A Molecular Dynamics Study of the Influence of Low-Dosage Methanol on Hydrate Formation in Seawater and Pure Water Metastable Solutions of Methane
Abstract
1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seyyedattar, M.; Zendehboudi, S.; Butt, S. Technical and Non-Technical Challenges of Development of Offshore Petroleum Reservoirs: Characterization and Production. Nat. Resour. Res. 2020, 29, 2147–2189. [Google Scholar] [CrossRef]
- Fraser, G.S. Impacts of Offshore Oil and Gas Development on Marine Wildlife Resources. In Peak Oil, Economic Growth, and Wildlife Conservation; Gates, J.E., Trauger, D.L., Czech, B., Eds.; Springer: New York, NY, USA, 2014; pp. 191–217. ISBN 978-1-4939-1953-6. [Google Scholar]
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; Chemical Industries; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-0849-4. [Google Scholar]
- Millett, J.M.; Wilkins, A.D.; Campbell, E.; Hole, M.J.; Taylor, R.A.; Healy, D.; Jerram, D.A.; Jolley, D.W.; Planke, S.; Archer, S.G.; et al. The Geology of Offshore Drilling through Basalt Sequences: Understanding Operational Complications to Improve Efficiency. Mar. Pet. Geol. 2016, 77, 1177–1192. [Google Scholar] [CrossRef]
- Zhiyuan, W.; Jianbo, Z.; Wenbo, M.; Baojiang, S.; Jinsheng, S.; Jintang, W.; Dahui, L.; Jinbo, W. Formation, Deposition Characteristics and Prevention Methods of Gas Hydrates in Deepwater Gas Wells. Acta Petrolei Sinca 2021, 42, 776–790. [Google Scholar]
- Xia, Z.; Zhao, Q.; Chen, Z.; Li, X.; Zhang, Y.; Xu, C.; Yan, K. Review of Methods and Applications for Promoting Gas Hydrate Formation Process. J. Nat. Gas Sci. Eng. 2022, 101, 104528. [Google Scholar] [CrossRef]
- Carroll, J. Inhibiting Hydrate Formation with Chemicals. In Natural Gas Hydrates; Elsevier: Amsterdam, The Netherlands, 2020; pp. 163–208. ISBN 978-0-12-821771-9. [Google Scholar]
- McLaurin, G.; Shin, K.; Alavi, S.; Ripmeester, J.A. Antifreezes Act as Catalysts for Methane Hydrate Formation from Ice. Angew. Chem. Int. Ed. 2014, 126, 10597–10601. [Google Scholar] [CrossRef]
- Kvamme, B.; Selvåg, J.; Saeidi, N.; Kuznetsova, T. Methanol as a Hydrate Inhibitor and Hydrate Activator. Phys. Chem. Chem. Phys. 2018, 20, 21968–21987. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Nguyen, A.V.; Dang, L.X. The Inhibition of Methane Hydrate Formation by Water Alignment underneath Surface Adsorption of Surfactants. Fuel 2017, 197, 488–496. [Google Scholar] [CrossRef]
- Kvamme, B. Small Alcohols as Surfactants and Hydrate Promotors. Fluids 2021, 6, 345. [Google Scholar] [CrossRef]
- Pandey, J.; Khan, S.; von Solms, N. Screening of Low-Dosage Methanol as a Hydrate Promoter. Energies 2022, 15, 6814. [Google Scholar] [CrossRef]
- Amtawong, J.; Guo, J.; Hale, J.S.; Sengupta, S.; Fleischer, E.B.; Martin, R.W.; Janda, K.C. Propane Clathrate Hydrate Formation Accelerated by Methanol. J. Phys. Chem. Lett. 2016, 7, 2346–2349. [Google Scholar] [CrossRef]
- Devlin, J.P. Catalytic Activity of Methanol in All-Vapor Subsecond Clathrate-Hydrate Formation. J. Chem. Phys. 2014, 140, 164505. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Kushwaha, O.S.; Bhattacharjee, G.; Chakrabarty, S.; Kumar, R. Molecular Dynamics Simulation and Experimental Study on the Growth of Methane Hydrate in Presence of Methanol and Sodium Chloride. Energy Procedia 2017, 105, 5026–5033. [Google Scholar] [CrossRef]
- Both, A.K.; Gao, Y.; Zeng, X.C.; Cheung, C.L. Gas Hydrates in Confined Space of Nanoporous Materials: New Frontier in Gas Storage Technology. Nanoscale 2021, 13, 7447–7470. [Google Scholar] [CrossRef] [PubMed]
- Casco, M.E.; Silvestre-Albero, J.; Ramírez-Cuesta, A.J.; Rey, F.; Jordá, J.L.; Bansode, A.; Urakawa, A.; Peral, I.; Martínez-Escandell, M.; Kaneko, K.; et al. Methane Hydrate Formation in Confined Nanospace Can Surpass Nature. Nat. Commun. 2015, 6, 6432. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.B.; Yazaydin, A.O. Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations. J. Phys. Chem. C 2020, 124, 11015–11022. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, Y.; Li, Z.; Xie, N.; Zhang, Y.; Wang, W.; Li, Y. Study on Hydrate Formation and Absorption Effect in LNG-High Expansion Foam System. Fuel 2023, 336, 126754. [Google Scholar] [CrossRef]
- Hallbrucker, A.; Mayer, E. Unexpectedly Stable Nitrogen, Oxygen, Carbon Monoxide and Argon Clathrate Hydrates from Vapour-deposited Amorphous Solid Water: An X-ray and Two-step Differential Scanning Calorimetry Study. J. Chem. Soc. Faraday Trans. 1990, 86, 3785–3792. [Google Scholar] [CrossRef]
- Hallbrucker, A.; Mayer, E. Unexpectedly Stable Clathrate Hydrates Formed from Microporous Vapor-deposited Amorphous Solid Water at Low “External” Guest Pressures and their Astrophysical Implications. Icarus 1991, 90, 176–180. [Google Scholar] [CrossRef]
- Belosludov, R.V.; Gets, K.V.; Zhdanov, R.K.; Bozhko, Y.Y.; Belosludov, V.R.; Chen, L.-J.; Kawazoe, Y. Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure. Molecules 2023, 28, 2960. [Google Scholar] [CrossRef]
- Pandey, J.S.; Karantonidis, C.; Karcz, A.P.; von Solms, N. Enhanced CH4-CO2 Hydrate Swapping in the Presence of Low Dosage Methanol. Energies 2020, 13, 5238. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Li, L.; Yan, Y.; Xu, J.; Zhong, J. New Insights into the Kinetic Effects of CH3OH on Methane Hydrate Nucleation. Energy 2023, 263, 125824. [Google Scholar] [CrossRef]
- Kvamme, B. Small Alcohols as Hydrate Promoters. Energy Fuels 2021, 35, 17663–17684. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Abascal, J.L.F.; Sanz, E.; García Fernández, R.; Vega, C. A Potential Model for the Study of Ices and Amorphous Water: TIP4P/Ice. J. Chem. Phys. 2005, 122, 234511. [Google Scholar] [CrossRef]
- Bore, S.L.; Piaggi, P.M.; Car, R.; Paesani, F. Phase Diagram of the TIP4P/Ice Water Model by Enhanced Sampling Simulations. J. Chem. Phys. 2022, 157, 054504. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Nosé, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255–268. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- García Fernández, R.; Abascal, J.L.; Vega, C. The Melting Point of Ice Ih for Common Water Models Calculated from Direct Coexistence of the Solid-liquid Interface. J. Chem. Phys. 2006, 124, 144506. [Google Scholar] [CrossRef]
- Belosludov, V.; Gets, K.; Zhdanov, R.; Malinovsky, V.; Bozhko, Y.; Belosludov, R.; Surovtsev, N.; Subbotin, O.; Kawazoe, Y. The Nano-Structural Inhomogeneity of Dynamic Hydrogen Bond Network of TIP4P/2005 Water. Sci. Rep. 2020, 10, 7323. [Google Scholar] [CrossRef] [PubMed]
- Báez, L.A.; Clancy, P. Computer Simulation of the Crystal Growth and Dissolution of Natural Gas Hydrates. Ann. N. Y. Acad. Sci. 1994, 715, 177–186. [Google Scholar] [CrossRef]
- Gao, F.; Gupta, K.M.; Yuan, S.; Jiang, J. Decomposition of CH 4 Hydrate: Effects of Temperature and Salt from Molecular Simulations. Mol. Simul. 2018, 44, 1220–1228. [Google Scholar] [CrossRef]
- Su, Z.; Alavi, S.; Ripmeester, J.A.; Wolosh, G.; Dias, C.L. Methane Clathrate Formation Is Catalyzed and Kinetically Inhibited by the Same Molecule: Two Facets of Methanol. J. Phys. Chem. B 2021, 125, 4162–4168. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Gao, Y.; Zhang, L.; Su, X.; Guo, Y. Study of the Formation of Hydrates with NaCl, Methanol Additive, and Quartz Sand Particles. J. Mar. Sci. Eng. 2024, 12, 364. [Google Scholar] [CrossRef]
- Jia, H.; Fan, F.; Wang, Q.; Shen, Z.; Wang, Y.; Sun, H.; Pei, P.; Li, C.; Lv, K.; Huang, P. Molecular Insights into the Dual Promotion–Inhibition Effects of NaCl at Various Concentrations on the CO2 Hydrate Growth: A Molecular Simulation Study. Langmuir 2024, 40, 9012–9019. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Nguyen, A.V. Recent Insights into the Anomalous Dual Nature (Both Promotion and Inhibition) of Chemical Additives on Gas Hydrate Formation. Chem. Eng. J. 2023, 475, 146362. [Google Scholar] [CrossRef]
- Xu, J.; Du, S.; Hao, Y.; Yang, X.; Zhang, J. Molecular Simulation Study of Methane Hydrate Formation Mechanism in NaCl Solutions with Different Concentrations. Chem. Phys. 2021, 551, 111323. [Google Scholar] [CrossRef]
- Lauricella, M.; Meloni, S.; English, N.J.; Peters, B.; Ciccotti, G. Methane Clathrate Hydrate Nucleation Mechanism by Advanced Molecular Simulations. J. Phys. Chem. C 2014, 118, 22847–22857. [Google Scholar] [CrossRef]
- Jacobson, L.C.; Hujo, W.; Molinero, V. Amorphous Precursors in the Nucleation of Clathrate Hydrates. J. Am. Chem. Soc. 2010, 132, 11806–11811. [Google Scholar] [CrossRef]
- Belosludov, V.R.; Gets, K.V.; Zhdanov, R.K.; Bozhko, Y.Y.; Belosludov, R.V.; Chen, L.-J. Collective Effect of Transformation of a Hydrogen Bond Network at the Initial State of Growth of Methane Hydrate. JETP Lett. 2022, 115, 124–129. [Google Scholar] [CrossRef]
- Choudhary, N.; Kushwaha, O.S.; Bhattacharjee, G.; Chakrabarty, S.; Kumar, R. Macro and Molecular Level Insights on Gas Hydrate Growth in the Presence of Hofmeister Salts. Ind. Eng. Chem. Res. 2020, 59, 20591–20600. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, D.; Hei, Y.; Sun, X.; Chen, J.; Lv, Q.; Li, X.; Hou, X.; Xiao, Y. Effects of Different Concentrations of Methanol on the Decomposition of Methane Hydrate: Insights from Molecular Dynamics Simulations. J. Mater. Res. Technol. 2023, 24, 7283–7290. [Google Scholar] [CrossRef]
- Semenov, A.P.; Tulegenov, T.B.; Mendgaziev, R.I.; Stoporev, A.S.; Istomin, V.A.; Vinokurov, V.A. Effect of Methanol on the Kinetics of Nucleation and Growth of Methane Hydrate. Chem. Technol. Fuels Oils 2023, 59, 667–672. [Google Scholar] [CrossRef]
- Semenov, A.P.; Tulegenov, T.B.; Mendgaziev, R.I.; Stoporev, A.S.; Istomin, V.A.; Sergeeva, D.V.; Lednev, D.A.; Vinokurov, V.A. Dual Nature of Methanol as a Thermodynamic Inhibitor and Kinetic Promoter of Methane Hydrate Formation in a Wide Concentration Range. J. Mol. Liq. 2024, 403, 124780. [Google Scholar] [CrossRef]
- Sowa, B.; Zhang, X.H.; Hartley, P.G.; Dunstan, D.E.; Kozielski, K.A.; Maeda, N. Formation of Ice, Tetrahydrofuran Hydrate, and Methane/Propane Mixed Gas Hydrates in Strong Monovalent Salt Solutions. Energy Fuels 2014, 28, 6877–6888. [Google Scholar] [CrossRef]
- Sowa, B.; Zhang, X.H.; Kozielski, K.A.; Hartley, P.G.; Dunstan, D.E.; Maeda, N. Nucleation Probability Distributions of Methane−Propane Mixed Gas Hydrates in Salt Solutions and Urea. Energy Fuels 2015, 29, 6259–6270. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belosludov, R.V.; Gets, K.V.; Zhdanov, R.K.; Bozhko, Y.Y.; Belosludov, V.R. A Molecular Dynamics Study of the Influence of Low-Dosage Methanol on Hydrate Formation in Seawater and Pure Water Metastable Solutions of Methane. J. Mar. Sci. Eng. 2024, 12, 1626. https://doi.org/10.3390/jmse12091626
Belosludov RV, Gets KV, Zhdanov RK, Bozhko YY, Belosludov VR. A Molecular Dynamics Study of the Influence of Low-Dosage Methanol on Hydrate Formation in Seawater and Pure Water Metastable Solutions of Methane. Journal of Marine Science and Engineering. 2024; 12(9):1626. https://doi.org/10.3390/jmse12091626
Chicago/Turabian StyleBelosludov, Rodion V., Kirill V. Gets, Ravil K. Zhdanov, Yulia Y. Bozhko, and Vladimir R. Belosludov. 2024. "A Molecular Dynamics Study of the Influence of Low-Dosage Methanol on Hydrate Formation in Seawater and Pure Water Metastable Solutions of Methane" Journal of Marine Science and Engineering 12, no. 9: 1626. https://doi.org/10.3390/jmse12091626
APA StyleBelosludov, R. V., Gets, K. V., Zhdanov, R. K., Bozhko, Y. Y., & Belosludov, V. R. (2024). A Molecular Dynamics Study of the Influence of Low-Dosage Methanol on Hydrate Formation in Seawater and Pure Water Metastable Solutions of Methane. Journal of Marine Science and Engineering, 12(9), 1626. https://doi.org/10.3390/jmse12091626