Exploring the Impact of Palladium Loading on Pd-Based Three-Way Catalyst Performance and Propane Reactivity for Emission Reduction in Liquefied Petroleum Gas Engines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bench Flow Reactor (BFR) System
2.2. Three-Way Catalysts (TWCs) and Hydrothermal Aging Protocol
2.3. Bench Flow Evaluation Protocols
2.4. Surface Characterization Studies
3. Results and Discussion
3.1. Texture of Catalysts
3.2. Bench-Flow Reactor (BFR) Performance Assessment
3.2.1. Performance of TWCs
3.2.2. Probe Reactions and Oxygen Storage Capacity
3.3. Scanning Transmission Electron Microscopy (STEM) Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ni, P.; Wang, X.; Li, H. A Review on Regulations, Current Status, Effects and Reduction Strategies of Emissions for Marine Diesel Engines. Fuel 2020, 279, 118477. [Google Scholar]
- Smith, T.W.P.; Jalkanen, J.P.; Anderson, B.A.; Corbett, J.J.; Faber, J.; Hanayama, S.; O’Keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; et al. Third IMO Greenhouse Gas Study 2014; International Maritime Organization: London, UK, 2015. [Google Scholar]
- DieselNet. IMO Marine Engine Regulations. Available online: https://dieselnet.com/standards/inter/imo.php#other (accessed on 24 October 2023).
- Camarillo, M.K.; Stringfellow, W.T.; Hanlon, J.S.; Watson, K.A. Investigation of Selective Catalytic Reduction for Control of Nitrogen Oxides in Full-Scale Dairy Energy Production. Appl. Energy 2013, 106, 328–336. [Google Scholar] [CrossRef]
- Ryu, Y.; Kim, H.; Cho, G.; Kim, H.; Nam, J. A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship. J. Korean Soc. Mar. Eng. 2015, 39, 412–417. [Google Scholar]
- Raptotasios, S.I.; Sakellaridis, N.F.; Papagiannakis, R.G.; Hountalas, D.T. Application of a Multi-Zone Combustion Model to Investigate the NOx Reduction Potential of Two-Stroke Marine Diesel Engines Using EGR. Appl. Energy 2015, 157, 814–823. [Google Scholar]
- Verschaeren, R.; Schaepdryver, W.; Serruys, T.; Bastiaen, M.; Vervaeke, L.; Verhelst, S. Experimental Study of NOx Reduction on a Medium Speed Heavy Duty Diesel Engine by the Application of EGR (Exhaust Gas Recirculation) and Miller Timing. Energy 2014, 76, 614–621. [Google Scholar] [CrossRef]
- Nam, J.-G. A Study of NOx Performance for Cu-Chabazite SCR Catalysts by Sulfur Poisoning and Desulfation. J. Korean Soc. Mar. Eng. 2013, 37, 855–861. [Google Scholar] [CrossRef]
- Mukherjee, A.; Bruijnincx, P.; Junginger, M. Techno-Economic Competitiveness of Renewable Fuel Alternatives in the Marine Sector. Renew. Sustain. Energy Rev. 2023, 174, 113127. [Google Scholar]
- Kołwzan, K.; Narewski, M. Alternative Fuels for Marine Applications. Latv. J. Chem. 2012, 51, 398–406. [Google Scholar] [CrossRef]
- Vandebroek, L.; Berghmans, J. Safety Aspects of the Use of LNG for Marine Propulsion. Procedia Eng. 2012, 45, 21–26. [Google Scholar] [CrossRef]
- Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P. Airborne Emission Measurements of SO2, NOx and Particles from Individual Ships Using a Sniffer Technique. Atmos. Meas. Tech. 2014, 7, 1957–1968. [Google Scholar] [CrossRef]
- Wattanavichien, K. Spray and Combustion Visualization of LPG-PME Dual Fuelling an IDI Compression Ignition Engine. In Proceedings of the 3rd Regional Conference on Mechanical and Aerospace Technology, Manila, Philippines, 24–25 March 2011; p. 15. [Google Scholar]
- Arapatsakos, C.; Karkanis, A.; Katirtzoglou, G.; Pantokratoras, I. Liquid Petroleum Gas (LPG) and Natural Gas (NG) as Fuels on Diesel Engine–Dual Fuel Engine. In Recent Advances in Fluid Mechanics and Heat & Mass Transfer, Proceedings of the 9th IASME/WSEAS International Conference on Fluid Mechanics & Aerodynamics (FMA ‘11) and the 9th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE ‘11), Florence, Italy, 23–25 August 2011; WSEAS Press: Athens, Greece, 2011; Available online: https://www.wseas.us/e-library/conferences/2013/Vouliagmeni/FLUHE (accessed on 11 November 2023).
- Gamas, E.D.; Diaz, L.; Rodriguez, R.; Lopez-Salinas, E.; Schifter, I.; Ontiveros, L. Exhaust Emissions from Gasoline-and LPG-Powered Vehicles Operating at the Altitude of Mexico City. J. Air Waste Manag. Assoc. 1999, 49, 1179–1189. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Oh, S.; Kim, C.; Lee, Y. Lower Particulate Matter Emissions with a Stoichiometric LPG Direct Injection Engine. Fuel 2017, 187, 197–210. [Google Scholar] [CrossRef]
- Werpy, M.R.; Burnham, A.; Bertram, K. Propane Vehicles: Status, Challenges, and Opportunities; Center for Transportation Research, Argonne National Laboratory: Argonne, IL, USA, 2010.
- Chang, C.-C.; Lo, J.-G.; Wang, J.-L. Assessment of Reducing Ozone Forming Potential for Vehicles Using Liquefied Petroleum Gas as an Alternative Fuel. Atmos. Environ. 2001, 35, 6201–6211. [Google Scholar] [CrossRef]
- Kang, S.B.; Nam, S.B.; Cho, B.K.; Nam, I.-S.; Kim, C.H.; Oh, S.H. Effect of Speciated HCs on the Performance of Modern Commercial TWCs. Catal. Today 2014, 231, 3–14. [Google Scholar] [CrossRef]
- Emiroğlu, A.O. Investigation of Effect of Propane and Methane Gases on Commercial Catalytic Converter Activity. Int. J. Automot. Eng. Technol. 2016, 5, 47–52. [Google Scholar] [CrossRef]
- Di Maio, D.; Beatrice, C.; Guido, C.; Fraioli, V.; Napolitano, P.; Kannepalli, S.; Golini, S.; Tsinoglou, D. Methane Conversion and Ammonia Formation Model over a Pd-Rh Three-Way Catalyst for CNG Heavy-Duty Engines. SAE Tech. Pap. 2021. [CrossRef]
- Di Maio, D.; Beatrice, C.; Fraioli, V.; Napolitano, P.; Golini, S.; Rutigliano, F.G. Modeling of Three-Way Catalyst Dynamics for a Compressed Natural Gas Engine during Lean–Rich Transitions. Appl. Sci. 2019, 9, 4610. [Google Scholar] [CrossRef]
- Wang, M.; Eggenschwiler, P.D. Modeling of Three Way Catalyst Behavior Under Steady and Transient Operations in a Stoichiometric Natural Gas Fueled Engine. SAE Tech. Pap. 2021. [Google Scholar] [CrossRef]
- Twigg, M.V. Progress and Future Challenges in Controlling Automotive Exhaust Gas Emissions. Appl. Catal. B 2007, 70, 2–15. [Google Scholar] [CrossRef]
- Kašpar, J.; Fornasiero, P.; Graziani, M. Use of CeO2-Based Oxides in the Three-Way Catalysis. Catal. Today 1999, 50, 285–298. [Google Scholar] [CrossRef]
- Granger, P.; Lamonier, J.F.; Sergent, N.; Aboukais, A.; Leclercq, L.; Leclercq, G. Investigation of the Intrinsic Activity of ZrxCe1-xO2 Mixed Oxides in the CO+ NO Reactions: Influence of Pd Incorporation. Top. Catal. 2001, 16, 89–94. [Google Scholar] [CrossRef]
- Heck, R.M.; Farrauto, R.J.; Gulati, S.T. Catalytic Air Pollution Control: Commercial Technology, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2012; ISBN 9780470275030. [Google Scholar]
- Yao, Y.F.Y.; Yu Yao, Y. The Oxidation of CO and Hydrocarbons over Noble Metal Catalysts. J. Catal. 1984, 87, 152–162. [Google Scholar] [CrossRef]
- Cullis, C.F.; Willatt, B.M. Oxidation of Methane over Supported Precious Metal Catalysts. J. Catal. 1983, 83, 267–285. [Google Scholar] [CrossRef]
- Rappé, K.G.; DiMaggio, C.; Pihl, J.A.; Theis, J.R.; Oh, S.H.; Fisher, G.B.; Parks, J.; Easterling, V.G.; Yang, M.; Stewart, M.L. Aftertreatment Protocols for Catalyst Characterization and Performance Evaluation: Low-Temperature Oxidation, Storage, Three-Way, and NH3-SCR Catalyst Test Protocols. Emiss. Control Sci. Technol. 2019, 5, 183–214. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Li, Y.; Schwank, J.W. A Review on Oxygen Storage Capacity of CeO2-Based Materials: Influence Factors, Measurement Techniques, and Applications in Reactions Related to Catalytic Automotive Emissions Control. Catal. Today 2019, 327, 90–115. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. 2015, 57, 79–144. [Google Scholar] [CrossRef]
- Han, Z.; Wang, J.; Yan, H.; Shen, M.; Wang, J.; Wang, W.; Yang, M. Performance of Dynamic Oxygen Storage Capacity, Water–Gas Shift and Steam Reforming Reactions over Pd-Only Three-Way Catalysts. Catal. Today 2010, 158, 481–489. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zhan, W.; Guo, Y.; Guo, Y.; Lu, G. Preparation of High Oxygen Storage Capacity and Thermally Stable Ceria–Zirconia Solid Solution. Catal. Sci. Technol. 2016, 6, 897–907. [Google Scholar] [CrossRef]
Sample | Pd Loading (g/L) | OSC Material |
---|---|---|
Pd-6.5 | 6.50 | Present |
Pd-4.1 | 4.06 | Present |
Pd-1.4 | 1.41 | Present |
Mode | Time (min) | Gas Composition |
---|---|---|
Lean | 20 | 1.5% O2 and balance N2 |
Rich | 5 | 0.2% CO and balance N2 |
Sample | SBET (m2/g) | Pore Volume * (cm3/g) | Average Pore Size * (nm) | |
---|---|---|---|---|
Pd-6.5 | Fresh | 42.5 | 0.23 | 12.6 |
HTA | 21.2 | 0.19 | 17.8 | |
Pd-4.1 | Fresh | 41.7 | 0.26 | 12.6 |
HTA | 23.6 | 0.22 | 17.7 | |
Pd-1.4 | Fresh | 30.4 | 0.23 | 18.0 |
HTA | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D. Exploring the Impact of Palladium Loading on Pd-Based Three-Way Catalyst Performance and Propane Reactivity for Emission Reduction in Liquefied Petroleum Gas Engines. J. Mar. Sci. Eng. 2023, 11, 2187. https://doi.org/10.3390/jmse11112187
Kim D. Exploring the Impact of Palladium Loading on Pd-Based Three-Way Catalyst Performance and Propane Reactivity for Emission Reduction in Liquefied Petroleum Gas Engines. Journal of Marine Science and Engineering. 2023; 11(11):2187. https://doi.org/10.3390/jmse11112187
Chicago/Turabian StyleKim, Daekun. 2023. "Exploring the Impact of Palladium Loading on Pd-Based Three-Way Catalyst Performance and Propane Reactivity for Emission Reduction in Liquefied Petroleum Gas Engines" Journal of Marine Science and Engineering 11, no. 11: 2187. https://doi.org/10.3390/jmse11112187
APA StyleKim, D. (2023). Exploring the Impact of Palladium Loading on Pd-Based Three-Way Catalyst Performance and Propane Reactivity for Emission Reduction in Liquefied Petroleum Gas Engines. Journal of Marine Science and Engineering, 11(11), 2187. https://doi.org/10.3390/jmse11112187