Research on Feature Extraction of Ship-Radiated Noise Based on Multiscale Fuzzy Dispersion Entropy
Abstract
1. Introduction
2. Theory and Method
2.1. Dispersion Entropy
2.2. Fuzzy Dispersion Entropy
2.3. Multiscale Fuzzy Dispersion Entropy
2.4. The Proposed Ship-Radiated Noise Feature Extraction Method
3. Simulation Signal Feature Extraction Analysis
3.1. Gaussian White Noise Simulation Experiment
3.2. Amplitude-Modulated Chirp Signal Simulation Experiment
3.3. Various Noise Simulation Experiments
4. Experiments for Ship-Radiated Noise
4.1. Introduction of the Ship-Radiated Noise and Experimental Parameter Setting
4.2. Single Feature Analysis Experiment
4.3. Double-Number Feature Analysis Experiment
4.4. Triple-Number Feature Analysis Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Tang, B.; Jiao, S. SO-slope entropy coupled with SVMD: A novel adaptive feature extraction method for ship-radiated noise. Ocean Eng. 2023, 280, 114677. [Google Scholar] [CrossRef]
- Fredianelli, L.; Bolognese, M.; Fidecaro, F.; Licitra, G. Classification of Noise Sources for Port Area Noise Mapping. Environments 2021, 8, 12. [Google Scholar] [CrossRef]
- Fredianelli, L.; Nastasi, M.; Bernardini, M.; Fidecaro, F.; Licitra, G. Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports. Sustainability 2020, 12, 1740. [Google Scholar] [CrossRef][Green Version]
- Bernardini, M.; Fredianelli, L.; Fidecaro, F.; Gagliardi, P.; Nastasi, M.; Licitra, G. Noise Assessment of Small Vessels for Action Planning in Canal Cities. Environments 2019, 6, 31. [Google Scholar] [CrossRef][Green Version]
- Fernandes, J.D.V.; De Moura, N.N.; de Seixas, J.M. Deep Learning Models for Passive Sonar Signal Classification of Military Data. Remote Sens. 2022, 14, 2648. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Musha, T.; Shinohara, A. Evaluation of ship radiated noise level from near-field measurements. Appl. Acoust. 1993, 40, 69–78. [Google Scholar] [CrossRef]
- Yoon, J.; Ro, Y.; Chun, J. Effective analysis technique of unstable acoustic signature from ship radiated noise. J. Acoust. Soc. Am. 2001, 109, 2296–2297. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Wang, X. Ship recognition via its radiated sound: The fractal based approaches. J. Acoust. Soc. Am. 2002, 112, 172–177. [Google Scholar] [CrossRef]
- Badino, A.; Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. Airborne noise emissions from ships: Experimental characterization of the source and propagation over land. Appl. Acoust. 2016, 104, 158–171. [Google Scholar] [CrossRef]
- Siddagangaiah, S.; Li, Y.; Guo, X.; Chen, X.; Zhang, Q.; Yang, K.; Yang, Y. A Complexity-Based Approach for the Detection of Weak Signals in Ocean Ambient Noise. Entropy 2016, 18, 101. [Google Scholar] [CrossRef][Green Version]
- Ni, J.; Zhao, M.; Hu, C. Multi-feature fusion classification of ship radiated noise based on deep learning. Tech. Acoust. 2020, 39, 366–371. [Google Scholar]
- Li, Y.; Li, Y.; Chen, X.; Yu, J. Feature extraction of ship-radiated noise based on VMD and center frequency. J. Vib. Shock. 2018, 37, 213. [Google Scholar]
- Weiwen, H.U.; Bingcheng, Y.; Peng, Y.; Liping, J. Modeling Method for Feature of Ship Radiated Noise Based on Wavelet Power Spectrum. J. Syst. Simul. 2007, 19, 4025–4027. [Google Scholar]
- Li, G.; Yang, Z.; Yang, H. Feature Extraction of Ship-Radiated Noise Based on Regenerated Phase-Shifted Sinusoid-Assisted EMD, Mutual Information, and Differential Symbolic Entropy. Entropy 2019, 21, 176. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, Y.; Cai, Z.; Kong, X. Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network. J. Electron. Inf. Technol. 2022, 44, 1947–1955. [Google Scholar]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Porta, A.; Guzzetti, S.; Montano, N.; Furlan, R.; Pagani, M.; Malliani, A.; Cerutti, S. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 2001, 48, 1282–1291. [Google Scholar] [CrossRef]
- Li, Y.; Geng, B.; Tang, B. Simplified coded dispersion entropy: A nonlinear metric for signal analysis. Nonlinear Dyn. 2023, 111, 9327–9344. [Google Scholar] [CrossRef]
- Li, H.; Du, W.; Fan, K.; Ma, J.; Ivanov, K.; Wang, L. The Effectiveness Assessment of Massage Therapy Using Entropy-Based EEG Features Among Lumbar Disc Herniation Patients Comparing with Healthy Controls. IEEE Access 2020, 8, 7758–7775. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, S.; Geng, B. Refined composite multiscale fluctuation-based dispersion Lempel–Ziv complexity for signal analysis. ISA Trans. 2023, 133, 273–284. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Tang, B.; Geng, B.; Jiao, S. Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis. Fractal Fract. 2022, 6, 544. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Richman, J.S.; Randall, M.J. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef][Green Version]
- Rostaghi, M.; Azami, H. Dispersion Entropy: A Measure for Time-Series Analysis. IEEE Signal Process. Lett. 2016, 23, 610–614. [Google Scholar] [CrossRef]
- Rostaghi, M.; Khatibi, M.M.; Ashory, M.R.; Azami, H. Fuzzy Dispersion Entropy: A Nonlinear Measure for Signal Analysis. IEEE Trans. Fuzzy Syst. 2021, 30, 3785–3796. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Wan, S.; He, Y.; Wang, X. A bearing fault diagnosis method based on multiscale dispersion entropy and GG clustering. Measurement 2021, 185, 110023. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef][Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Humeau-Heurtier, A.; Wu, C.-W.; Wu, S.-D. Refined Composite Multiscale Permutation Entropy to Overcome Multiscale Permutation Entropy Length Dependence. IEEE Signal Process. Lett. 2015, 22, 2364–2367. [Google Scholar] [CrossRef]
- National Park Service. Available online: https://www.nps.gov/glba/learn/nature/soundclips.htm (accessed on 20 January 2023).
Entropy | Scales | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Recognition rate (%) | MFDE | 74.67 | 74.00 | 79.17 | 81.00 | 81.00 | 77.50 | 71.83 | 70.33 | 62.00 | 56.83 |
MDE | 55.17 | 55.17 | 70.50 | 71.83 | 65.17 | 60.33 | 60.50 | 53.00 | 46.67 | 46.50 | |
MSE | 73.83 | 47.83 | 35.33 | 22.33 | 20.17 | 20.83 | 20.33 | 20.00 | 20.00 | 20.00 | |
MPE | 54.83 | 61.33 | 75.50 | 76.00 | 72.33 | 68.17 | 64.17 | 62.50 | 62.50 | 54.00 |
Entropy | MFDE | MDE | MSE | MPE |
---|---|---|---|---|
Scale combination | (2, 9) | (1, 10) | (1, 2) | (1, 3) |
Recognition rate (%) | 99.00 | 93.83 | 64.83 | 90.67 |
Entropy | MFDE | MDE | MSE | MPE |
---|---|---|---|---|
Scale combination | (2, 5, 9) | (1, 5, 10) | (1, 2, 3) | (1, 3, 5) |
Recognition rate (%) | 99.50 | 97.67 | 45.17 | 90.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lou, Y.; Liang, L.; Zhang, S. Research on Feature Extraction of Ship-Radiated Noise Based on Multiscale Fuzzy Dispersion Entropy. J. Mar. Sci. Eng. 2023, 11, 997. https://doi.org/10.3390/jmse11050997
Li Y, Lou Y, Liang L, Zhang S. Research on Feature Extraction of Ship-Radiated Noise Based on Multiscale Fuzzy Dispersion Entropy. Journal of Marine Science and Engineering. 2023; 11(5):997. https://doi.org/10.3390/jmse11050997
Chicago/Turabian StyleLi, Yuxing, Yilan Lou, Lili Liang, and Shuai Zhang. 2023. "Research on Feature Extraction of Ship-Radiated Noise Based on Multiscale Fuzzy Dispersion Entropy" Journal of Marine Science and Engineering 11, no. 5: 997. https://doi.org/10.3390/jmse11050997
APA StyleLi, Y., Lou, Y., Liang, L., & Zhang, S. (2023). Research on Feature Extraction of Ship-Radiated Noise Based on Multiscale Fuzzy Dispersion Entropy. Journal of Marine Science and Engineering, 11(5), 997. https://doi.org/10.3390/jmse11050997