A Study on the Extraction of Satellite Image Information for Two Types of Coastal Fishery Facility Fish Cages and Rafts Influenced by Clouds and Vessels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. The MROIC Model
2.3.1. SEE Technique
2.3.2. OBIA Classification Technique
2.4. Control Models and Parameter Settings
2.5. Extraction Process and Accuracy Assessment
2.5.1. Extraction Process
2.5.2. Accuracy Assessment
3. Results
3.1. Preprocessing Results
3.2. SSE Results
3.3. Classification Results
3.4. Accuracy Assessment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, L.; Liu, H.; Cui, M.C.; Zhang, C.L.; Liu, C. Offshore aquaculture in China. Rev. Aquac. 2023, 16, 254–270. [Google Scholar] [CrossRef]
- English, G.; Lawrence, M.J.; McKindsey, C.W.; Roussel, A.L.; Bergeron, H.; Gauthier, S.; Wringe, B.F.; Trudel, M. A review of data collection methods used to monitor the associations of wild species with marine aquaculture sites. Rev. Aquac. 2024, 16, 1160–1185. [Google Scholar] [CrossRef]
- Chen, A.; Lv, Z.; Zhang, J.; Yu, G.; Wan, R. Review of the Accuracy of Satellite Remote Sensing Techniques in Identifying Coastal Aquaculture Facilities. Fishes 2024, 9, 52. [Google Scholar] [CrossRef]
- Zaki, A.; Buchori, I.; Sejati, A.W.; Liu, Y. An object-based image analysis in QGIS for image classification and assessment of coastal spatial planning. Egypt. J. Remote Sens. Space Sci. 2022, 25, 349–359. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, H.; Wang, F.; Lai, R. Extraction of Broad-Leaved tree crown based on UAV visible images and OBIA-RF model: A case study for Chinese Olive Trees. Remote Sens. 2022, 14, 2469. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, K.; Lin, Y.; Guo, S.; Sun, Y.; Chen, X.; Lai, R.; Zhang, H. A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images. Comput. Electron. Agric. 2023, 209, 107822. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Zhang, F.; Li, F. Object-Oriented Information Extraction of Pond Aquaculture. Remote Sens. Nat. Resour. 2013, 1, 82–85. [Google Scholar]
- Zheng, Y.; Wu, J.; Wang, A.; Chen, J. Object-and pixel-based classifications of macroalgae farming area with high spatial resolution imagery. Geocarto Int. 2018, 33, 1048–1063. [Google Scholar] [CrossRef]
- Zhong, Y. Study on High Resolution Remote Sensing Extraction and Classification of Zhanjiang Offshore Aquaculture Area. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2020. [Google Scholar] [CrossRef]
- Han, Y.; Huang, J.; Ling, F.; Qiu, J.; Liu, Z.; Li, X. Dynamic mapping of inland freshwater aquaculture areas in Jianghan plain, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4349–4361. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, Y.; Liu, X.; Wang, Z.; Ma, X. Research on Extraction Method of Coastal Aquaculture Areas on High Resolution Remote Sensing lmage based on Multi features Fusion. Remote Sens. Technol. Andappl. 2018, 33, 296–304. [Google Scholar] [CrossRef]
- Lin, M. The Response of Landform and Sedimentary Changes to Reclamation and Aquaculture in Sansha Bay, Fujian; East China Normal Universit: Shanghai, China, 2021. [Google Scholar] [CrossRef]
- Chen, A. Study on the Extraction of Offshore Aquaculture Area Based on Multi-Feature Coupled with Object Classification—Taking Sansha Bay, Fujian Province as an Example. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2024. [Google Scholar] [CrossRef]
- Singh, M.P.; Gayathri, V.; Chaudhuri, D. A Simple Data Preprocessing and Postprocessing Techniques for SVM Classifier of Remote Sensing Multispectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7248–7262. [Google Scholar] [CrossRef]
- Kwan, C. Image Resolution Enhancement for Remote Sensing Applications. In Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, Las Vegas, NV, USA, 27–29 August 2018; Volume 12, pp. 1–5. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Tang, J.; Cheng, J.; Xiang, D.; Hu, C. Large-difference-scale target detection using a revised Bhattacharyya distance in SAR images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4506205. [Google Scholar] [CrossRef]
- Arslan, N.; Nezhad, M.M.; Heydari, A.; Garcia, D.A.; Sylaios, G. A principal component analysis methodology of oil spill detection and monitoring using satellite remote sensing sensors. Remote Sens. 2023, 15, 1460. [Google Scholar] [CrossRef]
- Ma, Z.; Li, H.; Ye, Z.; Wen, J.; Hu, Y.; Liu, Y. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Mar. Pollut. Bull. 2020, 157, 111285. [Google Scholar] [CrossRef]
- Ma, Y.J.; Zhao, D.L.; Wang, R.M.; Su, W. Offshore Aquatic Farming Areas Extraction Method Based on ASTER Data. Available online: https://www.ingentaconnect.com/content/tcsae/tcsae/2010/00000026/a00201s2/art00023 (accessed on 8 December 2024).
- Zhang, X.; Ma, S.; Su, C.; Shang, Y.; Wang, T.; Yin, J. Coastal Oyster Aquaculture Area Extraction and Nutrient Loading Estimation Using a GF-2 Satellite Image. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4934–4946. [Google Scholar] [CrossRef]
- Wu, G.; Cui, L.; Liu, L.; Chen, F.; Fei, T.; Liu, Y. Statistical model development and estimation of suspended particulate matter concentrations with Landsat 8 OLI images of Dongting Lake, China. Int. J. Remote Sens. 2015, 36, 343–360. [Google Scholar] [CrossRef]
- Wu, L.; Lu, M.; Fang, L. Deep covariance alignment for domain adaptive remote sensing image segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5620811. [Google Scholar] [CrossRef]
- Zhou, W.; Ming, D.; Xu, L.; Bao, H.; Wang, M. Stratified object-oriented image classification based on remote sensing image scene division. J. Spectrosc. 2018, 1, 3918954. [Google Scholar] [CrossRef]
- Ez-zahouani, B.; Teodoro, A.; Kharki, O.E.; Liu, J.; Kotaridis, I.; Yuan, X.; Ma, L. Remote sensing imagery segmentation in object-based analysis: A review of methods, optimization, and quality evaluation over the past 20 years. Remote Sens. Appl. Soc. Environ. 2023, 32, 101031. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Pradhan, B. Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google Earth Engine–the case study of Kolleru Lake, South India. Geocarto Int. 2022, 37, 11173–11189. [Google Scholar] [CrossRef]
- Cheng, B.; Liang, C.; Liu, X.; Liu, Y.; Ma, X.; Wang, G. Research on a novel extraction method using Deep Learning based on GF-2 images for aquaculture areas. Int. J. Remote Sens. 2020, 41, 3575–3591. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Tonbul, H. An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery. Int. J. Remote Sens. 2018, 39, 6020–6036. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, W.; Li, F.; Yan, H.; Liu, Y. Study on Remote Sensing Image Classification of Oasis Area Based on ENVI Deep Learning. Pol. J. Environ. Stud. 2023, 32, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, F.; Chen, X.; Wang, J. Application of Artificial Intelligence in the Study of Fishing Vessel Behavior. Fishes 2023, 8, 516. [Google Scholar] [CrossRef]
- Jiang, Z.; Ma, Y. Accurate extraction of offshore raft aquaculture areas based on a 3D-CNN model. Int. J. Remote Sens. 2020, 41, 5457–5481. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Z.; Zhang, Y.; Wang, J.; Yin, Y.; Wu, G. Mapping aquaculture areas with Multi-Source spectral and texture features: A case study in the pearl river basin (Guangdong), China. Remote Sens. 2021, 13, 4320. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Chen, B.; Zuo, J. An Object-Based Approach to Extract Aquaculture Ponds with 10-Meter Resolution Sentinel-2 Images: A Case Study of Wenchang City in Hainan Province. Remote Sens. 2024, 16, 1217. [Google Scholar] [CrossRef]
- Ghasemian, N.; Akhoondzadeh, M. Introducing two Random Forest based methods for cloud detection in remote sensing images. Adv. Space Res. 2018, 62, 288–303. [Google Scholar] [CrossRef]
- Gašparović, M.; Klobučar, D. Mapping floods in lowland forest using sentinel-1 and sentinel-2 data and an object-based approach. Forests 2021, 12, 553. [Google Scholar] [CrossRef]
- Rajadran, A.; Tan, M.; Chan, N.; Samat, N. Aquaculture Pond Mapping in Sungai Udang, Penang, Using Google Earth Engine: Pemetaan Kolam Akuakultur di Sungai Udang, Pulau Pinang, menggunakan Engin Bumi Google. Geografi 2021, 9, 86–106. [Google Scholar] [CrossRef]
Region A | Region B | Region C | |
---|---|---|---|
Raft | 0~0.8 | −0.8~0 | −0.35~0 |
Fish cage | <0 | >0 | >0 |
Facility | Bandblue | Bandgreen | Bandred | BandNIR | BandR1 | BandR2 | BandR3 | BandR4 | BandR5 | BandR6 |
---|---|---|---|---|---|---|---|---|---|---|
Raft | 0.06 | 0.81 | 1.24 | 0.13 | 1.90 | 0.45 | 0.32 | 0.98 | 1.12 | 0.79 |
Fish cage | 1.82 | 0.06 | 0.40 | 2.44 | 10.92 | 3.24 | 1.50 | 3.64 | 6.95 | 0.99 |
Method and Region | Producer Accuracy (%) | Area (m2) | Number (-) | ||||
---|---|---|---|---|---|---|---|
Fish Cage | Raft | Fish Cage | Raft | Fish Cage | Raft | ||
Region A | MROIC | 95.2 | 90.7 | 42,483 | 87,999 | 65 | 83 |
MBIC | 84.7 | 92.9 | 37,827 | 90,132 | 58 | 86 | |
ROIC | 62.8 | 89.4 | 28,053 | 86,745 | 44 | 82 | |
Region B | MROIC | 89.6 | 89.0 | 40,049 | 77,901 | 44 | 92 |
MBIC | 58.1 | 97.8 | 32,096 | 83,970 | 30 | 100 | |
ROIC | 57.0 | 83.0 | 31,739 | 77,880 | 29 | 86 | |
Region C | MROIC | 91.8 | 89.5 | 34,930 | 100,719 | 46 | 106 |
MBIC | 63.5 | 96.9 | 22,738 | 103,353 | 31 | 110 | |
ROIC | 51.3 | 86.9 | 19,602 | 97,837 | 26 | 103 |
Method and Region | Commission Error (%) | Omission Error (%) | |||
---|---|---|---|---|---|
Fish Cage | Raft | Fish Cage | Raft | ||
Region A | MROIC | 1.95 | 0.74 | 4.85 | 9.28 |
MBIC | 0.37 | 4.88 | 15.33 | 7.13 | |
ROIC | 0.16 | 0.24 | 37.21 | 10.59 | |
Region B | MROIC | 0.58 | 0.97 | 10.38 | 11.02 |
MBIC | 0.72 | 20.43 | 41.92 | 2.21 | |
ROIC | 2.52 | 2.49 | 42.98 | 16.98 | |
Region C | MROIC | 0.78 | 0.71 | 8.24 | 10.50 |
MBIC | 0.42 | 12.69 | 36.48 | 3.11 | |
ROIC | 7.08 | 0.85 | 48.70 | 13.13 |
Region | Method | Overall Accuracy | Kappa Coefficient |
---|---|---|---|
Region A | MROIC | 92.0% | 0.83 |
MBIC | 90.3% | 0.79 | |
ROIC | 81.1% | 0.63 | |
Region B | MROIC | 89.2% | 0.79 |
MBIC | 82.7% | 0.61 | |
ROIC | 73.3% | 0.54 | |
Region C | MROIC | 90.1% | 0.77 |
MBIC | 89.5% | 0.71 | |
ROIC | 77.9% | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Yu, J.; Zhang, J.; Yu, G.; Wan, R. A Study on the Extraction of Satellite Image Information for Two Types of Coastal Fishery Facility Fish Cages and Rafts Influenced by Clouds and Vessels. J. Mar. Sci. Eng. 2024, 12, 2280. https://doi.org/10.3390/jmse12122280
Chen A, Yu J, Zhang J, Yu G, Wan R. A Study on the Extraction of Satellite Image Information for Two Types of Coastal Fishery Facility Fish Cages and Rafts Influenced by Clouds and Vessels. Journal of Marine Science and Engineering. 2024; 12(12):2280. https://doi.org/10.3390/jmse12122280
Chicago/Turabian StyleChen, Ao, Jialu Yu, Junbo Zhang, Gangyi Yu, and Rong Wan. 2024. "A Study on the Extraction of Satellite Image Information for Two Types of Coastal Fishery Facility Fish Cages and Rafts Influenced by Clouds and Vessels" Journal of Marine Science and Engineering 12, no. 12: 2280. https://doi.org/10.3390/jmse12122280
APA StyleChen, A., Yu, J., Zhang, J., Yu, G., & Wan, R. (2024). A Study on the Extraction of Satellite Image Information for Two Types of Coastal Fishery Facility Fish Cages and Rafts Influenced by Clouds and Vessels. Journal of Marine Science and Engineering, 12(12), 2280. https://doi.org/10.3390/jmse12122280