: Review and sensitivity analysis of prediction models. Coast. Eng. 2017, 120, 1–21. [Google Scholar] [CrossRef]
- Van der Meer, J.M.; Van Gent, M.R.A. Wave overtopping over coastal structures with oblique wind and swell waves. J. Mar. Sci. Eng. 2018, 6, 149. [Google Scholar] [CrossRef]
- Chen, W.; Marconi, A.; Van Gent, M.R.A.; Warmink, J.J.; Hulscher, S.J.M.H. Experimental study on the influence of berms and roughness on wave overtopping at rock-armoured dikes. J. Mar. Sci. Eng. 2020, 8, 446. [Google Scholar] [CrossRef]
- Van der Meer, J.W.; Allsop, N.W.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. Manual on Wave Overtopping of Sea Defences and Related Structures; TU Delft: Delft, The Netherlands, 2016; Available online: www.overtopping-manual.com (accessed on 24 July 2025).
- Romano, A.; Bellotti, G.; Briganti, R.; Franco, L. Uncertainties in the physical modelling of the wave overtopping over a rubble mound breakwater: The role of the seeding number and of the test duration. Coast. Eng. 2015, 103, 15–21. [Google Scholar] [CrossRef]
- Molines, J.; Herrera, M.P.; Gómez-Martín, M.E.; Medina, J.R. Distribution of individual wave overtopping volumes on mound breakwaters. Coast. Eng. 2019, 149, 15–27. [Google Scholar] [CrossRef]
- Mares-Nasarre, P.; Van Gent, M.R.; Morales-Nápoles, O. A copula-based model to describe the uncertainty of overtopping variables on mound breakwaters. Coast. Eng. 2024, 189, 104483. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Zang, J.; Dong, G.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 2020, 158, 103670. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 2021, 170, 103977. [Google Scholar] [CrossRef]
- Gao, J.; Hou, L.; Liu, Y.; Shi, H. Influences of Bragg reflection on harbor resonance triggered by irregular wave groups. Coast. Eng. 2024, 305, 117941. [Google Scholar] [CrossRef]
- Sierra, J.P. Economic impact of overtopping and adaptation measures in Catalan ports due to sea level rise. Water 2019, 11, 1440. [Google Scholar] [CrossRef]
- Chini, N.; Stansby, P.K. Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coast. Eng. 2012, 65, 27–37. [Google Scholar] [CrossRef]
- Hilmi, K.; Koutitonsky, V.G.; Orbi, A.; Lakhdar, J.I.; Chagdali, M. Oualidia lagoon, Morocco: An estuary without a river. Afr. J. Aquat. Sci. 2005, 30, 1–10. [Google Scholar] [CrossRef]
- Gouvernement du Maroc. Bulletin Officiel du Maroc; Gouvernement du Maroc: Rabat, Morocco, 2016. [Google Scholar]
- Raji, O.; Dezileau, L.; Von Grafenstein, U.; Niazi, S.; Snoussi, M.; Martinez, P. Extreme sea events during the last millennium in the northeast of Morocco. Nat. Hazards Earth Syst. Sci. 2015, 15, 203–211. [Google Scholar] [CrossRef]
- El Mrini, A.; Anthony, E.J.; Maanan, M.; Taaouati, M.; Nachite, D. Beach-dune degradation in a Mediterranean context of strong development pressures, and the missing integrated management. Ocean Coast. Manag. 2012, 69, 299–306. [Google Scholar] [CrossRef]
- Lionello, P.; Boldrin, U.; Giorgi, F. Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim. Dyn. 2008, 30, 657–671. [Google Scholar] [CrossRef]
- Lira-Loarca, A.; Ferrari, F.; Mazzino, A.; Besio, G. Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100. Appl. Energy 2021, 302, 117492. [Google Scholar] [CrossRef]
- Reale, M.; Cabos Narvaez, W.; Cavicchia, L.; Conte, D.; Coppola, E.; Flaounas, E.; Giorgi, F.; Gualdi, S.; Hochman, A.; Li, L.; et al. Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Clim. Dyn. 2022, 58, 2501–2524. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Sierra, J.P. Projected future wave climate in the NW Mediterranean Sea. J. Geophys. Res. Oceans 2013, 118, 3548–3568. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Ruti, P.M.; Somot, S.; Giorgi, F.; Dubois, C.; Flaounas, E.; Obermann, A.; Dell’Aquila, A.; Pisacane, G.; Harzallah, A.; Lombardi, E.; et al. Med-Cordex initiative for Mediterranean climate studies. Bull. Am. Meteorol. Soc. 2016, 97, 1187–1208. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Novaczek, E.; Devillers, R.; Edinger, E.N. Generating higher resolution regional seafloor maps from crowd-sourced bathymetry. PLoS ONE 2019, 14, e0216792. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Altomare, C.; Yasuda, T.; Verwaest, T. Characterization of overtopping waves on sea dikes with gentle and shallow foreshores. J. Mar. Sci. Eng. 2020, 8, 752. [Google Scholar] [CrossRef]
- Kerpen, N.B.; Daemrich, K.-F.; Lojek, O.; Schlurmann, T. Effect of variations in water level and steepness on the robustness of wave overtopping estimation. J. Mar. Sci. Eng. 2020, 8, 63. [Google Scholar] [CrossRef]
- Ewans, K.; Jonathan, P. Uncertainties in estimating the effect of climate change on 100-year return value for significant wave height. Ocean Eng. 2023, 272, 113840. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 2019, 9, 711–718. [Google Scholar] [CrossRef]
- Toomey, T.; Lira-Loarca, A.; Marcos, M.; Besio, G.; Orfila, A. Future wave climate in the Mediterranean Sea and associated uncertainty from an ensemble of 31 GCM-RCM wave simulations. Earth’s Future 2025, 13, e2024EF004992. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Swail, V.R. Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights. J. Geophys. Res. 2015, 120, 3859–3871. [Google Scholar] [CrossRef]
- Lobeto, H.; Semedo, A.; Menendez, M.; Lemos, G.; Kumar, R.; Akpinar, A.; Dobrynin, M.; Kamranzad, B. On the assessment of the wave modeling uncertainty in wave climate projections. Environ. Res. Lett. 2023, 18, 124006. [Google Scholar] [CrossRef]
- Mori, N.; Shimura, T.; Yasuda, T.; Mase, H. Multi-model climate projections of ocean surface variables under different climate scenarios—Future change of waves, sea level and wind. Ocean Eng. 2013, 71, 122–129. [Google Scholar] [CrossRef]
- Bitner-Gregersen, E.M.; Vanem, E.; Gramstad, O.; Horte, T.; Aarnes, O.J.; Reistad, M.; Breivik, Ø.; Magnusson, A.K.; Natvig, B. Climate change and safe design of ship structures. Ocean Eng. 2018, 149, 226–237. [Google Scholar] [CrossRef]
- Jackson, L.P.; Jevrejeva, S. A probabilistic approach to 21st century regional sea-level projections using RCP and high-end scenarios. Glob. Planet. Change 2016, 146, 179–189. [Google Scholar] [CrossRef]
- Lionello, P.; Cogo, S.; Galati, M.B.; Sanna, A. The Mediterranean surface wave climate inferred from future scenario simulations. Glob. Planet. Change 2008, 63, 152–162. [Google Scholar] [CrossRef]
- Lionello, P.; Conte, D.; Marzo, L.; Scarascia, L. The contrasting effect of increasing mean sea level and decreasing storminess on the maximum water level during storms along the coast of the Mediterranean Sea in the mid 21st century. Glob. Planet. Change 2017, 151, 80–91. [Google Scholar] [CrossRef]
- Sierra, J.P.; Castrillo, R.; Mestres, M.; Mösso, M.; Lionello, P.; Marzo, L. Impact of climate change on wave energy resource in the Mediterranean coast of Morocco. Energies 2020, 13, 2993. [Google Scholar] [CrossRef]
- Slangen, A.B.A.; Palmer, M.D.; Camargo, C.M.L.; Church, J.A.; Edwards, T.L.; Hermans, T.H.J.; Hewitt, H.T.; Garner, G.G.; Gregory, J.M.; Kopp, R.E.; et al. The evolution of 21st century sea-level projections from IPCC AR5 to AR6 and beyond. Camb. Prism. Coast. Futures 2023, 1, e7. [Google Scholar] [CrossRef]
- Marino, M.; Nasca, S.; Alkharoubi, A.I.; Cavallaro, L.; Foti, E.; Musumeci, R.E. Efficacy of nature-based solutions for coastal protection under a changing climate: A modelling approach. Coast. Eng. 2025, 198, 104700. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C. Upper limit for sea level projections by 2100. Environ. Res. Lett. 2014, 9, 104008. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Change 2012, 80–81, 14–20. [Google Scholar] [CrossRef]
- Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Sabino, A.; Rodrigues, A.; Araújo, J.; Poseiro, P.; Reis, M.T.; Fortes, C.J. Wave overtopping analysis and early warning forecast system. In Computational Science and Its Applications—ICCSA 2014; Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8579, pp. 241–255. [Google Scholar] [CrossRef]
Port | TR 1 Year | TR 5 Years | TR 25 Years | |||
---|---|---|---|---|---|---|
SSP2-4.5 | SSP5-8.5 | SSP2-4.5 | SSP5-8.5 | SSP2-4.5 | SSP5-8.5 | |
Fnideq | 0 | 0 | 0 | 0 | 0 | 0 |
Marina Smir | 0 | 0 | 0 | 0 | 2 | 2 |
Kabila | 1 | 1 | 3 | 4 | 4 | 4 |
M’diq | 0 | 0 | 0 | 0 | 3 | 3 |
Chmaala | 0 | 0 | 2 | 2 | 4 | 4 |
Jebha | 0 | 0 | 0 | 0 | 3 | 3 |
Cala Iris | 1 | 2 | 3 | 3 | 4 | 4 |
Al Hoceima | 0 | 0 | 0 | 0 | 3 | 3 |
Port | TR1 | TR5 | TR25 | |||
---|---|---|---|---|---|---|
SLR Variable | Hs Variable | SLR Variable | Hs Variable | SLR Variable | Hs Variable | |
Fnideq | - | - | - | - | - | - |
M. Smir | - | - | - | - | 1.6–1.8 | 6.6–10.4 |
Kabila | 3.3–3.9 | 1.6–3.8 | 2.1–4.8 | 82–215 | 1.4–1.6 | 116–4504 |
M’diq | - | - | - | - | 1.6–3.0 | 122–212 |
Chmaala | - | - | 1.4–2.9 | 20−245 | 1.2–3.1 | 288–4454 |
Jebha | - | - | - | - | 2.1–5.7 | 92−223 |
Cala Iris | 6.9–7.0 | 24–31 | 2.9–5.9 | 3.4–115 | 1.7–2.0 | 118–177 |
Al Hoceima | - | - | - | - | 2.0–3.4 | 99–171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jebbad, R.; Sierra, J.P.; Gironella, X.; Mösso, C.; González-Marco, D.; Lionello, P. Uncertainty in the Assessment of Wave Overtopping in Mediterranean Moroccan Ports Associated with Climate Change. J. Mar. Sci. Eng. 2025, 13, 2021. https://doi.org/10.3390/jmse13102021
Jebbad R, Sierra JP, Gironella X, Mösso C, González-Marco D, Lionello P. Uncertainty in the Assessment of Wave Overtopping in Mediterranean Moroccan Ports Associated with Climate Change. Journal of Marine Science and Engineering. 2025; 13(10):2021. https://doi.org/10.3390/jmse13102021
Chicago/Turabian StyleJebbad, Raghda, Joan Pau Sierra, Xavier Gironella, Cesar Mösso, Daniel González-Marco, and Piero Lionello. 2025. "Uncertainty in the Assessment of Wave Overtopping in Mediterranean Moroccan Ports Associated with Climate Change" Journal of Marine Science and Engineering 13, no. 10: 2021. https://doi.org/10.3390/jmse13102021
APA StyleJebbad, R., Sierra, J. P., Gironella, X., Mösso, C., González-Marco, D., & Lionello, P. (2025). Uncertainty in the Assessment of Wave Overtopping in Mediterranean Moroccan Ports Associated with Climate Change. Journal of Marine Science and Engineering, 13(10), 2021. https://doi.org/10.3390/jmse13102021