Fault-Tolerant Formation Control for Multiple Stochastic AUV System under Markovian Switching Topologies
Abstract
:1. Introduction
2. Preliminaries
2.1. Problem Formulation
2.2. Preliminaries
3. Main Results
- Step 1:
- Determine the structure of switching networks and communication topology probability transition.
- Step 2:
- According to Lemma 5, solve matrix by equation .
- Step 3:
- Determine the noise and fault model, and choose the appropriate parameter satisfying .
- Step 4:
- Choose parameters , , calculate parameters , , solve matrix inequality (40), and compute the positive matrix P.
- Step 5:
- Compute the feedback matrices , by equality (46).
4. Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Zeng, J.; Yan, Z.; Wei, S.; Tian, W. Leader-following consensus of discrete-time multi-AUV recovery system with time-varying delay. Ocean Eng. 2021, 219, 108258. [Google Scholar] [CrossRef]
- Li, X.; Zhu, D.Q.; Qian, Y.A. Survey on formation control algorithms for multi-AUV system. Unmanned Syst. 2014, 2, 351–359. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Guo, G. Velocity free leader-follower formation control for autonomous underwater vehicles with line-of-sight range and angle constraints. Inf. Sci. 2019, 486, 359–378. [Google Scholar] [CrossRef]
- Chen, S.; Ho, D.W. Consensus control for multiple AUVs under imperfect information caused by communication faults. Inf. Sci. 2016, 370, 565–577. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wang, C.; Wei, Y.J.; Zhang, C.J. Bounded neural adaptive formation control of multiple underactuated AUVs under uncertain dynamics. ISA Trans. 2020, 105, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Guo, L.Q. A Leader–follower formation control approach for target hunting by multiple autonomous underwater vehicle in three-dimensional underwater environments. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419870664. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Xie, Y.; Li, X.D.; Dong, X.W.; Li, Q.D.; Ren, Z. Time-varying group formation tracking control for second-order multi-agent systems with communication delays and multiple leaders. J. Frankl. Inst. 2020, 357, 9761–9780. [Google Scholar] [CrossRef]
- Park, B.S.; Yoo, S.J. Connectivity-maintaining obstacle avoidance approach for leader-follower formation tracking of uncertain multiple nonholonomic mobile robots. Expert Syst. Appl. 2021, 171, 114589. [Google Scholar] [CrossRef]
- Zhang, J.X.; Su, H.S. Time-varying formation for linear multi-agent systems based on sampled data with multiple leaders. Neurocomputing 2016, 339, 59–65. [Google Scholar] [CrossRef]
- Wang, N.; Li, H. Leader–follower formation control of surface vehicles: A fixed-time control approach. ISA Trans. 2022, 124, 356–364. [Google Scholar] [CrossRef]
- Liang, H.; Fu, Y.; Gao, J. Finite-time velocity-observed based adaptive output-feedback trajectory tracking formation control for under actuated unmanned underwater vehicles with prescribed transient performance. Ocean Eng. 2021, 233, 109071. [Google Scholar] [CrossRef]
- Wang, B.; Ashrafiuon, H.; Nersesov, S. Leader–follower formation stabilization and tracking control for heterogeneous planar underactuated vehicle networks. Syst. Control Lett. 2021, 156, 105008. [Google Scholar] [CrossRef]
- Ni, W.; Cheng, D. Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 2010, 59, 209–217. [Google Scholar] [CrossRef]
- Du, C.; Bian, Y.; Liu, H.; Ren, W.; Lu, P.; Liu, X. Cooperative startup control for heterogeneous vehicle platoons: A finite-time output tracking-based approach. IEEE Trans. Control Netw. 2021, 8, 1767–1777. [Google Scholar] [CrossRef]
- Griparic, K.; Polic, M.; Krizmancic, M.; Bogdan, S. Consensus-Based Distributed Connectivity Control in Multi-Agent Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 1264–1281. [Google Scholar] [CrossRef]
- Thanh, P.N.; Tam, P.M.; Anh, H.P. New approach for three-dimensional trajectory tracking control of under-actuated AUVs with model uncertainties. Ocean Eng. 2021, 228, 108951. [Google Scholar] [CrossRef]
- Karkoub, M.; Wu, H.M.; Wang, H. Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng. 2017, 145, 188–198. [Google Scholar] [CrossRef]
- Shen, C.; Shi, Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking. Automatica 2020, 115, 108863. [Google Scholar] [CrossRef]
- Yan, Z.; Gong, P.; Zhang, W.; Wu, W. Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances. Ocean Eng. 2020, 217, 107884. [Google Scholar] [CrossRef]
- Cho, G.R.; Li, J.H.; Park, D.; Jung, J.H. Robust trajectory tracking of autonomous underwater vehicles using back-stepping control and time delay estimation. Ocean Eng. 2020, 201, 107131. [Google Scholar] [CrossRef]
- Yang, S.; Bai, W.W.; Li, T.S.; Shi, Q.; Yang, Y.; Wu, Y.; Chen, C.P. Neural-network-based formation control with collision, obstacle avoidance and connectivity maintenance for a class of second-order nonlinear multi-agent systems. Neurocomputing 2021, 439, 243–255. [Google Scholar] [CrossRef]
- Zhang, J.X.; Su, H.S. Formation-containment control for multi-agent systems with sampled data and time delays. Neurocomputing 2019, 424, 125–131. [Google Scholar] [CrossRef]
- He, M.H.; Mu, J.R.; Mu, X.W. Leader-following consensus of nonlinear multi-agent systems under semi-Markovian switching topologies with partially unknown transition rates. Inf. Sci. 2020, 513, 168–179. [Google Scholar] [CrossRef]
- Gao, J.F.; Li, J.H.; Pan, H.P.; Wu, Z.G.; Yin, X.X.; Wang, H.J. Consensus via event-triggered strategy of nonlinear multi-agent systems with Markovian switching topologies. ISA Trans. 2020, 104, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.D.; Li, K.; Zhang, Z.L.; Cui, B. Impulsive consensus of one-sided Lipschitz nonlinear multi-agent systems with Semi-Markov switching topologies. Nonlinear Anal. Hybrid Syst. 2021, 40, 101021. [Google Scholar] [CrossRef]
- Wan, L.; Cao, Y.; Sun, Y.C.; Qin, H. Fault-tolerant trajectory tracking control for unmanned surface vehicle with actuator faults based on a fast fixed-time system. ISA Trans. 2022, 130, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, B.; Wen, S.; Huang, T. Consensus tracking of stochastic multi-agent system with actuator faults and switching topologies. Inf. Sci. 2022, 607, 921–930. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, P.; Lin, C. Adaptive consensus control for output-constrained nonlinear multi-agent systems with actuator faults. J. Frankl. Inst. 2022, 359, 4216–4232. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Qiao, L.; Zhang, W. Robust adaptive formation tracking of autonomous surface vehicles with guaranteed performance and actuator faults. Ocean Eng. 2021, 237, 109592. [Google Scholar] [CrossRef]
- Lai, J.; Chen, S.; Lu, X.; Zhou, H. Formation tracking for nonlinear multi-agent systems with delays and noise disturbance. Asian J. Control 2015, 17, 879–891. [Google Scholar] [CrossRef]
- Yu, J.; Dong, X.; Li, Q.; Lü, J.; Ren, Z. Fully adaptive practical time-varying output formation tracking for high-order nonlinear stochastic multiagent system with multiple leaders. IEEE Trans. Cybern. 2019, 51, 2265–2277. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tian, Y. Distributed formation control: Asymptotic stabilization results under local noisy information. IEEE Trans. Cybern. 2019, 51, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Zong, X. Time-varying formation control of linear multiagent systems with time delays and multiplicative noises. Int. J. Robust Nonlin. 2021, 31, 9008–9025. [Google Scholar] [CrossRef]
- Mo, L.; Yuan, X.; Jia, Y.; Guo, S. Mean-square Quasi-composite Rotating Formation Control of Second-order Multi-agent Systems under Stochastic Communication Noises. J. Robot. Netw. Artif. Life 2019, 6, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Ahn, C. Coordinated trajectory-tracking control of a marine aerial-surface heterogeneous system. IEEE/ASME T. Mech. 2021, 26, 3198–3210. [Google Scholar] [CrossRef]
- Long, J.; Wang, W.; Wen, C.; Huang, J.; Lü, J. Output feedback based adaptive consensus tracking for uncertain heterogeneous multi-agent systems with event-triggered communication. Automatica 2020, 136, 110049. [Google Scholar] [CrossRef]
- Shimin, W.; Zhi, Z.; Zhong, R.; Wu, Y.; Peng, Z. Adaptive distributed observer design for containment control of heterogeneous discrete-time swarm systems. Chin. J. Aeronaut. 2020, 33, 2898–2906. [Google Scholar]
- Wang, S.; Zhan, Z.; Zhong, R.; Wu, Y.; Peng, Z. Cross-dimensional formation control of second-order heterogeneous multi-agent systems. ISA Trans. 2022, 127, 188–196. [Google Scholar]
- Hu, W.; Liu, L. Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control. IEEE Trans. Cybern. 2016, 47, 105–116. [Google Scholar] [CrossRef]
- Liu, H.; Peng, F.; Modares, H.; Kiumarsi, B. Heterogeneous formation control of multiple rotorcrafts with unknown dynamics by reinforcement learning. Inf. Sci. 2021, 558, 194–207. [Google Scholar] [CrossRef]
- Yuan, C.; Licht, S.; He, H. Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics. IEEE Trans. Cybern. 2017, 48, 2920–2934. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.P.; Yang, Z.W.; Yue, L.D.; Wang, L.; Jia, H.M.; Zhou, J.J. Discrete-time coordinated control of leader-following multiple AUVs under switching topologies and communication delays. Ocean Eng. 2019, 172, 361–372. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Trondheim, Norway, 2011; pp. 81–89. [Google Scholar]
- Lin, X.; Tian, W.; Zhang, Y.; Li, Z.; Zhang, C. The fault-tolerant consensus strategy for leaderless Multi-AUV system on heterogeneous condensation topology. Ocean Eng. 2022, 245, 110541. [Google Scholar] [CrossRef]
- Yu, W.; Ren, W.; Zheng, W.; Chen, G.; Lü, J. Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics. Automatica 2013, 49, 2107–2115. [Google Scholar] [CrossRef]
- Li, Z.; Ren, W.; Liu, X.; Fu, M. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Automat. Contr. 2012, 58, 1786–1791. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhang, M.; Zhang, C.; Zeng, J. Decentralized formation trajectory tracking control of multi-AUV system with actuator saturation. Ocean Eng. 2022, 255, 111423. [Google Scholar] [CrossRef]
- Sader, M.; Chen, Z.; Liu, Z.; Deng, C. Distributed robust fault-tolerant consensus control for a class of nonlinear multi-agent systems with intermittent communications. Appl. Math. Comput. 2021, 403, 126166. [Google Scholar] [CrossRef]
- Li, X.; Wang, J. Fault-tolerant tracking control for a class of nonlinear multi-agent systems. Syst. Control Lett. 2020, 135, 104576. [Google Scholar] [CrossRef]
- Fossen, T.I. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994; pp. 56–121. [Google Scholar]
- Meng, M.; Liu, L.; Feng, G. Adaptive output regulation of heterogeneous multiagent systems under Markovian switching topologies. IEEE Trans. Cybern. 2017, 48, 2962–2971. [Google Scholar] [CrossRef]
- Fragoso, M.D.; Costa, O.L.V. A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances. SIAM J. Control Optim. 2005, 44, 1165–1191. [Google Scholar] [CrossRef]
- Li, K.; Mu, X. Containment control of stochastic multiagent systems with semi-Markovian switching topologies. Int. J. Robust Nonlin. 2019, 29, 4943–4955. [Google Scholar] [CrossRef]
- Meyn, S.P.; Tweedie, R.L. Markov Chains and Stochastic Stability; Springer Science & Business Media: Cambridge, UK, 2012; pp. 48–72. [Google Scholar]
- Zhang, H.; Lewis, F.; Qu, Z. Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans. Ind. Electron. 2011, 59, 3026–3041. [Google Scholar] [CrossRef]
- Wang, H.; Xue, B.; Xu, A. Leader-following consensus control for semi-Markov jump multi-agent systems: An adaptive event-triggered scheme. J. Frankl. Inst. 2021, 358, 428–447. [Google Scholar] [CrossRef]
- Ren, W.; Beard, R.W. Distributed Consensus in Multi-Vehicle Cooperative Control; Springer: London, UK, 2008; pp. 25–40. [Google Scholar]
- Yan, Z.; Yang, Z.; Pan, X.; Zhou, J.; Wu, D. Virtual leader based path tracking control for Multi-UUV considering sampled-data delays and packet losses. Ocean Eng. 2020, 216, 108065. [Google Scholar] [CrossRef]
- Yan, Z.; Yu, H.; Li, B. Bottom-following control for an underactuated unmanned undersea vehicle using integral-terminal sliding mode control. J. Cent. South Univ. 2011, 22, 4193–4204. [Google Scholar] [CrossRef]
Notations | Meanings |
---|---|
Mathematical expectation operator | |
Euclidean norm | |
Neighbors set | |
n dimension column vector with elements 1 | |
Matrix P is positive definite | |
⊗ | Kronecker product |
Block-diagonal matrix | |
The weighted matrix | |
The largest eigenvalue | |
The smallest eigenvalue |
State | Value | State | Value |
---|---|---|---|
150 m | 0.75 m·s | ||
−250 m | 0 m·s | ||
10 m | 0 m·s | ||
0 rad·s | |||
0 rad·s | |||
20 m | 0.75 m·s | ||
0 m | 0 m·s | ||
8 m | 0 m·s | ||
0 rad·s | |||
0 rad·s |
Parameter | and | The Time of Forming Formations | |
---|---|---|---|
Formation 1 | Formation 2 | ||
About 3.7 min | About 7.8 min | ||
About 4.6 min | About 9.6 min | ||
About 5.3 min | About 12.4 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Yan, Z.; Jia, H.; Zhou, J.; Yue, L. Fault-Tolerant Formation Control for Multiple Stochastic AUV System under Markovian Switching Topologies. J. Mar. Sci. Eng. 2023, 11, 159. https://doi.org/10.3390/jmse11010159
Pan X, Yan Z, Jia H, Zhou J, Yue L. Fault-Tolerant Formation Control for Multiple Stochastic AUV System under Markovian Switching Topologies. Journal of Marine Science and Engineering. 2023; 11(1):159. https://doi.org/10.3390/jmse11010159
Chicago/Turabian StylePan, Xiaoli, Zheping Yan, Heming Jia, Jiajia Zhou, and Lidong Yue. 2023. "Fault-Tolerant Formation Control for Multiple Stochastic AUV System under Markovian Switching Topologies" Journal of Marine Science and Engineering 11, no. 1: 159. https://doi.org/10.3390/jmse11010159
APA StylePan, X., Yan, Z., Jia, H., Zhou, J., & Yue, L. (2023). Fault-Tolerant Formation Control for Multiple Stochastic AUV System under Markovian Switching Topologies. Journal of Marine Science and Engineering, 11(1), 159. https://doi.org/10.3390/jmse11010159