Constructal Design Applied to an Oscillating Water Column Wave Energy Converter Device under Realistic Sea State Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical and Numerical Modeling
2.2. WaveMIMO Methodology
2.2.1. Spectral Data Conversion and Temporal Location
2.3. Numerical Model Verification
2.4. Numerical Simulations and Geometric Optimization
2.5. Statistical Measures
3. Results and Discussion
3.1. Application of the Constructal Design Method
3.1.1. Preliminary Analysis
3.1.2. Geometric Investigation of the OWC WEC Device
3.2. Regular Waves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCP | Acoustic Doppler current profiler |
CFD | Computational fluid dynamics |
FVM | Finite volume method |
GEBCO | General Bathymetric Chart of the Oceans |
GSHHG | Global Self-consistent, Hierarchical, High-resolution Geography Database |
MAE | Mean absolute error |
MWL | Mean water level |
NOAA | National Oceanic and Atmospheric Administration |
OB | Oscillating buoy |
OWC | Oscillating water column |
PISO | Pressure-implicit splitting of operators |
PRESTO | Pressure staggering option |
PTO | Power take-off |
RMSE | Root mean square error |
TOMAWAC | Telemac-based operational model addressing wave action computation |
VOF | Volume of fluid |
WEC | Wave energy converter |
References
- World Energy Council. World Energy Resources 2016; World Energy Council: London, UK, 2016. [Google Scholar]
- REN21. Renewables 2022 Global Status Report; Technical Report; REN21 Secretariat: Paris, France, 2022. [Google Scholar]
- Hil Baky, M.A.; Rahman, M.M.; Islam, A.K. Development of renewable energy sector in Bangladesh: Current status and future potentials. Renew. Sustain. Energy Rev. 2017, 73, 1184–1197. [Google Scholar] [CrossRef]
- Oliveira, J.F.G.d.; Trindade, T.C.G. Sustainability Performance Evaluation of Renewable Energy Sources: The Case of Brazil; Springer: Cham, Switzerland, 2018; p. 130. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Zeng, S.; Liu, Y.; Liu, C.; Nan, X. A review of renewable energy investment in the BRICS countries: History, models, problems and solutions. Renew. Sustain. Energy Rev. 2017, 74, 860–872. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Balances 2022; Technical Report; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Empresa de Pesquisa Energética. Balanço Energético Nacional 2023: Ano base 2022; Technical Report; Ministério de Minas e Energia: Rio de Janeiro, Brazil, 2023. [Google Scholar]
- Ressurreição, A.; Gibbons, J.; Dentinho, T.P.; Kaiser, M.; Santos, R.S.; Edwards-Jones, G. Economic valuation of species loss in the open sea. Ecol. Econ. 2011, 70, 729–739. [Google Scholar] [CrossRef]
- Falcão, A.F.O.; Henriques, J.C.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- Bouali, B.; Larbi, S. Contribution to the geometry optimization of an oscillating water column wave energy converter. Energy Procedia 2013, 36, 565–573. [Google Scholar] [CrossRef]
- Jalón, M.L.; Baquerizo, A.; Losada, M.A. Optimization at different time scales for the design and management of an oscillating water column system. Energy 2016, 95, 110–123. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, S.; Zhang, Y.; Miles, J.; Iglesias, G. Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter. Renew. Sustain. Energy Rev. 2021, 135, 110234. [Google Scholar] [CrossRef]
- Zhou, Z.; Ke, S.; Wang, R.; Mayon, R.; Ning, D. Hydrodynamic Investigation on a Land-Fixed OWC Wave Energy Device under Irregular Waves. Appl. Sci. 2022, 12, 2855. [Google Scholar] [CrossRef]
- Portillo, J.C.; Gato, L.M.; Henriques, J.C.; Falcão, A.F. Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation. Renew. Energy 2023, 212, 478–491. [Google Scholar] [CrossRef]
- Portillo Juan, N.; Negro Valdecantos, V.; Esteban, M.D.; López Gutiérrez, J.S. Review of the Influence of Oceanographic and Geometric Parameters on Oscillating Water Columns. J. Mar. Sci. Eng. 2022, 10, 226. [Google Scholar] [CrossRef]
- Dizadji, N.; Sajadian, S.E. Modeling and optimization of the chamber of OWC system. Energy 2011, 36, 2360–2366. [Google Scholar] [CrossRef]
- Ning, D.Z.; Guo, B.M.; Wang, R.Q.; Vyzikas, T.; Greaves, D. Geometrical investigation of a U-shaped oscillating water column wave energy device. Appl. Ocean Res. 2020, 97, 102105. [Google Scholar] [CrossRef]
- Gaspar, L.A.; Teixeira, P.R.; Didier, E. Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes. Ocean Eng. 2020, 201, 107119. [Google Scholar] [CrossRef]
- Gomes, M.N.; Lorenzini, G.; Rocha, L.A.; dos Santos, E.D.; Isoldi, L.A. Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods. J. Eng. Thermophys. 2018, 27, 173–190. [Google Scholar] [CrossRef]
- Lima, Y.T.B.d.; Gomes, M.D.N.; Isoldi, L.A.; Santos, E.D.D.; Lorenzini, G.; Rocha, L.A.O. Geometric analysis through the constructal design of a sea wave energy converter with several coupled hydropneumatic chambers considering the oscillating water column operating principle. Appl. Sci. 2021, 11, 8630. [Google Scholar] [CrossRef]
- Machado, B.N.; Oleinik, P.H.; Kirinus, E.D.P.; Santos, E.D.D.; Rocha, L.A.O.; Gomes, M.D.N.; Conde, J.M.P.; Isoldi, L.A. WaveMIMO Methodology: Numerical Wave Generation of a Realistic Sea State. J. Appl. Comput. Mech. 2021, 7, 2129–2148. [Google Scholar] [CrossRef]
- Mocellin, A.P.G.; Maciel, R.P.; Oleinik, P.H.; dos Santos, E.D.; Rocha, L.A.O.; Ziebell, J.S.; Isoldi, L.A.; Machado, B.N. Geometrical Analysis of an Oscillating Water Column Converter Device Considering Realistic Irregular Wave Generation with Bathymetry. J. Exp. Theor. Anal. 2023, 1, 24–43. [Google Scholar] [CrossRef]
- Gao, H.; Yu, Y. The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves. Energy 2018, 143, 833–845. [Google Scholar] [CrossRef]
- Tay, Z.Y. Energy extraction from an articulated plate anti-motion device of a very large floating structure under irregular waves. Renew. Energy 2019, 130, 206–222. [Google Scholar] [CrossRef]
- Dermatis, A.; Ntouras, D.; Papadakis, G. Numerical Simulation of Irregular Breaking Waves Using a Coupled Artificial Compressibility Method. Fluids 2022, 7, 235. [Google Scholar] [CrossRef]
- Pecher, A.; Kofoed, J.P. Handbook of Ocean Wave Energy; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Heath, T.V. A review of oscillating water columns. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 235–245. [Google Scholar] [CrossRef]
- Czech, B.; Bauer, P. Wave Energy Converter Concepts: Design Challenges and Classification. IEEE Ind. Electron. Mag. 2012, 6, 4–16. [Google Scholar] [CrossRef]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2010; p. 404. [Google Scholar]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Company: Singapore, 1991; Volume 2, p. 368. [Google Scholar]
- ANSYS Inc. Ansys Fluent Theory Guide; ANSYS, Inc.: Cannonsburg, PA, USA, 2013. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics; Prentice Hall: Harlow, UK, 2007; p. 517. [Google Scholar]
- Srinivasan, V.; Salazar, A.J.; Saito, K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology. Appl. Math. Model. 2011, 35, 3710–3730. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Gopala, V.R.; van Wachem, B.G. Volume of fluid methods for immiscible-fluid and free-surface flows. Chem. Eng. J. 2008, 141, 204–221. [Google Scholar] [CrossRef]
- Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere/McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Opoku, F.; Atkinson, M.; Uddin, M.N. Numerical Investigation of an Offshore Oscillating Water Column. Am. J. Mech. Eng. 2020, 8, 88–105. [Google Scholar] [CrossRef]
- Hervouet, J. Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Awk, T. Tomawac User Manual Version 7.1; EDF R&D: Paris, France, 2017. [Google Scholar]
- Oleinik, P.H.; Machado, B.N.; Isoldi, L.A. Transformation of Water Wave Spectra into Time Series of Surface Elevation. Earth 2021, 2, 997–1005. [Google Scholar] [CrossRef]
- Oleinik, P.H.; Marques, W.C.; Kirinus, E.d.P. Estimate of the wave climate on the most energetic locations of the south-southeastern Brazilian shelf. Defect Diffus. Forum 2017, 370, 130–140. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. NCEP-NCAR Reanalysis 1: NOAA Physical Sciences Laboratory NCEP-NCAR Reanalysis 1. Available online: www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 1 December 2022).
- Oleinik, P.H.; Kirinus, E.d.P.; Fragassa, C.; Marques, W.C.; Costi, J. Energetic Potential Assessment of Wind-Driven Waves on the South-Southeastern Brazilian Shelf. J. Mar. Sci. Eng. 2019, 7, 25. [Google Scholar] [CrossRef]
- Directorate of Hydrography and Navigation of the Brazilian Navy. Nautical Charts|Navy Hydrography Center. Available online: https://www.marinha.mil.br/chm/dados-do-segnav-cartas-nauticas (accessed on 1 December 2022).
- Cardoso, S.D.; Marques, W.C.; Kirinus, E.P.; Stringari, C.E. Levantamento batimétrico usando cartas náuticas. In Proceedings of the 13a Mostra da Produção Universitária, Rio Grande, Brazil, 26–29 October 2014. [Google Scholar]
- General Bathymetric Chart of the Oceans. GEBCO—The General Bathymetric Chart of the Oceans. Available online: www.gebco.net (accessed on 1 December 2022).
- Oleinik, P.H. Metodologia Numérica para a Simulação Hidrodinâmica de Estados de Mar Utilizando Dados Espectrais e Estudo de Caso de um OWC na Costa de Rio Grande–RS. Master’s Thesis, Universidade Federal do Rio Grande, Rio Grande, Brazil, 2020. [Google Scholar]
- Wessel, P.; Smith, W.H.F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 1996, 101, 8741–8743. [Google Scholar] [CrossRef]
- Maciel, R.P.; Fragassa, C.; Machado, B.N.; Rocha, L.A.; Dos Santos, E.D.; Gomes, M.N.; Isoldi, L.A. Verification and validation of a methodology to numerically generate waves using transient discrete data as prescribed velocity boundary condition. J. Mar. Sci. Eng. 2021, 9, 896. [Google Scholar] [CrossRef]
- Maciel, R.P.; Machado, B.N.; Oleinik, P.H.; dos Santos, E.D.; Gomes, M.d.N.; Isoldi, L.A. Investigation of Numerical Irregular Wave Generation Using Transient Discrete Data as Boundary Conditions of Prescribed Velocity. Defect Diffus. Forum 2023, 427, 227–235. [Google Scholar] [CrossRef]
- Lisboa, R.C.; Teixeira, P.R.F.; Didier, E. Regular and Irregular Wave Propagation Analysis in a Flume with Numerical Beach Using a Navier-Stokes Based Model. Defect Diffus. Forum 2017, 372, 81–90. [Google Scholar] [CrossRef]
- Mavriplis, D.J. Unstructured Mesh Generation and Adaptivity; Technical Report; Program of the von Karman Institute for Fluid Dynamics: Rhode-Saint-Genèse, Belgium, 1995. [Google Scholar]
- Liu, Z.; Hyun, B.S.; Hong, K. Numerical study of air chamber for oscillating water column wave energy convertor. China Ocean Eng. 2011, 25, 169–178. [Google Scholar] [CrossRef]
- Hübner, R.G.; Oleinik, P.H.; Marques, W.C.; Gomes, M.N.; dos Santos, E.D.; Machado, B.N.; Isoldi, L.A. Numerical Study Comparing the Incidence Influence Between Realistic Wave and Regular Wave Over an Overtopping Device. Therm. Eng. 2019, 18, 46. [Google Scholar] [CrossRef]
- Joule, N.N.E.P., III. European Wave Energy Pilot Plant on the Island of Pico, Azores, Portugal. Phase Two: Equipment; Technical Report; European Comission: Brussels, Belgium, 1998. [Google Scholar]
- Mahnamfar, F.; Altunkaynak, A.; Abdollahzadehmoradi, Y. Comparison of Experimental and Numerical Model Results of Oscillating Water Column System Under Regular Wave Conditions. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 44, 299–315. [Google Scholar] [CrossRef]
- Gomes, M.d.N.; De Deus, M.J.; Dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Analysis of the geometric constraints employed in constructal design for oscillating water column devices submitted to the wave spectrum through a numerical approach. Defect Diffus. Forum 2019, 390, 193–210. [Google Scholar] [CrossRef]
- Bejan, A. Shape and Structure: From Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Marjani, A.E.; Castro, F.; Bahaji, M.; Filali, B. 3D unsteady flow simulation in an OWC wave converter plant. Renew. Energy Power Qual. J. 2006, 1, 350–355. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, M.R. Chapter 8—Ocean Modelling for Resource Characterization. In Fundamentals of Ocean Renewable Energy; Neill, S.P., Hashemi, M.R., Eds.; E-Business Solutions; Academic Press: Cambridge, MA, USA, 2018; pp. 193–235. [Google Scholar] [CrossRef]
Lengths of Elements throughout the Channel | Number of Elements in the Region Containing Only Water | Heights of Elements Inside the Free Surface Refinement Zone | Number of Elements in the Region Containing Only Air | |
---|---|---|---|---|
Mesh 1 | /30 | 40 | H/10 | 10 |
Mesh 2 | /40 | 50 | H/15 | 20 |
Mesh 3 | /50 | 60 | H/20 | 30 |
Mesh 4 | /60 | 70 | H/25 | 40 |
Mesh Number | RMSE (m) |
---|---|
1 | 0.0689 |
2 | 0.0687 |
3 | 0.0686 |
4 | 0.0686 |
Case | L (m) | (m) | l (m) | (m) | (m) | |
---|---|---|---|---|---|---|
1 | 0.1985 | 28.46 | 5.65 | 2.80 | 11.30 | 6.12 |
2 | 0.4297 | 19.34 | 8.31 | 2.80 | 11.30 | 6.12 |
3 | 0.6608 | 15.60 | 10.31 | 2.80 | 11.30 | 6.12 |
4 | 0.8920 | 13.43 | 11.98 | 2.80 | 11.30 | 6.12 |
5 | 1.1167 | 12.00 | 13.40 | 2.80 | 11.30 | 6.12 |
6 | 1.3543 | 10.90 | 14.76 | 2.80 | 11.30 | 6.12 |
7 | 1.5854 | 10.07 | 15.97 | 2.80 | 11.30 | 6.12 |
8 | 1.8166 | 9.41 | 17.09 | 2.80 | 11.30 | 6.12 |
9 | 2.0478 | 8.86 | 18.15 | 2.80 | 11.30 | 6.12 |
10 | 2.2789 | 8.40 | 19.14 | 2.80 | 11.30 | 6.12 |
(–) | RMSE (m) |
---|---|
0.1985 | 0.0721 |
0.4297 | 0.0725 |
0.6608 | 0.0731 |
0.8920 | 0.0740 |
1.1167 | 0.0739 |
1.3543 | 0.0748 |
1.5854 | 0.0742 |
1.8166 | 0.0752 |
2.0478 | 0.0762 |
2.2789 | 0.0764 |
Case | HL | L (m) | H (m) | l (m) | H (m) | H (m) | P (W) |
---|---|---|---|---|---|---|---|
1 | 0.1985 | 28.46 | 5.65 | 2.80 | 11.30 | 6.12 | 29.63 |
2 | 0.4297 | 19.34 | 8.31 | 2.80 | 11.30 | 6.12 | 21.19 |
3 | 0.6608 | 15.60 | 10.31 | 2.80 | 11.30 | 6.12 | 16.79 |
4 | 0.8920 | 13.43 | 11.98 | 2.80 | 11.30 | 6.12 | 13.84 |
5 | 1.1167 | 12.00 | 13.40 | 2.80 | 11.30 | 6.12 | 11.89 |
6 | 1.3543 | 10.90 | 14.76 | 2.80 | 11.30 | 6.12 | 10.42 |
7 | 1.5854 | 10.07 | 15.97 | 2.80 | 11.30 | 6.12 | 9.24 |
8 | 1.8166 | 9.41 | 17.09 | 2.80 | 11.30 | 6.12 | 8.28 |
9 | 2.0478 | 8.86 | 18.15 | 2.80 | 11.30 | 6.12 | 7.26 |
10 | 2.2789 | 8.40 | 19.14 | 2.80 | 11.30 | 6.12 | 6.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, R.P.; Oleinik, P.H.; Dos Santos, E.D.; Rocha, L.A.O.; Machado, B.N.; Gomes, M.d.N.; Isoldi, L.A. Constructal Design Applied to an Oscillating Water Column Wave Energy Converter Device under Realistic Sea State Conditions. J. Mar. Sci. Eng. 2023, 11, 2174. https://doi.org/10.3390/jmse11112174
Maciel RP, Oleinik PH, Dos Santos ED, Rocha LAO, Machado BN, Gomes MdN, Isoldi LA. Constructal Design Applied to an Oscillating Water Column Wave Energy Converter Device under Realistic Sea State Conditions. Journal of Marine Science and Engineering. 2023; 11(11):2174. https://doi.org/10.3390/jmse11112174
Chicago/Turabian StyleMaciel, Rafael Pereira, Phelype Haron Oleinik, Elizaldo Domingues Dos Santos, Luiz Alberto Oliveira Rocha, Bianca Neves Machado, Mateus das Neves Gomes, and Liércio André Isoldi. 2023. "Constructal Design Applied to an Oscillating Water Column Wave Energy Converter Device under Realistic Sea State Conditions" Journal of Marine Science and Engineering 11, no. 11: 2174. https://doi.org/10.3390/jmse11112174
APA StyleMaciel, R. P., Oleinik, P. H., Dos Santos, E. D., Rocha, L. A. O., Machado, B. N., Gomes, M. d. N., & Isoldi, L. A. (2023). Constructal Design Applied to an Oscillating Water Column Wave Energy Converter Device under Realistic Sea State Conditions. Journal of Marine Science and Engineering, 11(11), 2174. https://doi.org/10.3390/jmse11112174