Spectral Analysis of Dissolved Organic Carbon in Seawater by Combined Absorption and Fluorescence Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Chemical Data Collection
2.2. Spectral Data Acquisition
2.3. Data Analysis
2.3.1. PCA-CNN Detection Model
2.3.2. Bayesian Correction Model
2.3.3. Modeling Evaluation
3. Results
3.1. Data Acquisition
3.2. Data Analysis
3.2.1. Principal Component Analysis for Feature Extraction
3.2.2. PCA-CNN Detection Model
3.2.3. Seawater Testing
3.2.4. Bayesian Correction Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOC | Dissolved organic carbon |
CNN | Convolutional neural network |
PCA | Principal component analysis |
PCA-CNN | PCA and CNN |
UV | Ultraviolet |
LIF | Laser-induced fluorescence |
RMSE | Root mean square error |
MSE | Mean square error |
MBE | Mean bias error |
MAE | Mean absolute error |
References
- Dai, M.; Yin, Z.; Meng, F.; Liu, Q.; Cai, W.-J. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis. Curr. Opin. Environ. Sustain. 2012, 4, 170–178. [Google Scholar] [CrossRef]
- Kim, Y.C.; Cramer, J.A.; Booksh, K.S. Investigation of a fiber optic surface plasmon spectroscopy in conjunction with conductivity as an in situ method for simultaneously monitoring changes in dissolved organic carbon and salinity in coastal waters. Analyst 2011, 136, 4350–4356. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Liu, Q.; Bai, Y. Review and suggestions for estimating particulate organic carbon and dissolved organic carbon inventories in the ocean using remote sensing data. Acta Oceanol. Sin. 2014, 33, 1–10. [Google Scholar] [CrossRef]
- Sharp, J.H.; Carlson, C.A.; Peltzer, E.T.; Castle-Ward, D.M.; Savidge, K.B.; Rinker, K.R. Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Mar. Chem. 2002, 77, 239–253. [Google Scholar] [CrossRef]
- Wangersky, P.J. Dissolved organic carbon methods: A critical review. Mar. Chem. 1993, 41, 61–74. [Google Scholar] [CrossRef]
- Maestre, S.E.; Mora, J.; Hernandis, V.; Todolí, J.L. A system for the direct determination of the nonvolatile organic carbon, dissolved organic carbon, and inorganic carbon in water samples through inductively coupled plasma atomic emission spectrometry. Anal. Chem. 2003, 75, 111–117. [Google Scholar] [CrossRef]
- Spyres, G.; Nimmo, M.; Worsfold, P.J.; Achterberg, E.P.; Miller, A.E.J. Determination of dissolved organic carbon in seawater using high temperature catalytic oxidation techniques. Trac Trends Anal. Chem. 2000, 19, 498–506. [Google Scholar] [CrossRef]
- Yoon, G.; Park, S.; Yang, H.; Tsang, D.C.; Alessi, D.S.; Baek, K. Selection criteria for oxidation method in total organic carbon measurement. Chemosphere 2018, 199, 453–458. [Google Scholar] [CrossRef]
- Carter, H.T.; Tipping, E.; Koprivnjak, J.; Miller, M.P.; Cookson, B.; Hamilton-Taylor, J. Freshwater DOM quantity and quality from a two-component model of UV absorbance. Water Res. 2012, 46, 4532–4542. [Google Scholar] [CrossRef]
- Avagyan, A.; Runkle, B.R.; Kutzbach, L. Application of high-resolution spectral absorbance measurements to determine dissolved organic carbon concentration in remote areas. J. Hydrol. 2014, 517, 435–446. [Google Scholar] [CrossRef]
- Baker, A.; Spencer, R.G. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Total Environ. 2004, 333, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Wallage, Z.E.; Holden, J. Spatial and temporal variability in the relationship between water colour and dissolved organic carbon in blanket peat pore waters. Sci. Total Environ. 2010, 408, 6235–6242. [Google Scholar] [CrossRef] [PubMed]
- Kröckel, L.; Schwotzer, G.; Lehmann, H.; Wieduwilt, T. Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components. Water Res. 2011, 45, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tong, Y.; Guan, L.; Wu, W.; Li, D. A turbidity compensation method for COD measurements by UV–vis spectroscopy. Optik 2019, 186, 129–136. [Google Scholar] [CrossRef]
- Yao, Y.; Li, Y.-Z.; Guo, X.-J.; Huang, T.; Gao, P.P.; Zhang, Y.P.; Yuan, F. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy. Environ. Sci. Pollut. Res. Int. 2016, 23, 12237–12245. [Google Scholar] [CrossRef]
- Li, G.; Yifei, T.; Jingwei, L.; Wu, S. Online COD measurement based on multi-source spectral feature-level fusion model. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 032022. [Google Scholar] [CrossRef]
- Dupuy, N.; Galtier, O.; Ollivier, D.; Vanloot, P.; Artaud, J. Comparison between NIR, MIR, concatenated NIR and MIR analysis and hierarchical PLS model. Application to virgin olive oil analysis. Anal. Chim. Acta 2010, 666, 23–31. [Google Scholar] [CrossRef]
- Martelo-Vidal, M.J.; Vázquez, M. Application of artificial neural networks coupled to UV–VIS–NIR spectroscopy for the rapid quantification of wine compounds in aqueous mixtures. CyTA-J. Food 2015, 13, 32–39. [Google Scholar] [CrossRef]
- Hur, J.; Cho, J. Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices. Sensors 2012, 12, 972–986. [Google Scholar] [CrossRef]
- Zhonghao, X. The study of advantages and applications of convolutional neural networks in computer vision tasks. In Proceedings of the 2023 International Conference on Image, Algorithms and Artificial Intelligence (ICIAAI 2023), Singapore, 11–13 August 2023. [Google Scholar] [CrossRef]
- Mahsa, M.; Mohammadreza, K.K. Application of robust principal component analysis–multivariate adaptive regression splines for the determination of °API gravity in crude oil samples using ATR-FTIR spectroscopy. Arab. J. Chem. 2023, 16, 105083. [Google Scholar]
- Rossat, D.; Baroth, J.; Briffaut, M.; Dufour, F.; Monteil, A.; Masson, B.; Michel-Ponnelle, S. Bayesian inference with correction of model bias for Thermo-hydro-mechanical models of large concrete structures. Eng. Struct. 2023, 278, 115433. [Google Scholar] [CrossRef]
- Yan, P.; Li, G.; Wang, W.; Zhao, Y. Qualitative and quantitative detection of microplastics in soil based on LIF technology combined with OOA-ELM/SPA-PLS. Microchem. J. 2024, 201, 110632. [Google Scholar] [CrossRef]
- Monedero, R.D.; Mezher, M.A.; Colomé, C.X.; Forné, J.; Soriano, M. Efficient k-anonymous microaggregation of multivariate numerical data via principal component analysis. Inf. Sci. 2019, 503, 417–443. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, Q. Research on principle and application of convolutional neural networks. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 042055. [Google Scholar] [CrossRef]
- Shukla, S.; Deo, B.S.; Nemichand; Singh, P.; Pandey, P.K.; Pradhan, A. Spatially Resolved Fibre-Optic Probe for Cervical Precancer Detection Using Fluorescence Spectroscopy and PCA-ANN-Based Classification Algorithm: An In Vitro Study. J. Biophotonics 2024, 17, e202400284. [Google Scholar] [CrossRef]
- García-Barrera, L.J.; Meza-Zamora, S.A.; Noa-Carrazana, J.C.; Delgado-Macuil, R.J. Chemometric analysis using infrared spectroscopy and PCA-LDA for early diagnosis of Fusariumoxysporum in tomato. J. Plant Dis. Prot. 2024, 131, 1609–1626. [Google Scholar] [CrossRef]
- Shao, Z.; Mei, X.; Liu, T.; Li, J.; Tang, H. Trend Prediction and Operation Alarm Model Based on PCA-Based MTL and AM for the Operating Parameters of a Water Pumping Station. Sensors 2024, 24, 5416. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Hoang, N.-D.; Pham, Q.-Q.; Truong, G.T.; Nguyen, T.-T. Electromechanical admittance-based automatic damage assessment in plate structures via one-dimensional CNN-based deep learning models. Front. Struct. Civ. Eng. 2024, 18, 1730–1751. [Google Scholar] [CrossRef]
- Nam, J.; Chang, I.; Lim, J.-S.; Yun, M.; Cho, H.H. Multispectral pattern camouflage materials based on PU/Al-flake composite: A CNN-based evaluation. Appl. Surf. Sci. 2025, 680, 161436. [Google Scholar] [CrossRef]
- Belyaev, N.; Fedulov, V.Y.; Kravchishina, M.; Shchuka, S.A. Organic carbon content in dissolved and particulate forms in kara sea water. Oceanology 2024, 64, 181–236. [Google Scholar] [CrossRef]
- Cáceres Guido, P.; Humberto Pavan, C.; Otamendi, E.; Bramuglia, G.F. Principles of Bayesian statistics and its relationship with applied pharmacokinetics [Principios de estadística Bayesiana y su relación con la farmacocinética aplicada]. Rev. Chil. Ped. 2020, 91, 838–839. [Google Scholar]
- Ferrari, L.; Manzi, G.; Micheletti, A.; Nicolussi, F.; Salini, S. Correction: Pandemic data quality modelling: A Bayesian approach in the Italian case. Qual. Quant. 2024, 1–3. [Google Scholar] [CrossRef]
- Sanderse, B.; Dighe, V.V.; Boorsma, K.; Schepers, G. Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling. Wind Energy Sci. 2022, 7, 759–781. [Google Scholar] [CrossRef]
- Hewen, N.; Mengxue, C.; Shichang, K.; Tanuj, S.; Huili, Q.; Wanni, G.; Shihai, H.; Fu, Z. A review of physicochemical properties of dissolved organic carbon and its impact over mountain glaciers. J. Mt. Sci. 2024, 21, 1–19. [Google Scholar]
- Wenwu, T.; Jianjun, Z.; Xing, L.; Ziwen, Y.; Ke, X.; Li, W.; Haijun, L.; Guang, L.; Peng, G. Dissolved Oxygen Prediction Based on PCA-LSTM. J. Phys. 2022, 2337, 012012. [Google Scholar]
Water Sample | True Concentration (mg/L) | Concentration Before Calibration (mg/L) | Error (%) | Concentration After Calibration (mg/L) | Error (%) |
---|---|---|---|---|---|
1 | 2.7198 | 3.2467 | 19.34 | 2.6724 | 1.74 |
2 | 3.2118 | 3.1708 | 1.27 | 3.2137 | 0.06 |
3 | 4.0958 | 4.1884 | 2.26 | 4.1864 | 2.21 |
4 | 4.2978 | 5.1810 | 20.55 | 4.4087 | 2.58 |
5 | 1.7018 | 1.4719 | 13.52 | 1.5522 | 8.78 |
Water Sample | True Concentration (mg/L) | Concentration Before Calibration (mg/L) | Error (%) | Concentration After Calibration (mg/L) | Error (%) |
---|---|---|---|---|---|
6 | 1.7374 | 0.4000 | 77.01 | 1.7969 | 3.43 |
7 | 1.6484 | 1.7531 | 6.35 | 1.7168 | 4.15 |
8 | 1.7464 | 1.7765 | 1.72 | 1.8050 | 3.36 |
9 | 2.1074 | 1.9553 | 7.21 | 2.1299 | 1.07 |
10 | 4.6774 | 4.4854 | 4.10 | 4.4427 | 5.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Xiong, F.; Wang, Y.; Ma, H.; Zhang, Y.; Liu, Y.; Kong, X.; Wang, J.; Shi, Q.; Fan, P.; et al. Spectral Analysis of Dissolved Organic Carbon in Seawater by Combined Absorption and Fluorescence Technology. J. Mar. Sci. Eng. 2024, 12, 2297. https://doi.org/10.3390/jmse12122297
Cao X, Xiong F, Wang Y, Ma H, Zhang Y, Liu Y, Kong X, Wang J, Shi Q, Fan P, et al. Spectral Analysis of Dissolved Organic Carbon in Seawater by Combined Absorption and Fluorescence Technology. Journal of Marine Science and Engineering. 2024; 12(12):2297. https://doi.org/10.3390/jmse12122297
Chicago/Turabian StyleCao, Xuan, Feng Xiong, Yang Wang, Haikuan Ma, Yanmin Zhang, Yan Liu, Xiangfeng Kong, Jingru Wang, Qian Shi, Pingping Fan, and et al. 2024. "Spectral Analysis of Dissolved Organic Carbon in Seawater by Combined Absorption and Fluorescence Technology" Journal of Marine Science and Engineering 12, no. 12: 2297. https://doi.org/10.3390/jmse12122297
APA StyleCao, X., Xiong, F., Wang, Y., Ma, H., Zhang, Y., Liu, Y., Kong, X., Wang, J., Shi, Q., Fan, P., Li, Y., & Wu, N. (2024). Spectral Analysis of Dissolved Organic Carbon in Seawater by Combined Absorption and Fluorescence Technology. Journal of Marine Science and Engineering, 12(12), 2297. https://doi.org/10.3390/jmse12122297