The Paleoenvironment and Mechanisms of Organic Matter Enrichment of Shale in the Permian Taiyuan and Shanxi Formations in the Southern North China Basin
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Methods
3.1. TOC Analysis
3.2. Major Element Analysis
3.3. Trace and Rare-Earth Element Analysis
4. Results
4.1. TOC
4.2. Major Elements
4.3. Trace Elements
4.4. Rare-Earth Elements
5. Discussion
5.1. Paleoclimate
5.2. Paleoproductivity
5.3. Sedimentation Rate
5.4. Paleoredox Conditions
5.5. Paleosalinity
5.6. Controlling Factors and Formation Mechanisms of OM Accumulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Wang, X.; Wang, H.; Bjerrum, C.J.; Hammarlund, E.U.; Costa, M.M.; Connelly, J.N.; Zhang, B.; Su, J.; Canfield, D.E. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl. Acad. Sci. USA 2016, 113, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Burton, Z.F.M.; Moldowan, J.M.; Magoon, L.B.; Sykes, R.; Graham, S.A. Interpretation of source rock depositional environment and age from seep oil, east coast of New Zealand. Int. J. Earth Sci. 2019, 108, 1079–1091. [Google Scholar] [CrossRef]
- Peters, K.E.; Cassa, M. Chapter 5: Applied source rock geochemistry. In The Petroleum System—From Source to Trap; Magoon, L.B., Dow, W.G., Eds.; American Association of Petroleum Geologists Memoir 60: Tulsa, OK, USA, 1994; Volume 14, pp. 93–120. [Google Scholar]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Johnson, J.E.; Phillips, S.C.; Torres, M.E.; Pinero, E.; Rose, K.K.; Giosan, L. Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins. Mar. Pet. Geol. 2014, 58, 406–424. [Google Scholar] [CrossRef]
- Burton, Z.F.M. Sediment organic contents required for gas hydrate formation: A survey of published basin and hydrocarbon system models. Fuels 2022, 3, 280–287. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Chen, Z.Q.; Ogg, J.G.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S.; et al. Organic-matter-rich shales of China. Earth Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Lash, G.G.; Blood, D.R. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin. Mar. Pet. Geol. 2014, 57, 244–263. [Google Scholar] [CrossRef]
- Liu, W.; Yao, J.; Tong, J.; Qiao, Y.; Chen, Y. Organic matter accumulation on the Dalong Formation (Upper Permian) in western Hubei, South China: Constraints from multiple geochemical proxies and pyrite morphology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 514, 677–689. [Google Scholar] [CrossRef]
- He, J.; Ding, W.; Jiang, Z.; Jiu, K.; Li, A.; Sun, Y. Mineralogical and chemical distribution of the Es3L oil shale in the Jiyang Depression, Bohai Bay Basin (E China): Implications for paleoenvironmental reconstruction and organic matter accumulation. Mar. Pet. Geol. 2017, 81, 196–219. [Google Scholar] [CrossRef]
- Harris, N.B.; Freeman, K.H.; Pancost, R.D.; White, T.S.; Mitchell, G.D. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa. AAPG Bull. 2004, 88, 1163–1184. [Google Scholar] [CrossRef]
- Wu, J.; Liang, C.; Hu, Z.; Yang, R.; Xie, J.; Wang, R.; Zhao, J. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Mar. Pet. Geol. 2019, 101, 556–565. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, J.; Fu, X.; Chen, W.; Feng, X.; Wang, D.; Song, C.; Wang, Z. Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Mar. Pet. Geol. 2015, 64, 203–221. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Sundararaman, P.; Schoell, M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Org. Geochem. 1986, 10, 915–926. [Google Scholar] [CrossRef]
- Ding, J.H.; Zhang, J.C.; Huo, Z.P.; Shen, B.; Shi, G.; Yang, Z.; Li, X.; Li, C. Controlling Factors and Formation Models of Organic Matter Accumulation for the Upper Permian Dalong Formation Black Shale in the Lower Yangtze Region, South China: Constraints from Geochemical Evidence. ACS Omega 2021, 6, 3681–3692. [Google Scholar] [CrossRef]
- Schmitz, B.; Charisi, S.D.; Thompson, E.I.; Speijer, R.P. Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event. Terra Nova 1997, 9, 95–99. [Google Scholar] [CrossRef]
- Abart, F.R.; Wagreich, M.; Gier, S.; Ahmed, M.S.; Sami, M. Late Campanian Climatic-Continental Weathering Assessment and Its Influence on Source Rocks Deposition in Southern Tethys, Egypt. Minerals 2023, 13, 160. [Google Scholar]
- Francois, R.A. Study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada. Mar. Geol. 1988, 83, 285–308. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Zhang, B.; Cheng, W.; Zhang, Q.; Li, Y.; Sun, P.; Fathy, D. Occurrence Patterns and Enrichment Influencing Factors of Trace Elements in Paleogene Coal in the Fushun Basin, China. ACS Earth Space Chem. 2022, 6, 3031–3042. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, C.; Mao, G.; Deng, Y.; Wang, F.; Wang, J. Major, trace and platinum-group element geochemistry of the Upper Triassic nonmarine hot shales in the Ordos basin, Central China. Appl. Geochem. 2015, 52, 42–52. [Google Scholar] [CrossRef]
- Harris, N.B. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2005. [Google Scholar]
- Murphy, A.E.; Sageman, B.; Hollander, D.J.; Lyons, T.W.; Brett, C.E. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography 2000, 15, 280–291. [Google Scholar] [CrossRef]
- Teng, J.; Liu, Y. Analysis of distribution, storage potential and prospect for shale oil and gas in China. Prog. Geophys. 2013, 28, 1083–1108. [Google Scholar]
- Dang, W.; Zhang, J.; Tang, X.; Chen, Q.; Han, S.; Li, Z.; Du, X.; Wei, X.; Zhang, M.; Liu, J.; et al. Shale gas potential of Lower Permian marine-continental transitional black shales in the Southern North China Basin, central China: Characterization of organic geochemistry. J. Nat. Gas Sci. Eng. 2016, 28, 639–650. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, X.K.; Tian, J.; Sun, X.; Chang, H. Geological and geochemical characteristics of marine-continental transitional shale from the Lower Permian Taiyuan Formation, Taikang Uplift, southern North China Basin. Mar. Pet. Geol. 2018, 98, 229–242. [Google Scholar] [CrossRef]
- Peng, Y. The Shale Gas Accumlation Conditions of Taiyuan Formation in Southern North China Basin; China University of Geosciences: Beijing, China, 2020. [Google Scholar]
- Huo, Z.P.; Zhang, J.C.; Li, P.; Tang, X.; Yang, X.; Qiu, Q.; Dong, Z.; Li, Z. An improved evaluation method for the brittleness index of shale and its application—A case study from the southern north China basin. J. Nat. Gas Sci. Eng. 2018, 59, 47–55. [Google Scholar] [CrossRef]
- Xu, H.L.; Zhao, Z.J.; Lu, F.L.; Yang, Y.; Tang, Z.; Sun, G.; Xu, Y. Tectonic evolution of the Nanhuabei area and analysis about its petroleum potential. Geotect Metallog. 2004, 28, 450–463. [Google Scholar]
- Yu, H.; Lv, F.; Guo, Q.; Lu, W.; Wu, J.; Han, S. Proto-sediment basin types and tectonic evolution in the southern edge of North China Pla. Earth-Sci. Rev. 2005, 27, 111–117. [Google Scholar]
- Zhou, X.; Ni, C.; Yang, F. The Paleozoic prototype basins and their tectonic deformation in North China and their controlling effects upon hydrocarbon accumulation. Pet. Nat. Gas Geol. 2010, 31, 779–794. [Google Scholar]
- Diao, Y.; Wei, J.; Li, Z.; Cao, H.; Li, X. Late carboniferous-early permian sequence stratigraphy and paleogeography in the southern North China Basin. Acta Geol. Sin. 2011, 35, 88–94. [Google Scholar]
- Zhang, M.Q. Controlling Factor for Shale Enrichment of the Permian Shale in Southern North China Basin; China University of Geosciences: Beijing, China, 2016. [Google Scholar]
- Huo, Z.P.; Gao, J.; Zhang, J.C.; Zhang, D.; Liang, Y. Role of overlying and underlying limestones in the natural hydraulic fracturing of shale sections: The case of marine–continental transitional facies in the Southern North China Basin. Energy Rep. 2021, 7, 8711–8729. [Google Scholar] [CrossRef]
- Haskin, L.A.; Wildeman, T.R.; Haskin, M.A. An accurate procedure for the determination of the rare earths by neutron activation. J. Radioanal. Chem. 1968, 1, 337–348. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; pp. 117–140. [Google Scholar]
- Bonis, N.R.; Ruhl, M.; Kürschner, W. Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 290, 151–159. [Google Scholar] [CrossRef]
- Burton, Z.F.M.; McHargue, T.; Kremer, C.H.; Bloch, R.B.; Gooley, J.T.; Jaikla, C.; Harrington, J. Peak Cenozoic warmth enabled deep-sea sand deposition. Sci. Rep. 2023, 13, 1276. [Google Scholar] [CrossRef] [PubMed]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Price, J.R.; Velbel, M.A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol. 2003, 202, 397–416. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.R.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Spec. Pap. Geol. Soc. Am. 1993, 284, 21–40. [Google Scholar]
- Chen, H.; Tang, D.; Chen, S.; Tang, S. Geochemical characteristics of mudstones from the lower cretaceous strata of the Jixi Basin, NE China: Implications for organic matter enrichment. Int. J. Coal Geol. 2021, 249, 103904. [Google Scholar] [CrossRef]
- Brumsack, H.J. The trace metal content of recent organic carbon-rich sediments; implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 232, 344–361. [Google Scholar] [CrossRef]
- Dymond, J.; Suess, E.; Lyle, M. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography 1992, 7, 163–181. [Google Scholar] [CrossRef]
- Shen, J.; Schoepfer, S.D.; Feng, Q.; Zhou, L.; Yu, J.; Song, H.; Wei, H.; Algeo, T.J. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth Sci. Rev. 2015, 149, 136–162. [Google Scholar] [CrossRef]
- Schroeder, J.; Murray, R.W.; Leinen, M.S.; Pflaum, R.; Janecek, T.R. Barium in equatorial Pacific carbonate sediment: Terrigenous, oxide, and biogenic associations. Paleoceanography 1997, 12, 125–146. [Google Scholar] [CrossRef]
- Ibach, L.E.J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bull. 1982, 66, 170–188. [Google Scholar]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, X.; Wang, E.; Pu, X.; Lash, G.; Han, W.; Zhang, W.; Feng, Y. Sedimentary environment and organic enrichment mechanisms of lacustrine shale: A case study of the Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 573, 110404. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, Z.; Li, T.; Guo, X.; Xu, X.; Chen, X. Environmental response to volcanic activity and its effect on organic matter enrichment in the Permian Lucaogou Formation of the Malang Sag, Santanghu Basin, Northwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 560, 110024. [Google Scholar] [CrossRef]
- Tyson, R.V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study. Org. Geochem. 2001, 32, 333–339. [Google Scholar] [CrossRef]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Ver Straeten, C.A.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Ruhlin, D.E.; Owen, R.M. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: Examination of a seawater scavenging mechanism. Geochim. Cosmochim. Acta 1986, 50, 393–400. [Google Scholar] [CrossRef]
- Murray, R.W.; Brink, M.B.T.; Gerlach, D.C.; Russ, G.P.; Jones, D. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim. Cosmochim. Acta 1991, 55, 1875–1895. [Google Scholar] [CrossRef]
- Tenger; Liu, W.; Xu, Y.; Chen, J. Comprehensive geochemical identification of highly evolved marine carbonate rocks as hydrocarbon-source rocks as exemplified by the Ordos Basin. Sci. China Ser. D 2006, 49, 384–396. [Google Scholar] [CrossRef]
- Doner, Z.; Kumral, M.; Demirel, I.H.; Hu, Q. Geochemical characteristics of the Silurian shales from the central Taurides, southern Turkey: Organic matter accumulation, preservation and depositional environment modeling. Mar. Pet. Geol. 2019, 102, 155–175. [Google Scholar] [CrossRef]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Ding, Q.; Chen, S.; Zhang, J. Geochemical characteristics and paleoenvironment of Cretaceous Jiufotang Formation in Xiushui Basin, northern Liaoning. Glob. Geol. 2019, 38, 154–161. [Google Scholar]
- Mei, S. Application of rock chemistry in the study of Presinian sedimentary environment and the source of Uranium mineralization in Hunan Province. Land Resour. Her. 1988, 7, 25–31. [Google Scholar]
- Ye, L.; Qi, T.; Peng, H. Depositional environment analysis of Shanxi formation in Eastern Ordos Basin. Acta Sedimentol. Sin. 2008, 26, 202–210. [Google Scholar]
- Fu, J.; Deng, X.; Wang, Q.; Li, J.; Qiu, J.; Hao, L.; Zhao, Y. Densification and hydrocarbon accumulation of Triassic Yanchang Formation Chang 8 Member, Ordos Basin, NW China: Evidence from geochemistry and fluid inclusions. Pet. Explor. Dev. 2017, 44, 48–57. [Google Scholar] [CrossRef]
- Xiao, J. Geochemical Indicators of Sedimentary Environments—A Summary. Earth Environ. 2011, 39, 405–414. [Google Scholar]
- Wang, P.W.; Chen, Z.L.; Li, X.J. Geochemical characteristics and environmental significance of Dengying formation of Upper Sinian in Qiannan Depression. Geoscience 2011, 25, 1059–1065. [Google Scholar]
- Liu, C.; Liu, K.; Wang, X.; Wu, L.; Fan, Y. Chemostratigraphy and sedimentary facies analysis of the Permian Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China: Implications for tight oil exploration. J. Asian Earth Sci. 2019, 178, 96–111. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, S.; Xie, X.; Zhong, S.; Huang, C.; Chen, B. Geochemical characteristics and organic matter enrichment of the Dongyuemiao member mudstone of Lower Jurassic in the Western Hubei-Eastern Chongqing. Sci. J. Earth Sci. 2017, 42, 1235–1246. [Google Scholar]
- Shang, B.H.; Ni, Y.; Song, H.; Liu, S.; Zhang, L. Sequence stratigraphic framework of Late Paleozoic coal measures and their sedimentary evolution in Henan, Yprovince. Coal Geol. Explor. 2012, 40, 1–5. [Google Scholar]
Well | Sample | Depth (m) | TOC (wt.%) | MEs (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | TiO2 | P2O5 | MnO | ||||
MY1 | JX2 | 2804.81 | 4.19 | 41.52 | 33.71 | 0.73 | 0.22 | 0.10 | 1.27 | 2.43 | 1.15 | 0.09 | 0.22 |
MY1 | JX3 | 2807.74 | 1 | 55.00 | 30.00 | 1.44 | 0.36 | 0.17 | 1.56 | 4.55 | 1.02 | 0.14 | 0.36 |
MY1 | JX4 | 2810.32 | 0.76 | 49.12 | 25.90 | 6.66 | 0.73 | 0.27 | 1.81 | 3.85 | 0.80 | 0.23 | 0.74 |
MY1 | JX6 | 2815.3 | 0.55 | 46.92 | 10.30 | 22.52 | 1.46 | 0.56 | 1.24 | 0.72 | 0.28 | 0.37 | 1.46 |
MY1 | JX7 | 2819.27 | 0.53 | 56.31 | 27.11 | 2.43 | 0.50 | 0.18 | 1.99 | 5.40 | 1.08 | 0.09 | 0.50 |
MY1 | JX8 | 2821.74 | 1.23 | 51.32 | 25.41 | 3.00 | 0.90 | 0.27 | 3.37 | 4.99 | 1.03 | 0.18 | 0.89 |
MY1 | JX10 | 2827.13 | 1.09 | 49.31 | 31.40 | 2.20 | 0.40 | 0.25 | 2.67 | 3.93 | 0.93 | 0.18 | 0.40 |
MY1 | JX11 | 2830.72 | 0.52 | 50.81 | 26.72 | 2.76 | 0.76 | 0.22 | 4.58 | 5.66 | 0.95 | 0.09 | 0.76 |
MY1 | JX12 | 2831.66 | 0.44 | 48.82 | 24.51 | 3.62 | 1.03 | 0.46 | 3.59 | 5.35 | 1.03 | 0.23 | 1.05 |
MY1 | JX14 | 2838.32 | 0.89 | 49.12 | 30.00 | 0.00 | 1.04 | 0.28 | 3.07 | 6.53 | 0.87 | 0.14 | 1.05 |
MY1 | JX15 | 2840.23 | 0.48 | 52.61 | 29.31 | 2.65 | 0.53 | 0.24 | 3.32 | 5.61 | 0.97 | 0.09 | 0.53 |
MY1 | JX16 | 2841.88 | 2.37 | 48.63 | 24.30 | 3.47 | 0.85 | 0.29 | 2.59 | 5.08 | 0.90 | 0.27 | 0.85 |
MY1 | JX17 | 2844.32 | 2.39 | 50.92 | 21.11 | 4.59 | 1.08 | 1.76 | 3.59 | 2.99 | 0.85 | 0.23 | 1.08 |
MY1 | JX18 | 2847.16 | 0.62 | 56.80 | 26.30 | 2.60 | 0.56 | 0.22 | 3.53 | 5.81 | 0.75 | 0.09 | 0.57 |
MY1 | JX19 | 2848.82 | 1.98 | 48.63 | 29.91 | 2.32 | 0.65 | 0.32 | 5.12 | 4.77 | 0.70 | 0.18 | 0.65 |
MY1 | JX20 | 2849.51 | 54.45 | 2.18 | 1.79 | 0.67 | 0.15 | 0.21 | 0.19 | 0.22 | 0.03 | 0.00 | 0.15 |
MY1 | JX21 | 2855.01 | 66.55 | 0.58 | 0.55 | 0.14 | 0.02 | 0.07 | 0.08 | 0.02 | 0.02 | 0.00 | 0.03 |
MY1 | JX22 | 2852.36 | 2.21 | 42.72 | 25.72 | 0.44 | 0.32 | 0.06 | 1.46 | 10.65 | 0.92 | 0.09 | 0.32 |
MY1 | JX24 | 2857.02 | 4.24 | 41.03 | 24.81 | 4.16 | 0.76 | 0.17 | 1.08 | 11.18 | 0.82 | 0.18 | 0.76 |
MY1 | JX31 | 2884.3 | 5.1 | 44.73 | 22.71 | 5.52 | 1.16 | 0.43 | 1.29 | 9.08 | 0.88 | 0.55 | 1.16 |
MY1 | JX32 | 2886.27 | 1.97 | 44.73 | 22.71 | 5.52 | 1.16 | 0.43 | 1.29 | 9.08 | 0.88 | 0.55 | 1.16 |
MY1 | JX33 | 2889.34 | 2.56 | 45.03 | 23.11 | 4.27 | 1.01 | 0.13 | 1.70 | 8.50 | 0.73 | 0.14 | 1.01 |
MY1 | JX34 | 2894.31 | 1.78 | 47.13 | 21.90 | 0.01 | 1.23 | 0.85 | 1.35 | 8.60 | 0.72 | 0.37 | 1.24 |
MY1 | JX36 | 2913.2 | 3.74 | 43.54 | 21.41 | 4.73 | 1.16 | 0.34 | 1.62 | 5.11 | 0.77 | 0.32 | 1.16 |
MY1 | JX37 | 2917.42 | 0.92 | 47.43 | 24.01 | 3.60 | 1.01 | 0.22 | 1.54 | 6.02 | 0.83 | 0.27 | 1.02 |
MY1 | JX39 | 2923 | 1.87 | 48.52 | 21.31 | 0.01 | 1.08 | 0.70 | 1.99 | 6.05 | 0.75 | 0.23 | 1.08 |
MY1 | JX40 | 2925.92 | 1.93 | 48.52 | 21.31 | 3.79 | 1.08 | 0.70 | 1.99 | 6.05 | 0.75 | 0.23 | 1.08 |
MY1 | JX42 | 2931.5 | 1.75 | 43.54 | 20.61 | 1.56 | 0.65 | 0.15 | 1.78 | 4.10 | 0.55 | 0.09 | 0.65 |
MY1 | JX43 | 2933.86 | 4.14 | 42.42 | 22.60 | 5.45 | 0.76 | 0.50 | 1.48 | 3.93 | 0.77 | 0.37 | 0.76 |
MY1 | JX44 | 2935.4 | 61.29 | 54.21 | 28.61 | 0.97 | 0.60 | 0.29 | 1.51 | 4.89 | 1.12 | 0.09 | 0.61 |
MY1 | JX45 | 2939.27 | 1.69 | 44.52 | 21.71 | 4.62 | 1.08 | 0.46 | 1.81 | 4.58 | 0.88 | 0.32 | 1.08 |
MY1 | JX46 | 2941.28 | 2.25 | 48.63 | 24.30 | 4.39 | 1.08 | 0.39 | 1.78 | 5.13 | 0.92 | 0.27 | 1.08 |
MY1 | JX47 | 2943.35 | 0.66 | 0.34 | 0.19 | 0.97 | 0.00 | 0.10 | 0.00 | 0.02 | 0.02 | 0.05 | 0.00 |
MY1 | JX49 | 2948.32 | 58.95 | 38.53 | 19.50 | 4.60 | 0.70 | 0.57 | 1.21 | 4.41 | 0.50 | 0.73 | 0.70 |
MY1 | JX50 | 2950.09 | 5.06 | 42.94 | 18.80 | 5.56 | 1.08 | 0.99 | 1.48 | 4.00 | 0.67 | 0.23 | 1.08 |
MY1 | JX51 | 2953.09 | 1.67 | 44.73 | 21.01 | 5.20 | 1.13 | 1.02 | 2.21 | 4.07 | 0.72 | 0.41 | 1.14 |
MY1 | JX52 | 2955.71 | 1.88 | 48.22 | 22.01 | 4.72 | 1.48 | 4.49 | 2.21 | 4.99 | 0.70 | 0.27 | 1.48 |
MY1 | JX53 | 2958.16 | 2.55 | 53.31 | 20.20 | 0.10 | 1.06 | 2.27 | 2.05 | 5.40 | 0.67 | 0.37 | 1.06 |
MY1 | JX54 | 2960.13 | 1.89 | 37.74 | 16.61 | 2.96 | 1.13 | 15.68 | 1.59 | 3.93 | 0.58 | 0.23 | 1.14 |
ZDY2 | ZY2-SX-2 | 2841.67 | 2.58 | 56.82 | 18.48 | 6.51 | 1.53 | 1.02 | 1.75 | 4.65 | 0.93 | 0.50 | 0.14 |
ZDY2 | ZY2-TY-8 | 2849.59 | 2.27 | 51.69 | 23.33 | 5.30 | 1.33 | 0.84 | 2.16 | 5.64 | 0.87 | 0.41 | 0.15 |
ZDY2 | ZY2-TY-11 | 2850.78 | 1.67 | 44.18 | 18.93 | 12.44 | 2.02 | 2.20 | 1.73 | 4.82 | 0.67 | 1.60 | 0.44 |
ZDY2 | ZY2-TY-24 | 2861.54 | 2.5 | 55.37 | 19.50 | 7.01 | 1.11 | 0.29 | 1.32 | 4.65 | 0.92 | 0.27 | 0.09 |
ZDY2 | ZY2-TY-33 | 2868.8 | 2.27 | 55.90 | 19.29 | 5.93 | 1.24 | 0.74 | 1.73 | 5.85 | 0.80 | 0.27 | 0.06 |
ZDY2 | ZY2-TY-37 | 2870.02 | 1.68 | 56.71 | 20.92 | 4.40 | 1.19 | 0.87 | 2.21 | 6.34 | 0.77 | 0.23 | 0.05 |
ZDY2 | ZY2-TY-46 | 2878.45 | 2.47 | 51.58 | 18.54 | 10.52 | 0.65 | 0.57 | 1.35 | 3.40 | 0.78 | 0.46 | 0.06 |
ZDY2 | ZY2-TY-48 | 2880.01 | 3.52 | 54.55 | 20.78 | 5.13 | 1.09 | 0.85 | 1.27 | 3.81 | 0.78 | 0.37 | 0.14 |
ZDY2 | ZY2-TY-52 | 2882.25 | 7.43 | 37.97 | 15.29 | 5.78 | 1.63 | 11.64 | 1.21 | 3.20 | 0.55 | 0.18 | 0.15 |
ZDY2 | ZY2-TY-61 | 2886.59 | 1.79 | 55.41 | 20.29 | 6.05 | 1.26 | 0.99 | 1.21 | 4.10 | 0.87 | 0.23 | 0.14 |
ZDY2 | ZY2-TY-69 | 2894.67 | 3.48 | 61.33 | 20.48 | 1.93 | 0.61 | 0.21 | 1.29 | 3.32 | 0.78 | 0.09 | 0.01 |
ZDY2 | ZY2-TY-75 | 2897.14 | 1.32 | 52.65 | 15.78 | 6.36 | 2.37 | 4.73 | 1.64 | 2.89 | 0.60 | 0.32 | 0.21 |
ZDY2 | ZY2-TY-80 | 2900.52 | 1.31 | 66.51 | 14.34 | 3.60 | 0.73 | 1.06 | 1.35 | 4.14 | 0.55 | 0.55 | 0.04 |
ZDY2 | ZY2-TY-87 | 2902.32 | 1.42 | 61.98 | 17.12 | 3.07 | 1.13 | 1.74 | 1.67 | 4.82 | 0.58 | 0.27 | 0.05 |
ZDY2 | ZY2-TY-92 | 2905.69 | 1.25 | 55.92 | 17.08 | 8.61 | 0.66 | 1.32 | 2.18 | 4.65 | 0.57 | 0.23 | 0.05 |
ZDY2 | ZY2-TY-98 | 2910.56 | 2.24 | 33.80 | 4.16 | 2.62 | 0.68 | 28.96 | 0.43 | 1.33 | 0.15 | 0.23 | 0.01 |
ZXY1 | JX9 | 3267.87 | 0.36 | 60.61 | 23.01 | 4.02 | 0.91 | 0.22 | 2.67 | 6.77 | 1.03 | 0.18 | 0.92 |
ZXY1 | JX13 | 3274.1 | 0.8 | 58.38 | 27.81 | 0.80 | 0.38 | 0.22 | 4.07 | 6.17 | 1.32 | 0.09 | 0.37 |
ZXY1 | JX19 | 3288.17 | 0.9 | 57.61 | 21.84 | 5.59 | 1.18 | 0.46 | 0.94 | 9.56 | 0.97 | 0.37 | 1.19 |
ZXY1 | JX39 | 3318.5 | 3.27 | 58.34 | 23.77 | 3.09 | 0.66 | 0.15 | 2.51 | 8.65 | 0.83 | 0.09 | 0.67 |
ZXY1 | JX41 | 3321.08 | 1.57 | 53.83 | 16.36 | 13.20 | 1.46 | 0.90 | 1.16 | 5.93 | 0.53 | 0.46 | 1.47 |
ZXY1 | JX44 | 3324.8 | 2.44 | 50.83 | 23.35 | 9.22 | 0.93 | 0.21 | 2.94 | 6.84 | 0.83 | 0.14 | 0.94 |
ZXY1 | JX51 | 3340.75 | 3.88 | 53.91 | 22.50 | 6.62 | 0.53 | 0.83 | 0.92 | 4.60 | 0.97 | 0.37 | 0.54 |
Well | Sample | Depth (m) | TOC (wt.%) | TEs (ppm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
V | Cr | Co | Ni | Sr | Ti | Ba | Cu | Zn | ||||
MY1 | JX2 | 2804.81 | 4.19 | 15 | 113 | 69 | 38 | |||||
MY1 | JX3 | 2807.74 | 1 | 159 | 61 | 70 | 55 | |||||
MY1 | JX4 | 2810.32 | 0.76 | 137 | 157 | 48 | 154 | |||||
MY1 | JX6 | 2815.3 | 0.55 | 169 | 517 | 17 | 175 | |||||
MY1 | JX7 | 2819.27 | 0.53 | 143 | 152 | 65 | 447 | |||||
MY1 | JX8 | 2821.74 | 1.23 | 214 | 222 | 62 | 986 | 46 | ||||
MY1 | JX10 | 2827.13 | 1.09 | 155 | 274 | 56 | 55 | |||||
MY1 | JX11 | 2830.72 | 0.52 | 156 | 213 | 57 | 482 | |||||
MY1 | JX12 | 2831.66 | 0.44 | 234 | 62 | 694 | 63 | |||||
MY1 | JX14 | 2838.32 | 0.89 | 114 | 258 | 52 | 813 | 129 | ||||
MY1 | JX15 | 2840.23 | 0.48 | 246 | 219 | 58 | 652 | 52 | ||||
MY1 | JX16 | 2841.88 | 2.37 | 219 | 54 | 107 | ||||||
MY1 | JX17 | 2844.32 | 2.39 | 175 | 77 | 184 | 51 | 71 | ||||
MY1 | JX18 | 2847.16 | 0.62 | 217 | 45 | 577 | ||||||
MY1 | JX19 | 2848.82 | 1.98 | 138 | 58 | 349 | 42 | 56 | ||||
MY1 | JX20 | 2849.51 | 54.45 | 41 | 123 | 2 | 27 | |||||
MY1 | JX21 | 2855.01 | 66.55 | 27 | 41 | 59 | 1 | |||||
MY1 | JX22 | 2852.36 | 2.21 | 129 | 193 | 55 | 134 | 55 | ||||
MY1 | JX24 | 2857.02 | 4.24 | 81 | 203 | 49 | 1090 | 105 | ||||
MY1 | JX31 | 2884.3 | 5.1 | 169 | 81 | 212 | 53 | 708 | 111 | |||
MY1 | JX32 | 2886.27 | 1.97 | 187 | 77 | 256 | 53 | 791 | 125 | |||
MY1 | JX33 | 2889.34 | 2.56 | 138 | 251 | 44 | 1220 | 94 | ||||
MY1 | JX34 | 2894.31 | 1.78 | 70 | 279 | 43 | 948 | 113 | ||||
MY1 | JX36 | 2913.2 | 3.74 | 133 | 69 | 218 | 46 | 506 | 61 | |||
MY1 | JX37 | 2917.42 | 0.92 | 327 | 57 | 251 | 50 | 510 | 106 | |||
MY1 | JX39 | 2923 | 1.87 | 417 | 94 | 240 | 45 | 434 | 54 | 83 | ||
MY1 | JX40 | 2925.92 | 1.93 | 94 | 240 | 45 | 434 | 54 | 83 | |||
MY1 | JX42 | 2931.5 | 1.75 | 60 | 331 | 33 | 473 | 56 | ||||
MY1 | JX43 | 2933.86 | 4.14 | 85 | 295 | 46 | 189 | |||||
MY1 | JX44 | 2935.4 | 61.29 | 166 | 58 | 280 | 67 | |||||
MY1 | JX45 | 2939.27 | 1.69 | 58 | 230 | 53 | 68 | |||||
MY1 | JX46 | 2941.28 | 2.25 | 135 | 264 | 55 | 69 | |||||
MY1 | JX47 | 2943.35 | 0.66 | 53 | 1 | |||||||
MY1 | JX49 | 2948.32 | 58.95 | 67 | 274 | 30 | 82 | |||||
MY1 | JX50 | 2950.09 | 5.06 | 256 | 40 | 84 | ||||||
MY1 | JX51 | 2953.09 | 1.67 | 147 | 78 | 323 | 43 | 84 | ||||
MY1 | JX52 | 2955.71 | 1.88 | 459 | 42 | 495 | 53 | |||||
MY1 | JX53 | 2958.16 | 2.55 | 194 | 156 | 429 | 40 | 90 | ||||
MY1 | JX54 | 2960.13 | 1.89 | 191 | 111 | 984 | 35 | 137 | ||||
ZDY2 | ZY2-SX-2 | 2841.67 | 2.58 | 125 | 77.86 | 17.5 | 30.2 | 197.9 | 56 | 675 | 18 | 88.4 |
ZDY2 | ZY2-TY-8 | 2849.59 | 2.27 | 212 | 90.22 | 19.4 | 60.8 | 198.9 | 52 | 712 | 31.2 | |
ZDY2 | ZY2-TY-11 | 2850.78 | 1.67 | 219 | 85.56 | 19 | 80.9 | 301.9 | 40 | 773 | 27.4 | 162.2 |
ZDY2 | ZY2-TY-24 | 2861.54 | 2.5 | 117 | 79.58 | 15.6 | 28.8 | 163.9 | 55 | 381 | 23.1 | 91 |
ZDY2 | ZY2-TY-33 | 2868.8 | 2.27 | 106 | 72.8 | 21.3 | 37.2 | 190.9 | 48 | 514 | 25.8 | 86.6 |
ZDY2 | ZY2-TY-37 | 2870.02 | 1.68 | 123 | 78.54 | 10.7 | 24.8 | 193.9 | 46 | 582 | 23.9 | 90.4 |
ZDY2 | ZY2-TY-46 | 2878.45 | 2.47 | 137 | 66.24 | 28 | 47.3 | 251.9 | 47 | 318 | 30.3 | 50 |
ZDY2 | ZY2-TY-48 | 2880.01 | 3.52 | 155 | 85.78 | 12.6 | 25.2 | 264.9 | 47 | 326 | 22.3 | 97.5 |
ZDY2 | ZY2-TY-52 | 2882.25 | 7.43 | 117 | 60.84 | 16.2 | 42.6 | 439.9 | 33 | 680 | 24.2 | 123.4 |
ZDY2 | ZY2-TY-61 | 2886.59 | 1.79 | 108 | 87.4 | 11.2 | 23.4 | 210.9 | 52 | 336 | 24 | 125.5 |
ZDY2 | ZY2-TY-69 | 2894.67 | 3.48 | 92 | 64.06 | 3.6 | 8.6 | 227.9 | 47 | 308 | 16.1 | 96.1 |
ZDY2 | ZY2-TY-75 | 2897.14 | 1.32 | 71 | 52.1 | 15.3 | 16.5 | 340.9 | 36 | 352 | 17.7 | 60.6 |
ZDY2 | ZY2-TY-80 | 2900.52 | 1.31 | 94 | 74.18 | 16.8 | 22.8 | 360.9 | 33 | 415 | 13.3 | 99.8 |
ZDY2 | ZY2-TY-87 | 2902.32 | 1.42 | 114 | 80.73 | 9.2 | 23.2 | 379.9 | 35 | 516 | 12 | 44 |
ZDY2 | ZY2-TY-92 | 2905.69 | 1.25 | 125 | 79.81 | 18.2 | 43.7 | 367.9 | 34 | 566 | 27 | 90.3 |
ZDY2 | ZY2-TY-98 | 2910.56 | 2.24 | 51 | 80.61 | 4.4 | 61.8 | 727.9 | 9 | 137 | 18.4 | 93.9 |
ZXY1 | JX9 | 3267.87 | 0.36 | 145.6 | 83.58 | 19.07 | 41.8 | 246 | 62 | 769.8 | 33.1 | 97.98 |
ZXY1 | JX13 | 3274.1 | 0.8 | 162.3 | 95.7 | 11.12 | 26.16 | 309 | 79 | 890.2 | 9.37 | 11.54 |
ZXY1 | JX19 | 3288.17 | 0.9 | 142.4 | 80.71 | 13.44 | 24.77 | 185.69 | 58 | 908 | 29.1 | 102.72 |
ZXY1 | JX39 | 3318.5 | 3.27 | 198.1 | 98.38 | 36.7 | 69.22 | 250.6 | 50 | 1355.8 | 15.02 | 68.96 |
ZXY1 | JX41 | 3321.08 | 1.57 | 159.8 | 68.58 | 109.62 | 180.66 | 211 | 32 | 905.8 | 20.6 | 103.92 |
ZXY1 | JX44 | 3324.8 | 2.44 | 192.6 | 89.34 | 31.92 | 100.52 | 292 | 50 | 1376.2 | 21.48 | 44.78 |
ZXY1 | JX51 | 3340.75 | 3.88 | 194.1 | 88.68 | 15.33 | 48.08 | 268.6 | 58 | 534.8 | 25.3 | 36.28 |
Well | Sample | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | L/H | ∑REE | (La/Yb)N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZDY2 | ZY2-SX-2 | 55.52 | 98.32 | 12.19 | 43.34 | 8.13 | 1.48 | 6.90 | 1.07 | 5.99 | 1.16 | 3.51 | 0.56 | 3.60 | 0.55 | 13.74 | 242.32 | 1.14 |
ZDY2 | ZY2-TY-8 | 45.96 | 82.09 | 10.91 | 38.61 | 7.43 | 1.21 | 5.41 | 0.78 | 5.00 | 1.04 | 3.24 | 0.52 | 3.40 | 0.52 | 13.22 | 206.12 | 1.00 |
ZDY2 | ZY2-TY-11 | 63.48 | 136.85 | 16.22 | 60.50 | 13.00 | 2.67 | 13.50 | 2.02 | 10.51 | 1.79 | 4.75 | 0.69 | 4.39 | 0.66 | 12.34 | 331.03 | 1.07 |
ZDY2 | ZY2-TY-24 | 57.20 | 100.16 | 13.80 | 47.72 | 8.50 | 1.52 | 7.71 | 1.12 | 6.47 | 1.23 | 3.67 | 0.53 | 3.52 | 0.55 | 13.84 | 253.70 | 1.20 |
ZDY2 | ZY2-TY-33 | 54.44 | 95.00 | 12.68 | 46.84 | 8.95 | 1.36 | 7.37 | 1.11 | 6.44 | 1.32 | 3.81 | 0.60 | 3.87 | 0.60 | 12.77 | 244.39 | 1.04 |
ZDY2 | ZY2-TY-37 | 51.72 | 86.11 | 12.24 | 42.46 | 7.46 | 1.33 | 6.37 | 0.84 | 5.01 | 1.01 | 3.13 | 0.49 | 3.11 | 0.52 | 14.72 | 221.80 | 1.23 |
ZDY2 | ZY2-TY-46 | 47.16 | 86.14 | 10.72 | 38.72 | 7.15 | 1.81 | 6.42 | 0.92 | 4.92 | 0.95 | 2.77 | 0.40 | 2.72 | 0.43 | 15.11 | 211.23 | 1.28 |
ZDY2 | ZY2-TY-48 | 47.00 | 86.71 | 10.78 | 37.40 | 7.57 | 1.69 | 6.26 | 0.89 | 5.12 | 1.02 | 3.05 | 0.48 | 3.21 | 0.49 | 13.84 | 211.67 | 1.08 |
ZDY2 | ZY2-TY-52 | 52.68 | 104.65 | 11.45 | 38.39 | 6.80 | 1.32 | 5.83 | 0.79 | 4.53 | 0.87 | 2.65 | 0.40 | 2.68 | 0.41 | 17.93 | 233.45 | 1.45 |
ZDY2 | ZY2-TY-61 | 49.92 | 88.44 | 10.65 | 36.52 | 6.93 | 1.42 | 5.90 | 0.81 | 4.88 | 0.97 | 2.84 | 0.43 | 2.81 | 0.44 | 15.16 | 212.96 | 1.31 |
ZDY2 | ZY2-TY-69 | 48.72 | 93.61 | 9.66 | 33.55 | 5.66 | 1.40 | 4.95 | 0.62 | 3.17 | 0.58 | 1.61 | 0.22 | 1.38 | 0.21 | 25.36 | 205.34 | 2.61 |
ZDY2 | ZY2-TY-75 | 49.32 | 89.70 | 10.11 | 34.10 | 5.98 | 1.29 | 5.25 | 0.72 | 4.06 | 0.76 | 2.28 | 0.35 | 2.33 | 0.37 | 18.01 | 206.62 | 1.56 |
ZDY2 | ZY2-TY-80 | 64.56 | 131.10 | 14.14 | 52.14 | 9.86 | 1.90 | 7.42 | 0.89 | 4.94 | 0.93 | 2.84 | 0.42 | 2.77 | 0.44 | 21.25 | 294.35 | 1.72 |
ZDY2 | ZY2-TY-87 | 60.24 | 120.42 | 13.34 | 47.30 | 8.20 | 1.44 | 6.30 | 0.84 | 4.85 | 0.99 | 2.91 | 0.43 | 2.85 | 0.43 | 19.34 | 270.54 | 1.56 |
ZDY2 | ZY2-TY-92 | 66.00 | 140.30 | 14.84 | 52.25 | 8.52 | 1.31 | 6.64 | 0.87 | 5.17 | 1.01 | 3.06 | 0.46 | 2.96 | 0.45 | 20.73 | 303.84 | 1.65 |
ZDY2 | ZY2-TY-98 | 26.16 | 31.86 | 5.34 | 20.68 | 5.31 | 0.96 | 4.65 | 0.73 | 3.88 | 0.72 | 1.96 | 0.26 | 1.65 | 0.26 | 10.04 | 104.42 | 1.17 |
ZXY1 | JX9 | 75.76 | 151.34 | 15.44 | 60.22 | 12.65 | 3.26 | 10.47 | 1.29 | 7.60 | 1.48 | 4.42 | 0.62 | 4.17 | 0.60 | 16.31 | 349.33 | 1.34 |
ZXY1 | JX13 | 64.50 | 120.72 | 11.40 | 39.36 | 5.65 | 1.24 | 4.42 | 0.60 | 4.01 | 0.87 | 2.87 | 0.44 | 3.12 | 0.46 | 19.99 | 259.65 | 1.53 |
ZXY1 | JX19 | 82.50 | 165.12 | 16.82 | 64.28 | 11.07 | 1.95 | 8.10 | 1.05 | 6.51 | 1.32 | 4.11 | 0.59 | 4.03 | 0.58 | 19.22 | 368.03 | 1.51 |
ZXY1 | JX39 | 88.84 | 181.50 | 17.13 | 56.54 | 7.34 | 0.90 | 5.62 | 0.89 | 6.27 | 1.30 | 4.18 | 0.62 | 4.35 | 0.62 | 19.63 | 376.10 | 1.51 |
ZXY1 | JX41 | 59.34 | 133.20 | 13.67 | 53.46 | 10.10 | 1.82 | 9.26 | 1.25 | 7.47 | 1.46 | 4.42 | 0.63 | 4.33 | 0.63 | 13.90 | 301.05 | 1.01 |
ZXY1 | JX44 | 90.62 | 192.42 | 18.60 | 67.62 | 10.95 | 1.23 | 10.72 | 1.77 | 11.73 | 2.33 | 6.91 | 0.97 | 6.40 | 0.90 | 12.64 | 423.17 | 1.04 |
ZXY1 | JX51 | 51.80 | 118.68 | 11.04 | 40.98 | 7.04 | 1.37 | 5.79 | 0.84 | 5.40 | 1.12 | 3.57 | 0.54 | 3.76 | 0.54 | 15.02 | 252.46 | 1.02 |
Environment | Ratios | Geological Units | Index Limit | Reference | |||
---|---|---|---|---|---|---|---|
Taiyuan Formation | Shanxi Formation | ||||||
Paleoclimate | CIA | 74.12–90.02 (85.58) | 80.49–95.03 (84.88) | Cold and arid (50 < CIA < 65) | Semi-arid and semi-humid (65 < CIA < 85) | Warm and humid (85 < CIA < 100) | [20,40,41] |
C-value | 0.91–1.08 (1.01) | 0.99–1.09 (1.01) | Cold and arid (C-value < 0.4) | Semi-arid and semi-humid (0.4 < C-value < 0.6) | Warm and humid (C-value > 0.6) | [21,22] | |
Paleo-productivity | P/Ti | 0.02–1.83 (0.24) | 0.22–0.45 (0.11) | ||||
Babio | 136.98–1376.11 ppm (507.71 ppm) | 446.89–1355.71 ppm (828.38 ppm) | |||||
Sedimentary Rate | (La/Yb)N | 0.99–2.6 (1.35) | 1.01–1.53 (1.34) | ||||
Paleoredox | Cu/Zn | 0.13–0.7 (0.34) | 0.2–1.27 (0.48) | Anoxic: Cu/Zn < 0.21 | Dysoxic: 0.21 < Cu/Zn < 0.63 | Oxic: Cu/Zn > 0.63 | [2] |
V/(V + Ni) | 0.45–0.91 (0.77) | 0.47–1 (0.77) | Anoxic: V/(V + Ni) > 0.6 | Dysoxic: 0.46 < V/(V + Ni) < 0.6 | Oxic: V/(V + Ni) < 0.46 | ||
Paleosalinity | Sr/Ba | 0.21–5.31 (0.78) | 0.18–0.44 (0.29) | Fresh water: Sr/Ba < 0.5 | Brackish water: 0.5 < Sr/Ba < 1 | Saline water: Sr/Ba > 1 | [42,43] |
Ca/(Ca + Fe) | 0.02–0.98 (0.26) | 0.02–0.35 (0.11) | Fresh water: Ca/(Ca + Fe) < 0.4 | Brackish water: 0.4 < Ca/(Ca + Fe) < 0.8 | Saline water: Ca/(Ca + Fe) > 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cheng, X.; Fan, K.; Huo, Z.; Wei, L. The Paleoenvironment and Mechanisms of Organic Matter Enrichment of Shale in the Permian Taiyuan and Shanxi Formations in the Southern North China Basin. J. Mar. Sci. Eng. 2023, 11, 992. https://doi.org/10.3390/jmse11050992
Wang Y, Cheng X, Fan K, Huo Z, Wei L. The Paleoenvironment and Mechanisms of Organic Matter Enrichment of Shale in the Permian Taiyuan and Shanxi Formations in the Southern North China Basin. Journal of Marine Science and Engineering. 2023; 11(5):992. https://doi.org/10.3390/jmse11050992
Chicago/Turabian StyleWang, Yanan, Xiulei Cheng, Kai Fan, Zhipeng Huo, and Lin Wei. 2023. "The Paleoenvironment and Mechanisms of Organic Matter Enrichment of Shale in the Permian Taiyuan and Shanxi Formations in the Southern North China Basin" Journal of Marine Science and Engineering 11, no. 5: 992. https://doi.org/10.3390/jmse11050992
APA StyleWang, Y., Cheng, X., Fan, K., Huo, Z., & Wei, L. (2023). The Paleoenvironment and Mechanisms of Organic Matter Enrichment of Shale in the Permian Taiyuan and Shanxi Formations in the Southern North China Basin. Journal of Marine Science and Engineering, 11(5), 992. https://doi.org/10.3390/jmse11050992