Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Optical Properties Chromophoric (Colored) Dissolved Organic Matter (CDOM)
2.3. Phytoplankton
2.4. Primary Productivity Parameters
2.5. Statistical analyses
3. Results
3.1. Environmental Parameters
3.2. CDOM Optical Properties
3.3. Structure of the Phytoplankton Community
3.4. Primary Production
3.5. Statistical Analyses
4. Discussion
4.1. Nutrients
4.2. Chromophoric Dissolved Organic Matter
4.3. Phytoplankton Community
4.4. Phytoplankton Production
4.5. Impact of Environmental Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makkaveev, P.N.; Melnikova, Z.G.; Polukhin, A.A.; Stepanova, S.V.; Khlebopashev, P.V.; Chultsova, A.L. Hydrochemical characteristics of the waters in the western part of the Kara Sea. Oceanology 2015, 55, 485–496. [Google Scholar] [CrossRef]
- Lasareva, E.V.; Parfenova, A.M.; Romankevich, E.A.; Lobus, N.V.; Drozdova, A.N. Organic matter and mineral interections modulate flocculation across arctic river mixing zones. JGR Biogeosci. 2019, 124, 1651–1664. [Google Scholar] [CrossRef]
- Sazhin, A.F.; Mosharov, S.A.; Romanova, N.D.; Belyaev, N.A.; Khlebopashev, P.V.; Pavlova, M.A.; Druzhkova, E.I.; Flint, M.V.; Kopylov, A.I.; Zabotkina, E.A.; et al. The plankton community of the Kara Sea in early spring. Oceanology 2017, 57, 222–224. [Google Scholar] [CrossRef]
- Hirche, H.J.; Kosobokova, K.N.; Gaye-Haake, B.; Harms, I.; Meon, B.; Nöthig, E.-M. Structure and function of contemporary food webs on Arctic shelves: A panarctic comparison: The pelagic system of the Kara Sea—Communities and components of carbon flow. Prog. Oceanogr. 2006, 71, 288–313. [Google Scholar] [CrossRef]
- Vedernikov, V.I.; Demidov, A.B.; Sudbin, A.I. Primary production and chlorophyll in the Kara Sea in September 1993. Oceanology 1994, 34, 693–703. [Google Scholar]
- Makarevich, P.R. Planktonic Algocenosis of Estuary Ecosystems; Nauka: Moscow, Russia, 2007; p. 223. [Google Scholar]
- Makarevich, P.R.; Druzhkov, N.V.; Larionov, V.V.; Druzhkova, E.I. The freshwater phytoplankton biomass and its role in the formation of a highly productive zone on the Ob-Yenisei shallows (southern Kara Sea). Proc. Mar. Sci. 2003, 6, 185–195. [Google Scholar]
- Makarevich, P.R.; Oleinik, A.A. Microplankton of the Barents Sea: Current composition and structure on the eve of the winter. Vestn. MSTU 2017, 20, 316–325. [Google Scholar] [CrossRef]
- Makarevich, P.R.; Oleinik, A.A. Structure of the annual cycle of phytoplankton community evolution in the Ob-Yenisei shoal of the Kara sea. Dokl. Earth Sci. 2009, 426, 669–671. [Google Scholar] [CrossRef]
- Nöthig, E.M.; Okolodkov, Y.; Larionov, V.V.; Druzhkova, E.I. Phytoplankton distribution in the inner Kara Sea: A comparison of three summer investigations. Proc. Mar. Sci. 2003, 6, 163–185. [Google Scholar] [CrossRef]
- Mosharov, S.A.; Sazhin, A.F.; Druzhkova, E.I.; Khlebopashev, P.V. Structure and productivity of the phytocenosis in the southwestern Kara Sea in early spring. Oceanology 2018, 58, 396–404. [Google Scholar] [CrossRef]
- Sukhanova, I.N.; Flint, M.V.; Mosharov, S.A.; Sergeeva, V.M. Structure of the phytoplankton communities and primary production in the Ob river estuary and over the adjacent Kara sea shelf. Oceanology 2010, 50, 743–758. [Google Scholar] [CrossRef]
- Sukhanova, I.N.; Flint, M.V.; Sakharova, E.G.; Fedorov, A.V.; Makkaveev, P.N.; Nedospasov, A.A. Phytocenoses of the Ob Estuary and Kara Sea Shelf in Late Spring Season. Oceanology 2018, 58, 802–816. [Google Scholar] [CrossRef]
- Demidov, A.B.; Sergeeva, V.M.; Gagarin, V.I.; Eremeeva, E.V.; Vorobieva, O.V.; Belevich, T.A.; Artemiev, V.A.; Polukhin, A.A.; Grigoriev, A.V.; Khrapko, A.N.; et al. Size-fractionated primary production and chlorophyll in the Kara Sea during first-year ice retreat. Oceanology 2022, 62, 403–415. [Google Scholar] [CrossRef]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. (Eds.) Methods of Seawater Analysis, 3rd ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1999; p. 577. [Google Scholar] [CrossRef]
- Belyaev, N.A.; Peresypkin, V.I.; Ponyaev, M.S. The organic carbon in the water, the particulate matter, and the upper layer of the bottom sediments of the west Kara Sea. Oceanology 2010, 50, 706–715. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Amon, R.M.W.; Rinehart, A.J.; Walker, S.A. The supply and characteristics of colored dissolved organic matter (CDOM) to the Arctic Ocean. Mar. Chem. 2011, 124, 108–118. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Kaas, H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar. Coast. Shelf Sci. 2000, 51, 267–278. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexan, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Krylov, I.N.; Drozdova, A.N.; Labutin, T.A. Albatross R package to study PARAFAC components of DOM fluorescence from mixing zones of arctic shelf seas. Chemom. Intell. Lab. Syst. 2020, 207, 104176. [Google Scholar] [CrossRef]
- Caron, D.A. Technique for enumeration of heterotrophic nanoplankton using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 1983, 46, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grebecki, A. Adsorbtion des f luorochromes par le cystome des Cillies. Bull. L’Acad. Pol. Scences 1962, 10, 483–485. [Google Scholar]
- Hobbie, J.E.; Daley, R.J.; Jasper, S. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 1977, 35, 1225–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazhin, A.F.; Artigas, L.F.; Nejstgaard, J.C.; Frischer, M.E. The colonization of two Phaeocystis species (Prymnesiophyceae) by pennate diatoms and other protists: A significant contribution to colony biomass. Biogeochemistry 2007, 83, 137–145. [Google Scholar] [CrossRef]
- Menden-Deuer, S.; Lessard, E.J. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnol. Oceanogr. 2000, 45, 569–579. [Google Scholar] [CrossRef] [Green Version]
- AlgaeBase. Available online: https://www.algaebase.org (accessed on 10 April 2023).
- WoRMS. Available online: https://www.marinespecies.org (accessed on 10 April 2023).
- Steemann-Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 1952, 18, 117–140. [Google Scholar] [CrossRef]
- UNESCO. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements; IOC Manuals and Guides, No. 29; UNESCO: Paris, France, 1994. [Google Scholar] [CrossRef]
- Mosharov, S.A.; Sergeeva, V.M.; Kremenetskiy, V.V.; Sazhin, A.F.; Stepanova, S.V. Assessment of phytoplankton photosynthetic efficiency based on measurement of fluorescence parameters and radiocarbon uptake in the Kara Sea. Estuar. Coast. Shelf Sci. 2019, 218, 59–69. [Google Scholar] [CrossRef]
- Holm-Hansen, O.; Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 1978, 30, 438–447. [Google Scholar] [CrossRef]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll fluorescence as a non intrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis; Schulze, E., Caldwell, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 49–70. [Google Scholar] [CrossRef]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 313–341. [Google Scholar] [CrossRef]
- Juneau, P.; Harrison, P.J. Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochem. Photobiol. 2005, 81, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Suggett, D.J.; Moore, C.M.; Hickman, A.E.; Geide, R.J. Interpretation of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state. Mar. Ecol. Prog. Ser. 2009, 376, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plvmouth, UK, 2008. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Fisher, T.R.; Peele, E.R.; Ammerman, J.W.; Harding, L.W.J. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Progr. Ser. 1992, 82, 51–63, ISI:A1992HV53000006. [Google Scholar] [CrossRef]
- Derrien, M.; Yang, L.; Hur, J. Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Res. 2017, 112, 58–71. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 2012, 57, 1453–1466. [Google Scholar] [CrossRef] [Green Version]
- Drozdova, A.N.; Kravchishina, M.D.; Khundzhua, D.A.; Freidkin, M.P.; Patsaeva, S.V. Fluorescence quantum yield of CDOM in coastal zones of the Arctic seas. Int. J. Remote Sens. 2018, 39, 9356–9379. [Google Scholar] [CrossRef]
- Fedulov, V.Y.; Belyaev, N.A.; Kolokolova, A.V.; Sazhin, A.F. Base geochemical parameters of the surface water layer southwestern Kara sea in the winter season. J. Oceanol. Res. 2018, 46, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Deubel, H.; Fetzer, I.; Gagayev, S.; Hirche, H.-J.; Klages, M.; Larionov, V.; Lubin, P.; Lubina, O.; Nöthig, E.-M.; Odkolodkov, Y.; et al. The Kara Sea ecosystem: Phytoplankton, zooplankton and benthos communities influenced by river run-off. In Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance; Proceedings in Marine, Sciences; Stein, R., Fahl, K., Fütterer, D.K., Galimov, E., Stepanets, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 237–265. [Google Scholar]
- Sukhanova, I.N.; Flint, M.V.; Makkaveev, P.N.; Polukhin, A.A.; Nedospasov, A.A.; Schuka, A.S.; Fedodov, A.V.; Sakharova, E.G. Eirst data on the structure of phytoplankton communities of the East Siberian Sea. Oceanology 2021, 61, 909–929. [Google Scholar] [CrossRef]
- Sukhanova, I.N.; Flint, M.V.; Georgieva, E.J.; Lange, E.K.; Kravchishina, M.D.; Demidov, A.B.; Nedospasov, A.A.; Polukhin, A.A. The structure of phytoplankton communities in the eastern part of the Laptev Sea. Oceanology 2017, 57, 75–90. [Google Scholar] [CrossRef]
- Demidov, A.B.; Sukhanova, I.N.; Belevich, T.A.; Flint, M.V.; Gagarin, V.I.; Sergeeva, V.M.; Eremeeva, E.V.; Fedorov, A.V. Size-fractionated surface phytoplankton in the Kara and Laptev Seas: Environmental control and spatial variability. Mar. Ecol. Prog. Ser. 2021, 664, 59–77. [Google Scholar] [CrossRef]
- Mosharov, S.A. Distribution of the Primary Production and Chlorophyll a in the Kara Sea in September of 2007. Oceanology 2010, 50, 884–892. [Google Scholar] [CrossRef]
- Vedernikov, V.I.; Gagarin, V.I.; Burenkov, V.I. Primary production of phytoplankton and chlorophyll a in the southeast Barents Sea in August-September 1998. Oceanology 2001, 41, 64–74. [Google Scholar] [CrossRef]
- Demidov, A.B.; Mosharov, S.A.; Makkaveev, P.N. Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer. J. Mar. Sys. 2014, 132, 130–149. [Google Scholar] [CrossRef]
- Mosharov, S.A.; Demidov, A.B.; Simakova, U.V. Peculiarities of the Primary Production Process in the Kara Sea at the End of the Vegetation Season. Oceanology 2016, 56, 84–94. [Google Scholar] [CrossRef]
Area, Stage | Station | Long, E,° | Lat, N,° | Date | SIC,% | T, °C | S, psu |
---|---|---|---|---|---|---|---|
Barents Sea, Stage 1 | 1 | 56°17.6 | 70°10.9 | 29.06.2018 | 0 | 6.4 | 28.98 |
Barents Sea, Stage 2 | 25 | 56°40.8 | 70°12.9 | 15.07.2018 | 0 | 8.9 | 29.70 |
Kara Strait, Stage 1 | 2 | 58°08.8 | 70°29.9 | 29.06.2018 | 0 | 1.2 | 33.42 |
Kara Sea, Marine Zone, Stage 1 | 3 | 60°04.8 | 70°49.6 | 29.06.2018 | 100 | −0.7 | 27.12 |
4 | 62°30.1 | 70°52.1 | 29.06.2018 | 100 | −1.0 | 26.93 | |
5 | 64°17.8 | 70°55.5 | 29.06.2018 | 25 | 1.6 | 30.41 | |
6 | 67°40.8 | 71°47.5 | 29.06.2018 | 0 | 2.1 | 31.92 | |
7 | 68°27.7 | 73°00.9 | 30.06.2018 | 0 | 1.9 | 32.23 | |
8 | 70°49.4 | 73°44.2 | 30.06.2018 | 0 | 1.4 | 30.22 | |
Kara Sea, Marine Zone, Stage 2 | 20 | 73°06.6 | 73°47.4 | 14.07.2018 | 0 | 3.4 | 25.13 |
21 | 67°50.8 | 72°08.3 | 14.07.2018 | 0 | 4.8 | 30.67 | |
22 | 66°55.4 | 71°32.9 | 14.07.2018 | 0 | 2.5 | 32.00 | |
23 | 64°04.9 | 71°00.5 | 14.07.2018 | 25 | 2.4 | 32.56 | |
24 | 60°46.9 | 70°48.1 | 15.07.2018 | 25 | 1.5 | 32.80 | |
Kara Sea, Frontal Zone, Stage 1 | 9 | 73°34.4 | 73°53.3 | 30.06.2018 | 0 | 3.9 | 15.48 |
10 | 76°03.6 | 73°52.7 | 30.06.2018 | 0 | 3.2 | 14.00 | |
Kara Sea, Frontal Zone, Stage 2 | 18 | 78°08.4 | 73°40.8 | 13.07.2018 | 0 | 6.9 | 13.48 |
19 | 76°00.1 | 73°47.9 | 13.07.2018 | 0 | 4.0 | 11.06 | |
Estuarine Zone, Stage 1 | 11 | 78°03.6 | 73°32.5 | 30.06.2018 | 0 | 5.1 | 4.90 |
12 | 80°08.1 | 73°00.1 | 01.07.2018 | 0 | 7.9 | 0.25 | |
13 | 83°22.7 | 71°39.1 | 01.07.2018 | 0 | 14.1 | 0.001 | |
14 | 83°08.6 | 71°04.0 | 01.07.2018 | 0 | 14.5 | 0.001 | |
Estuarine Zone, Stage 2 | 15 | 82°58.5 | 70°19.9 | 12.07.2018 | 0 | 15.9 | 0.05 |
16 | 80°50.4 | 72°26.4 | 13.07.2018 | 0 | 8.5 | 0.91 | |
17 | 79°31.2 | 73°16.2 | 13.07.2018 | 0 | 7.1 | 2.17 |
Area, Stage | Station | Alk, mg-eq L−1 | DIN, μM | PO4, μM | Si, μM | DOC, mg L−1 |
---|---|---|---|---|---|---|
Barents Sea, Stage 1 | 1 | 2.312 | 0.21 | 0.09 | 10.51 | 2.62 |
Barents Sea, Stage 2 | 25 | ND * | 1.59 | 0.06 | 14.16 | 2.92 |
Kara Strait, Stage 1 | 2 | ND | 0.95 | 0.07 | 0.06 | 1.42 |
Kara Sea, Marine Zone, Stage 1 | 3 | 1.789 | 1.56 | 0.10 | 1.76 | 1.39 |
4 | 1.781 | 3.03 | 0.14 | 2.89 | 2.34 | |
5 | 2.274 | 0.44 | 0.19 | 2.83 | 1.66 | |
6 | 2.228 | 0.07 | 0.20 | 1.64 | 2.11 | |
7 | 2.266 | 0.11 | 0.24 | 5.29 | 2.38 | |
8 | 2.001 | 4.35 | 0.52 | 35.99 | 3.94 | |
Kara Sea, Marine Zone, Stage 2 | 20 | 1.531 | 0.68 | 0.26 | 3.66 | 6.96 |
21 | 1.933 | 0.11 | 0.07 | 2.08 | 3.30 | |
22 | 1.758 | 0.06 | 0.10 | 2.33 | 2.13 | |
23 | 2.031 | 0.06 | 0.07 | 1.38 | 1.98 | |
24 | ND | 0.09 | 0.13 | 1.01 | 1.62 | |
Kara Sea, Frontal Zone, Stage 1 | 9 | 1.47 | 5.91 | 1.01 | 62.48 | 7.93 |
10 | 1.637 | 2.09 | 0.21 | 69.59 | 5.87 | |
Kara Sea, Frontal Zone, Stage 2 | 18 | 1.385 | 0.17 | 0.33 | 64.68 | 7.85 |
19 | 1.289 | 7.95 | 0.37 | 92.62 | 9.36 | |
Estuarine Zone, Stage 1 | 11 | 1.342 | 3.87 | 0.46 | 90.23 | 11.46 |
12 | 0.462 | 7.24 | 0.91 | 78.46 | 9.64 | |
13 | ND | 1.22 | 0.58 | 87.77 | ND | |
14 | ND | 1.34 | 0.80 | 101.93 | ND | |
Estuarine Zone, Stage 2 | 15 | ND | 0.60 | 0.34 | 108.85 | ND |
16 | ND | 0.99 | 0.46 | 76.38 | ND | |
17 | 0.644 | 0.35 | 0.20 | 73.49 | 9.48 |
Biotic (Response) Variables | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Abiotic Parameters | Total Biomass | Biomass Phototrophs | % of Phototrophs | % of Nanoflag. | Chl a | Primary Production | Fv/Fm | Species Composition | Richness | Diversity | |
Stage | p | — | — | 0.046 | — | 0.217 | 0.026 | 0.130 | 0.079 | — | — |
% Var | — | — | 16.0 | — | 4.111 | 11.0 | 4.125 | 6.4 | — | — | |
T water | p | — | — | — | — | — | — | — | 0.333 | 0.209 | 0.030 |
% Var | — | — | — | — | — | — | — | 4.9 | 7.5 | 22.5 | |
Salinity | p | — | 0.083 | — | — | 0.195 | 0.038 | 0.240 | 0.387 | 0.047 | 0.324 |
% Var | — | 6.6 | — | — | 5.6 | 12.2 | 2.5 | 4.8 | 19.6 | 4.6 | |
Ice | p | — | — | — | — | — | — | 0.032 | 0.178 | — | — |
% Var | — | — | — | — | — | — | 8.8 | 5.7 | — | — | |
PO4 | p | 0.001 | 0.001 | — | 0.296 | — | — | — | — | 0.043 | — |
% Var | 72.8 | 56.6 | — | 4.4 | — | — | — | — | 13.7 | — | |
Si(ОН)4 | p | — | — | 0.019 | 0.032 | 0.001 | 0.003 | 0.001 | 0.017 | 0.244 | — |
% Var | — | — | 24.7 | 20.7 | 36.2 | 34.5 | 52.8 | 9.9 | 4.5 | — | |
NO2 | p | — | 0.059 | — | — | — | — | — | 0.048 | — | 0.026 |
% Var | — | 7.4 | — | — | — | — | — | 7.5 | — | 18.6 | |
Total % Var | 72.8 | 75.1 | 40.7 | 31.9 | 45.9 | 57.7 | 68.2 | 39.2 | 56.3 | 45.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosharov, S.A.; Druzhkova, E.I.; Sazhin, A.F.; Khlebopashev, P.V.; Drozdova, A.N.; Belyaev, N.A.; Azovsky, A.I. Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer. J. Mar. Sci. Eng. 2023, 11, 832. https://doi.org/10.3390/jmse11040832
Mosharov SA, Druzhkova EI, Sazhin AF, Khlebopashev PV, Drozdova AN, Belyaev NA, Azovsky AI. Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer. Journal of Marine Science and Engineering. 2023; 11(4):832. https://doi.org/10.3390/jmse11040832
Chicago/Turabian StyleMosharov, Sergey A., Elena I. Druzhkova, Andrey F. Sazhin, Pavel V. Khlebopashev, Anastasia N. Drozdova, Nikolay A. Belyaev, and Andrey I. Azovsky. 2023. "Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer" Journal of Marine Science and Engineering 11, no. 4: 832. https://doi.org/10.3390/jmse11040832
APA StyleMosharov, S. A., Druzhkova, E. I., Sazhin, A. F., Khlebopashev, P. V., Drozdova, A. N., Belyaev, N. A., & Azovsky, A. I. (2023). Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer. Journal of Marine Science and Engineering, 11(4), 832. https://doi.org/10.3390/jmse11040832