Advances in Numerical Modeling of Coupled CFD Problems
1. Modeling of Coupled CFD Problems: Modern Challenges
2. Major Coupled Problems in Marine/Ocean Engineering
- Fluid-structure interaction
- Sediment transport
- Water quality modeling
- Climate change modeling
3. Fluid–Structure Interaction in Marine/Ocean Engineering
4. Machine Learning Capabilities
5. Scope of the Present Special Issue
Conflicts of Interest
References
- Hughes, K.; Vignjevic, R.; Campbell, J.; De Vuyst, T.; Djordjevic, N.; Papagiannis, L. From aerospace to offshore: Bridging the numerical simulation gaps–Simulation advancements for fluid structure interaction problems. Int. J. Impact Eng. 2013, 61, 48–63. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, F.; Zhou, L.; Yuan, C. Fluid-structure interaction analysis of offshore structures based on separation of transferred responses. Ocean. Eng. 2020, 195, 106598. [Google Scholar] [CrossRef]
- Ryzhakov, P.B.; Oñate, E. A finite element model for fluid–structure interaction problems involving closed membranes, internal and external fluids. Comput. Methods Appl. Mech. Eng. 2017, 326, 422–445. [Google Scholar] [CrossRef]
- Danielsen, F.; Sørensen, M.K.; Olwig, M.F.; Selvam, V.; Parish, F.; Burgess, N.D.; Hiraishi, T.; Karunagaran, V.M.; Rasmussen, M.S.; Hansen, L.B.; et al. The Asian Tsunami: A Protective Role for Coastal Vegetation. Science 2005, 310, 643. [Google Scholar] [CrossRef] [PubMed]
- Chella, M.A.; Tørum, A.; Myrhaug, D. An Overview of Wave Impact Forces on Offshore Wind Turbine Substructures. Energy Procedia 2012, 20, 217–226. [Google Scholar] [CrossRef]
- Wang, M.; Avital, E.J.; Bai, X.; Ji, C.; Xu, D.; Williams, J.J.R.; Munjiza, A. Fluid–structure interaction of flexible submerged 22 vegetation stems and kinetic turbine blades. Comp. Part. Mech. 2020, 7, 839–848. [Google Scholar] [CrossRef]
- Ming, F.; Zhang, A.; Cheng, H.; Sun, P. Numerical simulation of a damaged ship cabin flooding in transversal waves with Smoothed Particle Hydrodynamics method. Ocean. Eng. 2018, 165, 336–352. [Google Scholar] [CrossRef]
- Tamimi, V.; Wu, J.; Naeeni, S.; Shahvaghar-Asl, S. Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator. Appl. Energy 2021, 281, 116092. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S. An improved level set method for incompressible two-phase flows. Comput. Fluids 1998, 27, 663–680. [Google Scholar] [CrossRef]
- Osher, S.; Fedkiw, R.P. Level set methods: An overview and some recent results. J. Comput. Phys. 2001, 169, 463–502. [Google Scholar] [CrossRef]
- Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [Google Scholar] [CrossRef]
- van Loon, R.; Anderson, P.; van de Vosse, F.; Sherwin, S. Comparison of various fluid–structure interaction methods for deformable bodies. Comput. Struct. 2007, 85, 833–843. [Google Scholar] [CrossRef]
- van Opstal, T.; van Brummelen, E.; van Zwieten, G. A finite-element/boundary-element method for three-dimensional, large-displacement fluid–structure-interaction. Comput. Methods Appl. Mech. Eng. 2015, 284, 637–663. [Google Scholar] [CrossRef]
- Kirezci, C.; Babanin, A.V.; Chalikov, D.V. Modelling rogue waves in 1D wave trains with the JONSWAP spectrum, by means of the High Order Spectral Method and a fully nonlinear numerical model. Ocean. Eng. 2021, 231, 108715. [Google Scholar] [CrossRef]
- Gotoh, H.; Khayyer, A.; Shimizu, Y. Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering—Reliability, adaptivity and generality. Appl. Ocean. Res. 2021, 115, 102822. [Google Scholar] [CrossRef]
- Antoci, C.; Gallati, M.; Sibilla, S. Numerical simulation of fluid–structure interaction by SPH. Comput. Struct. 2007, 85, 879–890. [Google Scholar] [CrossRef]
- Sun, P.N.; Le Touzé, D.; Oger, G.; Zhang, A.M. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean. Eng. 2021, 221, 108552. [Google Scholar] [CrossRef]
- Hashemi, M.; Fatehi, R.; Manzari, M. A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows. Int. J.-Non-Linear Mech. 2012, 47, 626–638. [Google Scholar] [CrossRef]
- O’Connor, J.; Rogers, B.D. A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J. Fluids Struct. 2021, 104, 103312. [Google Scholar] [CrossRef]
- Yang, Q.; Jones, V.; McCue, L. Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean. Eng. 2012, 55, 136–147. [Google Scholar] [CrossRef]
- Fourey, G.; Hermange, C.; Le Touzé, D.; Oger, G. An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods. Comput. Phys. Commun. 2017, 217, 66–81. [Google Scholar] [CrossRef]
- Hermange, C.; Oger, G.; Le Chenadec, Y.; Le Touzé, D. A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground. Comput. Methods Appl. Mech. Eng. 2019, 355, 558–590. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, Q.; Zhou, C. A Lagrangian-based SPH-DEM model for fluid–solid interaction with free surface flow in two dimensions. Appl. Math. Model. 2018, 62, 436–460. [Google Scholar] [CrossRef]
- Wu, K.; Yang, D.; Wright, N. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput. Struct. 2016, 177, 141–161. [Google Scholar] [CrossRef]
- Oñate, E.; Idelsohn, S.; Del Pin, F.; Aubry, R. The Particle Finite Element Method: An overview. Int. J. Comput. Methods 2004, 1, 267–307. [Google Scholar] [CrossRef]
- Idelsohn, S.; Marti, J.; Limache, A.; Oñate, E. Unified Lagrangian formulation for elastic solids and incompressible fluids. Application to fluid-structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng. 2008, 197, 1762–1776. [Google Scholar] [CrossRef]
- Idelsohn, S.; Marti, J.; Souto-Iglesias, A.; Oñate, E. Interaction between an elastic structure and free-surface flows: Experimental versus numerical comparisons using the PFEM. Comput. Mech. 2008, 43, 125–132. [Google Scholar] [CrossRef]
- Ryzhakov, P.; Rossi, R.; Vina, A.; Oñate, E. Modelling and simulation of the sea-landing of aerial vehicles using the Particle Finite Element Method. Ocean. Eng. 2013, 66, 92–100. [Google Scholar] [CrossRef]
- Ryzhakov, P.; Marti, J.; Idelsohn, S.; Oñate, E. Fast fluid–structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput. Methods Appl. Mech. Eng. 2017, 315, 1080–1097. [Google Scholar] [CrossRef]
- Marti, J.; Ryzhakov, P. An explicit–implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids. Comput. Methods Appl. Mech. Eng. 2019, 350, 750–765. [Google Scholar] [CrossRef]
- Marti, J.; Ryzhakov, P. Improving accuracy of the moving grid particle finite element method via a scheme based on Strang splitting. Comput. Methods Appl. Mech. Eng. 2020, 369, 113212. [Google Scholar] [CrossRef]
- Oñate, E.; Idelsohn, S.R.; Celigueta, M.A.; Rossi, R. Advances in the particle finite element method for the analysis of fluid–multibody interaction and bed erosion in free surface flows. Comput. Methods Appl. Mech. Eng. 2008, 197, 1777–1800. [Google Scholar] [CrossRef]
- Oñate, E.; Cornejo, A.; Zárate, F.; Kashiyama, K.; Franci, A. Combination of the finite element method and particle-based methods for predicting the failure of reinforced concrete structures under extreme water forces. Eng. Struct. 2022, 251, 113510. [Google Scholar] [CrossRef]
- Oñate, E.; Celigueta, M.A.; Idelsohn, S.R.; Salazar, F.; Suárez, B. Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput. Mech. 2011, 48, 307–318. [Google Scholar] [CrossRef]
- Zhu, M.; Elkhetali, I.; Scott, M.H. Validation of OpenSees for tsunami loading on bridge superstructures. J. Bridge Eng. 2018, 23, 04018015. [Google Scholar] [CrossRef]
- Juan, N.P.; Valdecantos, V.N. Review of the application of Artificial Neural Networks in ocean engineering. Ocean. Eng. 2022, 259, 111947. [Google Scholar] [CrossRef]
- Yu, C.; Bi, X.; Fan, Y. Deep learning for fluid velocity field estimation: A review. Ocean. Eng. 2023, 271, 113693. [Google Scholar] [CrossRef]
- Ryzhakov, P.; Hermosilla, F.; Ubach, P.A.; Onate, E. Adaptive breakwaters with inflatable elements for coastal protection. Preliminary numerical estimation of their performance. Ocean. Eng. 2022, 251, 110818. [Google Scholar] [CrossRef]
- Rehman, K.; Khan, H.; Cho, Y.S.; Hong, S.H. Incident wave run-up prediction using the response surface methodology and neural networks. Stoch. Environ. Res. Risk Assess. 2022, 36, 17–32. [Google Scholar] [CrossRef]
- Kim, T.; Lee, W.D. Review on applications of machine learning in coastal and ocean engineering. J. Ocean. Eng. Technol. 2022, 36, 194–210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryzhakov, P.B.; Marti, J.; Hashemi, M.R. Advances in Numerical Modeling of Coupled CFD Problems. J. Mar. Sci. Eng. 2023, 11, 978. https://doi.org/10.3390/jmse11050978
Ryzhakov PB, Marti J, Hashemi MR. Advances in Numerical Modeling of Coupled CFD Problems. Journal of Marine Science and Engineering. 2023; 11(5):978. https://doi.org/10.3390/jmse11050978
Chicago/Turabian StyleRyzhakov, Pavel B., Julio Marti, and Mohammad R. Hashemi. 2023. "Advances in Numerical Modeling of Coupled CFD Problems" Journal of Marine Science and Engineering 11, no. 5: 978. https://doi.org/10.3390/jmse11050978
APA StyleRyzhakov, P. B., Marti, J., & Hashemi, M. R. (2023). Advances in Numerical Modeling of Coupled CFD Problems. Journal of Marine Science and Engineering, 11(5), 978. https://doi.org/10.3390/jmse11050978