Assessing the Potential Regrowth Ability of Microalgae Using Hull Cleaning Wastewater from International Commercial Ships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sampling
2.2. Microcosm Experiments
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Abiotic Factors and Fate of Metal in Microcosms
3.2. Biotic Factors in Microcosms
3.3. Phytoplankton and Periphyton Community in Microcosms
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz, G.M.; Fofonoff, P.W.; Carlton, J.T.; Wonham, M.J.; Hines, A.H. Invasion of coastal marine communities in North America: Apparent patterns, processes, and biases. Annu. Rev. Ecol. Syst. 2000, 31, 481–531. [Google Scholar] [CrossRef] [Green Version]
- Davidson, I.C.; Brown, C.W.; Sytsma, M.D.; Ruiz, G.M. The role of containerships as transfer mechanisms of marine biofouling species. Biofouling 2009, 25, 645–655. [Google Scholar] [PubMed]
- Davidson, I.C.; Scianni, C.; Minton, M.S.; Ruiz, G.M. A history of ship specialization and consequences for marine invasions, management and policy. J. Appl. Ecol. 2018, 55, 1799–1811. [Google Scholar]
- Tamburri, M.N.; Davidson, I.C.; First, M.R.; Scianni, C.; Newcomer, K.; Inglis, G.J.; Georgiades, E.T.; Barnes, J.M.; Ruiz, G.M. In-water cleaning and capture to remove ship biofouling: An initial evaluation of efficacy and environmental safety. Front. Mar. Sci. 2020, 7, 437. [Google Scholar]
- Schultz, M.P. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 2007, 23, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.; Bendick, J.; Holm, E.; Hertel, W. Economic impact of biofouling on a naval surface ship. Biofouling 2011, 27, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Scianni, C.; Georgiades, E. Vessel in-water cleaning or treatment: Identification of environmental risks and science needs for evidence-based decision making. Front. Mar. Sci. 2019, 6, 467. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.H.; Kim, D.; Kim, Y.O.; Son, M.; Kim, Y.J.; Lee, M.; Park, B.S. Seasonal changes in abiotic environmental conditions in the Busan coastal region (South Korea) due to the Nakdong River in 2013 and effect of these changes on phytoplankton communities. Cont. Shelf Res. 2019, 175, 116–126. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, M.; Lim, Y.K.; Kim, Y.J.; Baek, S.H. Occurrence characteristics of harmful and non-harmful algal species related to coastal environments in the southern sea of Korea. Mar. Freshw. Res. 2019, 70, 794–806. [Google Scholar] [CrossRef] [Green Version]
- Department of Agriculture [DOA]; Department of the Environment [DOE]; New Zealand Ministry for Primary Industries [MPI]. Antifouling and in-Water Cleaning Guidelines; Department of Agriculture: Canberra, Australia, 2015. [Google Scholar]
- Champ, M.A. A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci. Total Environ. 2000, 258, 21–71. [Google Scholar]
- Shtykova, L.; Fant, C.; Handa, P.; Larsson, A.; Berntsson, K.; Blanck, H.; Simonsson, R.; Nyden, M.; Harelind, H.I. Adsorption of antifouling booster biocides on metal oxide nanoparticles: Effect of different metal oxides and solvents. Prog. Org. Coat. 2009, 64, 20–26. [Google Scholar] [CrossRef]
- Georgiades, E.; Kluza, D. Evidence-based decision making to underpin the thresholds in New Zealand’s craft risk management standard: Biofouling on vessels arriving to New Zealand. Mar. Technol. Soc. J. 2017, 51, 76–88. [Google Scholar] [CrossRef]
- Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011, 62, 453–465. [Google Scholar] [PubMed]
- Keith, R.H. Identifying hazards in complex ecological systems. Part 1: Fault-tree analysis for biological invasions. Biol. Invasions 2002, 4, 235–249. [Google Scholar]
- Keith, R.H. Identifying hazards in complex ecological systems. Part 2: Infection modes and effects analysis for biological invasions. Biol. Invasions 2002, 4, 251–261. [Google Scholar]
- Bradley, I.M.; Pinto, A.J.; Guest, J.S. Design and evaluation of Illumina MiSeq-compatible, 18S rRNA gene-specific primers for improved characterization of mixed phototrophic communities. Appl. Environ. Microbiol. 2016, 82, 5878–5891. [Google Scholar]
- Amaral-Zettler, L.A.; McCliment, E.A.; Ducklow, H.W.; Huse, S.M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 2009, 4, e6372. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: http://www.r-project.org (accessed on 13 September 2022).
- Guillou, L.; Bachar, D.; Audic, S.; Bass, D.; Berney, C.; Bittner, L.; Boutte, C.; Burgaud, G.; de Vargas, C.; Decelle, J. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012, 41, D597–D604. [Google Scholar] [CrossRef] [Green Version]
- Soon, Z.Y.; Jung, J.H.; Loh, A.; Yoon, C.; Shin, D.; Kim, M. Seawater contamination associated with in-water cleaning of ship hulls and the potential risk to the marine environment. Mar. Pollut. Bull. 2021, 171, 112694. [Google Scholar] [CrossRef]
- Katranitsas, A.; Castritsi-Catharios, J.; Persoone, G. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organisms. Mar. Pollut. Bull. 2003, 46, 1491–1494. [Google Scholar] [CrossRef]
- Warnken, J.; Dunn, R.J.K.; Teasdale, P.R. Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin film and sediment measurements. Mar. Pollut. Bull. 2004, 49, 833–843. [Google Scholar] [CrossRef]
- Lee, S.; Chung, J.; Lee, Y.W. Cu and Zn concentrations in seawater and marine sediments along Korean coasts from the perspective of antifouling agents. Bull. Environ. Contam. Toxicol. 2018, 101, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Soon, Z.Y.; Jung, J.H.; Yoon, C.; Kang, J.H.; Kim, M. Characterization of hazards and environmental risks of wastewater effluents from ship hull cleaning by hydroblasting. J. Hazard. Mater. 2021, 403, 123708. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.S.; Hong, S.H.; An, J.G.; Shin, K.H.; Shim, W.J. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar. Pollut. Bull. 2015, 95, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.O.; Shim, W.J.; Baek, S.H.; Choi, J.W.; Kim, D.; Choi, H.W. Coastal Ecosystem Health Assessment in Korea: Busan Case Study. Ocean Sci. J. 2019, 54, 165–182. [Google Scholar] [CrossRef]
- Wang, X.; Dai, Z.; Zhao, H.; Hu, L.; Dahlgren, R.A.; Xu, J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. Environ. Pollut. 2023, 327, 121548. [Google Scholar] [CrossRef]
- Molino, C.; Angeletti, D.; Oldham, V.E.; Goodbody-Gringley, G.; Buck, K.N. Effect of marine antifouling paint particles waste on survival of natural Bermuda copepod communities. Mar. Pollut. Bull. 2019, 149, 110492. [Google Scholar] [CrossRef]
- Brand, L.E.; Sunda, W.G.; Guillard, R.R.L. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Bio. Ecol. 1986, 96, 225–250. [Google Scholar] [CrossRef]
- Shin, D.; Choi, Y.; Soon, Z.Y.; Kim, M.; Jang, M.C.; Seo, J.Y.; Shin, K.; Jung, J.H. Chemical hazard of robotic hull in-water cleaning discharge on coastal embryonic fish. Ecotoxicol. Environ. Saf. 2023, 253, 114653. [Google Scholar] [CrossRef] [PubMed]
- Ytreberg, E.; Karlsson, J.; Eklund, B. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci. Total Environ. 2010, 408, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
- Ytreberg, E.; Bighiu, M.A.; Lundgren, L.; Eklund, B. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats. Environ. Pollut. 2016, 213, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Lagerström, M.; Ytreberg, E.; Wiklund, A.K.E.; Granhag, L. Antifouling paints leach copper in excess–study of metal release rates and efficacy along a salinity gradient. Water Res. 2020, 186, 116383. [Google Scholar] [CrossRef]
- Baek, S.H.; Lee, M.; Kim, Y.B. Spring phytoplankton community response to an episodic windstorm event in oligotrophic waters offshore from the Ulleungdo and Dokdo islands, Korea. J. Sea Res. 2018, 132, 1–14. [Google Scholar] [CrossRef]
- Brand, L.E. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 1991, 36, 1756–1771. [Google Scholar] [CrossRef]
- Frankenbach, S.; Ezequiel, J.; Plecha, S.; Goessling, J.W.; Vaz, L.; Kühl, M.; Dias, J.M.; Vaz, N.; Serôdio, J. Synoptic spatio-temporal variability of the photosynthetic productivity of microphytobenthos and phytoplankton in a tidal estuary. Front. Mar. Sci. 2020, 7, 170. [Google Scholar]
- Cochlan, W.P.; Herndon, J.; Kudela, R.M. Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae 2008, 8, 111–118. [Google Scholar] [CrossRef]
- Loureiro, S.; Jauzein, C.; Garcés, E.; Collos, Y.; Camp, J.; Vaqué, D. The significance of organic nutrients in the nutrition of Pseudo-nitzschia delicatissima (Bacillariophyceae). J. Plankton. Res. 2009, 31, 399–410. [Google Scholar] [CrossRef]
- Baek, S.H.; Kim, D.; Son, M.; Yun, S.M.; Kim, Y.O. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar. Coast. Shelf. Sci. 2015, 163, 265–278. [Google Scholar] [CrossRef]
- Magaletti, E.; Urbani, R.; Sist, P.; Ferrari, C.R.; Cicero, A.M. Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N-and P-limitation. Eur. J. Phycol. 2004, 39, 133–142. [Google Scholar] [CrossRef]
- Yoon, J.N.; Lim, Y.K.; Baek, S.H. Time-series response of water column phytoplankton and periphyton on attachment plates following nutrient addition during summer in mesocosms. J. Appl. Phycol. 2023, 35, 1301–1315. [Google Scholar] [CrossRef]
Metal (μg L−1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Fe | Co | Ni | Cu | Zn | As | Cd | Pb | Ba | |||
Dissolved phase | Stock of HCW | 0.09 ± 0.00 | 3.26 ± 0.05 | 0.23 ± 0.00 | 0.01 ± 0.00 | 0.46 ± 0.00 | 50.61 ± 0.07 | 9.20 ± 0.01 | 0.58 ± 0.02 | 0.01 ± 0.00 | 0.04 ± 0.00 | 3.00 ± 0.01 | |
15 °C | Control | 0.38 ± 0.10 | 3.21 ± 0.67 | 0.69 ± 0.35 | 0.04 ± 0.01 | 1.67 ± 0.20 | 6.60 ± 0.07 | 20.89 ± 9.09 | 1.09 ± 0.40 | 0.04 ± 0.01 | 0.34 ± 0.03 | 8.56 ± 2.47 | |
HCW | 0.16 ± 0.02 | 4.99 ± 0.37 | 0.36 ± 0.07 | 0.04 ± 0.02 | 1.25 ± 0.70 | 22.34 ± 0.77 | 15.08 ± 3.93 | 0.50 ± 0.07 | 0.03 ± 0.00 | 0.20 ± 0.00 | 5.98 ± 0.08 | ||
HCW+N | 0.21 ± 0.05 | 6.27 ± 0.34 | 0.43 ± 0.13 | 0.05 ± 0.00 | 1.33 ± 0.10 | 33.37 ± 2.13 | 18.74 ± 8.10 | 0.60 ± 0.12 | 0.04 ± 0.00 | 0.23 ± 0.08 | 7.26 ± 0.49 | ||
20 °C | Control | 0.38 ± 0.10 | 1.86 ± 1.12 | 0.37 ± 0.01 | 0.04 ± 0.01 | 3.89 ± 3.01 | 7.39 ± 1.29 | 26.56 ± 7.13 | 1.24 ± 0.06 | 0.06 ± 0.01 | 0.36 ± 0.01 | 10.83 ± 0.81 | |
HCW | 0.31 ± 0.01 | 6.30 ± 0.36 | 0.50 ± 0.07 | 0.13 ± 0.04 | 4.98 ± 1.85 | 36.68 ± 0.39 | 35.01 ± 16.24 | 0.77 ± 0.27 | 0.05 ± 0.00 | 0.22 ± 0.05 | 10.22 ± 0.36 | ||
HCW+N | 0.34 ± 0.10 | 5.03 ± 0.05 | 0.81 ± 0.42 | 0.06 ± 0.00 | 2.51 ± 0.39 | 48.69 ± 3.90 | 24.00 ± 0.43 | 1.21 ± 0.11 | 0.05 ± 0.01 | 0.23 ± 0.02 | 10.59 ± 1.29 | ||
Particulate phase | Stock of HCW | 3.85 ± 0.13 | 12.65 ± 0.22 | 2714.5 ± 89.5 | 0.28 ± 0.00 | 3.45 ± 0.01 | 4264.37 ± 91.64 | 146.42 ± 7.70 | 3.59 ± 0.04 | 0.97 ± 0.03 | 31.99 ± 0.94 | 9.65 ± 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.K.; Kim, M.; Shin, K.; Kim, T.; Lee, C.H.; Yoon, J.N.; Baek, S.H. Assessing the Potential Regrowth Ability of Microalgae Using Hull Cleaning Wastewater from International Commercial Ships. J. Mar. Sci. Eng. 2023, 11, 1414. https://doi.org/10.3390/jmse11071414
Lim YK, Kim M, Shin K, Kim T, Lee CH, Yoon JN, Baek SH. Assessing the Potential Regrowth Ability of Microalgae Using Hull Cleaning Wastewater from International Commercial Ships. Journal of Marine Science and Engineering. 2023; 11(7):1414. https://doi.org/10.3390/jmse11071414
Chicago/Turabian StyleLim, Young Kyun, Moonkoo Kim, Kyoungsoon Shin, Taekhyun Kim, Chung Hyeon Lee, Ji Nam Yoon, and Seung Ho Baek. 2023. "Assessing the Potential Regrowth Ability of Microalgae Using Hull Cleaning Wastewater from International Commercial Ships" Journal of Marine Science and Engineering 11, no. 7: 1414. https://doi.org/10.3390/jmse11071414
APA StyleLim, Y. K., Kim, M., Shin, K., Kim, T., Lee, C. H., Yoon, J. N., & Baek, S. H. (2023). Assessing the Potential Regrowth Ability of Microalgae Using Hull Cleaning Wastewater from International Commercial Ships. Journal of Marine Science and Engineering, 11(7), 1414. https://doi.org/10.3390/jmse11071414