Acute and Chronic Effects of the Antifouling Booster Biocide Diuron on the Harpacticoid Copepod Tigriopus japonicus Revealed through Multi-Biomarker Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Copepods
2.2. Acute Toxicity Test
2.3. Response to Acute Exposure
2.4. Measurement of Biochemical Parameters
2.5. Multigenerational Response
2.6. Statistics
3. Results
3.1. Responses to Acute Exposure
3.2. Oxidative Stress and Response of Antioxidant Defense System
3.3. Response to Chronic Exposure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voulvoulis, N.; Scrimshaw, M.D.; Lester, J.N. Alternative antifouling biocides. Appl. Organomet. Chem. 1999, 13, 135–143. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology: Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ. Int. 2004, 30, 235–248. [Google Scholar] [CrossRef]
- Giacomazzi, S.; Cochet, N. Environmental impact of diuron transformation: A review. Chemosphere 2004, 56, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Tandon, S.; Pant, R. Kinetics of diuron under aerobic condition and residue analysis in sugarcane under subtropical field conditions. Environ. Technol. 2019, 40, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Dahl, B.; Blanck, H. Toxic effects of the antifouling agent Irgarol 1051 on periphyton communities in coastal water microcosms. Mar. Pollut. Bull. 1996, 32, 342–350. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Wirth, E.; Singhasemanon, N.; Bacey, J.; Fulton, M. Distribution of antifouling biocides in California marinas. J. Environ. Monit. 2008, 10, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.V. The environmental fate and behaviour of antifouling paint booster biocides: A review. Biofouling 2001, 17, 73–86. [Google Scholar] [CrossRef]
- Saleh, A.; Molaei, S.; Fumani, N.S.; Abedi, E. Antifouling paint booster biocides (Irgarol 1051 and diuron) in marinas and ports of Bushehr, Persian Gulf. Mar. Pollut. Bull. 2016, 105, 367–372. [Google Scholar] [CrossRef]
- Kaonga, C.C.; Takeda, K.; Sakugawa, H. Antifouling agents and Fenitrothion contamination in seawater, sediment, plankton, fish and selected marine animals from the Seto Inland Sea, Japan. Geochem. J. 2015, 49, 23–37. [Google Scholar] [CrossRef]
- Kim, N.S.; Shim, W.J.; Yim, U.H.; Hong, S.H.; Ha, S.Y.; Han, G.M.; Shin, K.H. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar. Pollut. Bull. 2014, 78, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H. Photodegradation of the antifouling compounds Irgarol 1051 and Diuron released from a commercial antifouling paint. Chemosphere 2002, 48, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.V.; McHugh, M.; Waldock, M. Antifouling paint booster biocides in UK coastal waters: Inputs, occurrence and environmental fate. Sci. Total Environ. 2002, 293, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Harino, H.; Kitano, M.; Mori, Y.; Mochida, K.; Kakuno, A.; Arima, S. Degradation of antifouling booster biocides in water. J. Mar. Biol. Assoc. UK 2005, 85, 33–38. [Google Scholar] [CrossRef]
- Ranke, J.; Jarstoff, B. Multidimensional risk analysis of antifouling biocides. Environ. Sci. Pollut. Res. 2000, 7, 105–114. [Google Scholar] [CrossRef]
- Mukhtar, A.; Zulkifli, S.Z.; Mohamat-Yusuff, F.; Harino, H.; Ismail, A. Distribution of biocides in selected marine organisms from South of Johor, Malaysia. Reg. Stud. Mar. Sci. 2020, 38, 101384. [Google Scholar] [CrossRef]
- Pereira, T.S.B.; Boscolo, C.N.P.; Felício, A.A.; Batlouni, S.R.; Schlenk, D.; de Almeida, E.A. Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus). Chemosphere 2016, 146, 497–502. [Google Scholar] [CrossRef]
- Akcha, F.; Barranger, A.; Bachère, E.; Berthelin, C.H.; Piquemal, D.; Alonso, P.; Sallan, R.R.; Dimastrogiovanni, G.; Porte, C.; Menard, D.; et al. Effects of an environmentally relevant concentration of diuron on oyster genitors during gametogenesis: Responses of early molecular and cellular markers and physiological impacts. Environ. Sci. Pollut. Res. 2016, 23, 8008–8020. [Google Scholar] [CrossRef]
- Livingstone, D. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Ünver, B.; Evingür, G.A.; Çavaş, L. Effects of currently used marine antifouling paint biocides on green fluorescent proteins in Anemonia viridis. J. Fluoresc. 2022, 32, 2087–2096. [Google Scholar] [CrossRef]
- Soreq, H. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2001, 2, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muros, M.J.; Villacreces, S.; Miranda-de la Lama, G.; de Haro, C.; García-Barroso, F. Effects of chemical and handling exposure on fatty acids, oxidative stress and morphological welfare indicators in gilthead sea bream (Sparus aurata). Fish Physiol. Biochem. 2013, 39, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muros, M.J.; Trenzado Romero, C.E.; Castillo, M.F.; García Barroso, F.; Rus, A.S. Effect of low dose diuron in oxidative state on the gilthead sea bream Sparus aurata. Int. J. Aquat. Biol. 2014, 5, 130–144. [Google Scholar]
- Behrens, D.; Rouxel, J.; Burgeot, T.; Akcha, F. Comparative embryotoxicity and genotoxicity of the herbicide diuron and its metabolites in early life stages of Crassostrea gigas: Implication of reactive oxygen species production. Aquat. Toxicol. 2016, 175, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Velki, M.; Meyer-Alert, H.; Seiler, T.-B.; Hollert, H. Enzymatic activity and gene expression changes in zebrafish embryos and larvae exposed to pesticides diazinon and diuron. Aquat. Toxicol. 2017, 193, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Shim, K.-Y.; Sukumaran, V.; Yeo, I.-C.; Shin, H.; Jeong, C.-B. Effects of atrazine and diuron on life parameters, antioxidant response, and multixenobiotic resistance in non-targeted marine zooplankton. Comp. Biochem. Physiol. C 2022, 258, 109378. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: From basic research to clinical application. Am. J. Med. 1991, 91, S31–S38. [Google Scholar] [CrossRef]
- Regoli, F.; Giuliani, M.E. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar. Environ. Res. 2014, 93, 106–117. [Google Scholar] [CrossRef]
- Raisuddin, S.; Kwok, K.W.H.; Leung, K.M.Y.; Schlenk, D.; Lee, J.-S. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat. Toxicol. 2007, 83, 161–173. [Google Scholar] [CrossRef]
- Turner, J.T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 2004, 43, 255–266. [Google Scholar]
- Kwok, K.W.; Leung, K.M. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull. 2005, 51, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Bao, V.W.; Leung, K.M.; Qiu, J.W.; Lam, M.H. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 2011, 62, 1147–1151. [Google Scholar] [CrossRef]
- Bao, V.W.; Leung, K.M.; Lui, G.C.; Lam, M.H. Acute and chronic toxicities of Irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus. Chemosphere 2013, 90, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Bao, V.W.; Lui, G.C.; Leung, K.M. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus. Aquat. Toxicol. 2014, 157, 81–93. [Google Scholar] [CrossRef]
- Kim, B.-M.; Saravanan, M.; Lee, D.-H.; Kang, J.-H.; Kim, M.; Jung, J.-H.; Rhee, J.-S. Exposure to sublethal concentrations of tributyltin reduced survival, growth, and 20-hydroxyecdysone levels in a marine mysid. Mar. Environ. Res. 2018, 140, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Yu, M.; Li, Z.; Chi, T.; Jing, S.; Zhang, K.; Li, W.; Wu, M. Effect of multi-walled carbon nanotubes on the toxicity of triphenyltin to the marine copepod Tigriopus japonicus. Bull. Environ. Contam. Toxicol. 2019, 102, 789–794. [Google Scholar] [CrossRef]
- Allen, Y.; Calow, P.; Baird, D.J. A mechanistic model of contaminant-induced feeding inhibition in Daphnia magna. Environ. Toxicol. Chem. 1995, 14, 1625–1630. [Google Scholar] [CrossRef]
- Gauld, T. The grazing rate of marine copepod. J. Mar. Biol. Assoc. 1951, 26, 695–706. [Google Scholar] [CrossRef]
- Kim, J.; Rhee, J.-S. Biochemical and physiological responses of the water flea Moina macrocopa to microplastics: A multigenerational study. Mol. Cell. Toxicol. 2021, 17, 523–532. [Google Scholar] [CrossRef]
- Choi, Y.-E.; Kim, M.-S.; Ha, Y.; Cho, Y.; Kim, J.K.; Rhee, J.-S.; Ryu, J.-C.; Kim, Y.-J. Association of expression of GADD family genes and apoptosis in human kidney proximal tubular (HK-2) cells exposed to nephrotoxic drugs. Mol. Cell. Toxicol. 2022, 18, 569–580. [Google Scholar] [CrossRef]
- Muyssen, B.T.A.; Janssen, C.R. Age and exposure duration as a factor influencing cu and Zn toxicity toward Daphnia magna. Ecotoxicol. Environ. Saf. 2007, 68, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Pechenik, J.A. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 1999, 177, 269–297. [Google Scholar] [CrossRef]
- Gosselin, L.A.; Qian, P.Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 1997, 146, 265–282. [Google Scholar] [CrossRef]
- Haque, M.N.; Nam, S.-E.; Kim, B.-M.; Kim, K.; Rhee, J.-S. Temperature elevation stage-specifically increases metal toxicity through bioconcentration and impairment of antioxidant defense systems in juvenile and adult marine mysids. Comp. Biochem. Physiol. C 2020, 237, 108831. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Lee, S.; Rhee, J.-S. Consistent exposure to microplastics induces age-specific physiological and biochemical changes in a marine mysid. Mar. Pollut. Bull. 2021, 162, 111850. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-M.; Kim, B.; Nam, S.-E.; Eom, H.-J.; Lee, S.; Kim, K.; Rhee, J.-S. Reductive transformation of hexavalent chromium in ice decreases chromium toxicity in aquatic animals. Environ. Sci. Technol. 2022, 56, 3503–3513. [Google Scholar] [CrossRef]
- Do, J.W.; Haque, M.N.; Lim, H.-J.; Min, B.H.; Lee, D.-H.; Kang, J.-H.; Kim, M.; Jung, J.-H.; Rhee, J.-S. Constant exposure to environmental concentrations of the antifouling biocide Sea-Nine retards growth and reduces acetylcholinesterase activity in a marine mysid. Aquat. Toxicol. 2018, 205, 165–173. [Google Scholar] [CrossRef]
- Haque, M.N.; Nam, S.-E.; Eom, H.-J.; Kim, S.-K.; Rhee, J.-S. Exposure to sublethal concentrations of zinc pyrithione inhibits growth and survival of marine polychaete through induction of oxidative stress and DNA damage. Mar. Pollut. Bull. 2020, 156, 111276. [Google Scholar] [CrossRef]
- Lee, S.; Haque, M.N.; Rhee, J.-S. Acute and mutigenerational effects of environmental concentration of the antifouling agent dichlofluanid on the mysid model, Neomysis awatschensis. Environ. Pollut. 2022, 311, 119996. [Google Scholar] [CrossRef]
- Lee, S.; Haque, M.N.; Lee, D.-H.; Rhee, J.-S. Comparison of the effects of sublethal concentrations of biofoulants, copper pyrithione and zinc pyrithione on a marine mysid-A multigenerational study. Comp. Biochem. Physiol. C 2023, 271, 109694. [Google Scholar] [CrossRef] [PubMed]
- Hyun, B.; Jang, P.-G.; Shin, K.; Kim, M.; Jung, J.-H.; Cha, H.-G.; Jang, M.-C. Toxicity of antifouling biocides and wastes from ships’ surfaces during high-pressure water-blasting cleaning activities in the nauplii and eggs of the estuarine copepod Paracalanus parvus sl. J. Mar. Sci. Eng. 2022, 10, 1784. [Google Scholar] [CrossRef]
- Zoltán, B. The Acute Toxicity of Diuron Techn. to Daphnia (Daphnia magna Straus); Laboratory of Hydrobiology: Százhalombatta, Hungary; North-Hungarian Chemical Works Co. Ltd.: Sajóbábony, Hungary, 2001. [Google Scholar]
- Nebeker, A.; Schuytema, G. Chronic effects of the herbicide diuron on freshwater cladocerans, amphipods, midges, minnows, worms and snails. Arch. Environ. Contam. Toxicol. 1998, 35, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Boeri, R. Static Acute Toxicity of Haskell Sample Number 16, 035 to the Mysid, Mysidopsis bahia; Report No. HLO 725-87; Enseco Incorporated: Sunnyvale, CA, USA, 1987. [Google Scholar]
- Nam, S.-E.; Haque, M.N.; Do, S.D.; Rhee, J.-S. Chronic effects of environmental concentrations of antifoulant diuron on two marine fish: Assessment of hormone levels, immunity, and antioxidant defense system. Comp. Biochem. Physiol. C 2023, 263, 109510. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Reregistration Eligibility Decision for Diuron; Federal Register: Washington, DC, USA, 2003; pp. 1–106. [Google Scholar]
- Felício, A.A.; Freitas, J.S.; Scarin, J.B.; de Souza Ondei, L.; Teresa, F.B.; Schlenk, D.; de Almeida, E.A. Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus). Ecotoxicol. Environ. Saf. 2018, 149, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Nejstgaard, J.C.; Solberg, P.T. Repression of copepod feeding and fecundity by the toxic haptophyte Prymnesium patelliferum. Sarsia 1996, 81, 339–344. [Google Scholar] [CrossRef]
- Shaw, B.; Andersen, R.; Harrison, P. Feeding deterrent and toxicity effects of apo-fucoxanthinoids and phycotoxins on a marine copepod (Tigriopus californicus). Mar. Biol. 1997, 128, 273–280. [Google Scholar] [CrossRef]
- Prince, E.K.; Lettieri, L.; McCurdy, K.J.; Kubanek, J. Fitness consequences for copepods feeding on a red tide dinoflagellate: Deciphering the effects of nutritional value, toxicity, and feeding behavior. Oecologia 2006, 147, 479–488. [Google Scholar] [CrossRef]
- Bretaud, S.; Toutant, J.P.; Saglio, P. Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol. Environ. Saf. 2000, 47, 117–124. [Google Scholar] [CrossRef]
- Forget, J.; Pavillon, J.F.; Beliaeff, B. Joint action of pollutant combinations (pesticides and metals) on survival (LC50 values) and acetylcholinesterase activity of Tigriopus brevicornis (copepoda, harpacticoida). Environ. Toxicol. Chem. 1999, 18, 912–918. [Google Scholar] [CrossRef]
- Lee, D.-H.; Eom, H.-J.; Kim, M.; Jung, J.-H.; Rhee, J.-S. Non-target effects of antifouling agents on mortality, hatching success, and acetylcholinesterase activity in the brine shrimp Artemia salina. Toxicol. Environ. Health Sci. 2017, 9, 237–243. [Google Scholar] [CrossRef]
- Huovinen, M.; Loikkanen, J.; Naarala, J.; Vähäkangas, K. Toxicity of diuron in human cancer cells. Toxicol. In Vitro 2015, 29, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Lesser, M.P. Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Winston, G.W.; Di Giulio, R.T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 1991, 19, 137–161. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scuollos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef]
- Dickinson, D.A.; Forman, H.J. Glutathione in defense and signaling: Lessons from a small thiol. Ann. N. Y. Acad. Sci. 2002, 973, 488–504. [Google Scholar] [CrossRef]
- Velki, M.; Lackmann, C.; Barranco, A.; Artabe, A.E.; Rainieri, S.; Hollert, H.; Seiler, T.-B. Pesticides diazinon and diuron increase glutathione levels and affect multixenobiotic resistance activity and biomarker responses in zebrafish (Danio rerio) embryos and larvae. Environ. Sci. Eur. 2019, 31, 4. [Google Scholar] [CrossRef]
- Lima, T.R.R.; Martins, A.C.; Pereira, L.C.; Aschner, M. Toxic effects induced by diuron and its metabolites in Caenorhabditis elegans. Neurotox. Res. 2022, 40, 1812–1823. [Google Scholar] [CrossRef]
- Barranger, A.; Akcha, F.; Rouxel, J.; Brizard, R.; Maurouard, E.; Pallud, M.; Menard, D.; Tapie, N.; Budzinski, H.; Burgeot, T.; et al. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: Evidence of vertical transmission of DNA damage. Aquat. Toxicol. 2014, 146, 93–104. [Google Scholar] [CrossRef]
- Bao, Y.; Zhou, Y.; Tang, R.; Yao, Y.; Zuo, Z.; Yang, C. Parental diuron exposure causes lower hatchability and abnormal ovarian development in offspring of medaka (Oryzias melastigma). Aquat. Toxicol. 2022, 244, 106106. [Google Scholar] [CrossRef]
- Cardone, A.; Comitato, R.; Angelini, F. Spermatogenesis, epididymis morphology and plasma sex steroid secretion in the male lizard Podarcis sicula exposed to diuron. Environ. Res. 2008, 108, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Boscolo, C.N.P.; Pereira, T.S.B.; Batalhão, I.G.; Dourado, P.L.R.; Schlenk, D.; de Almeida, E.A. Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus). Chemosphere 2018, 191, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, N.A.; Zulkifli, S.Z.; Azmai, M.N.A.; Abdul Aziz, F.Z.; Ismail, A. Herbicide diuron as endocrine disrupting chemicals (EDCs) through histopathalogical analysis in gonads of Javanese medaka (Oryzias javanicus, Bleeker 1854). Animals 2020, 10, 525. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, G.A. Crustacean endocrine toxicology: A review. Ecotoxicology 2007, 16, 61–81. [Google Scholar] [CrossRef]
- Nam, S.-E.; Bae, D.-Y.; Ki, J.-S.; Ahn, C.-Y.; Rhee, J.-S. The importance of multi-omics approaches for the health assessment of freshwater ecosystems. Mol. Cell. Toxicol. 2023, 19, 3–11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, Y.-J.; Kim, S.-A.; Kim, J.; Rhee, J.-S. Acute and Chronic Effects of the Antifouling Booster Biocide Diuron on the Harpacticoid Copepod Tigriopus japonicus Revealed through Multi-Biomarker Determination. J. Mar. Sci. Eng. 2023, 11, 1861. https://doi.org/10.3390/jmse11101861
Yun Y-J, Kim S-A, Kim J, Rhee J-S. Acute and Chronic Effects of the Antifouling Booster Biocide Diuron on the Harpacticoid Copepod Tigriopus japonicus Revealed through Multi-Biomarker Determination. Journal of Marine Science and Engineering. 2023; 11(10):1861. https://doi.org/10.3390/jmse11101861
Chicago/Turabian StyleYun, Young-Joo, Sung-Ah Kim, Jaehee Kim, and Jae-Sung Rhee. 2023. "Acute and Chronic Effects of the Antifouling Booster Biocide Diuron on the Harpacticoid Copepod Tigriopus japonicus Revealed through Multi-Biomarker Determination" Journal of Marine Science and Engineering 11, no. 10: 1861. https://doi.org/10.3390/jmse11101861
APA StyleYun, Y.-J., Kim, S.-A., Kim, J., & Rhee, J.-S. (2023). Acute and Chronic Effects of the Antifouling Booster Biocide Diuron on the Harpacticoid Copepod Tigriopus japonicus Revealed through Multi-Biomarker Determination. Journal of Marine Science and Engineering, 11(10), 1861. https://doi.org/10.3390/jmse11101861