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Abstract: Formation control, which is a core problem in multi-autonomous underwater vehicle (AUV)
systems, plays an important role in realizing safe and accurate cooperation of multi-AUV systems.
This paper provides a study on fault-tolerant formation control for multiple stochastic AUV systems
under Markovian switching topologies. Considering the effect of noise and Markovian switching
communication topology, a novel leader-following group formation control protocol with an actuator
fault for a multi-AUV system is developed under the influence of the two independent stochastic
processes. The designed controller is proved by an infinitesimal generator with Lyapunov stability
theory and can guarantee that the follower AUVs’ states will eventually converge to the leader’s state
in each subgroup while forming the desired sub-formation. Finally, the effectiveness of the theoretical
analysis is verified by a simulation experiment.

Keywords: fault-tolerant; multiple stochastic AUV systems; formation control; markovian switching
topologies; multiple leaders

1. Introduction

In recent years, the formation control of multiple autonomous underwater vehicles
(AUV) has received considerable attention due to various applications in the field of ocean
exploration, deep sea resource development, submarine rescue, trajectory tracking and
other fields of ocean engineering. AUV is a kind of self-propelled submersible vehicle that
is utilized to perform the desired missions with no human control [1]. Compared with
a single AUV, a multi-AUV system can complete the task well in complex applications
such as investigating resources, target detection and task accuracy in harsh ocean environ-
ments. Further, multi-AUV formation cooperation has more advantages in improving work
efficiency and operation scope. The fact that multiple AUVs transmit state information
via the sonars in an acoustic channel ensures the coordination of a multi-AUV system.
In reality, the AUV system is always affected by stochastic ocean noise. In that case, the
multi-AUV system contains uncertain items. In addition, the interaction topology among
AUVs may be dynamic or generate new information chains because of the complex marine
environments. Stochastic noise and random communication always affect the stability of
the multi-AUV system and even lead to the loss of the AUV. Thus, a reliable controller
should be designed to guarantee coordination of the multi-AUVs system in the case of
noise and random communication. It is still a great challenge because of the highly coupled
nonlinearities in the AUV dynamics and the uncertainties in ocean environments.

As the complexity of underwater environment inspection missions increases, forma-
tion of multi-AUV can greatly improve the efficiency of exploration and complete more
tasks in a limited time. The formation control of a multi-AUV system with a single leader
has been investigated in [2–6]. However, in many engineering applications, the strategy
with multiple subgroups and leaders of a multi-agent system has stronger practical sig-
nificance due to the assignment of different geographical locations and tasks [7–9]. At
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the same time, various remarkable results have been dedicated to the formation control
problem, and the study made certain progress. The development of formation controllers
employs the leader–follower method [10–12], consensus method [13–15], Lyapunov’s direct
method [16,17], model predictive control method [18,19] and back-stepping techniques [20],
etc. Among the typical control methods described above, the leader–follower method is
widely used in multi-agent formation control because of its good scalability. As a matter
of fact, it is a significant theoretical formal method that allows all followers to track the
state of leaders. The consensus method is the most basic method in the formation control
problem, which is often applied in combination with the leader–follower method.

It is noteworthy that all the studies mentioned above focused on formation control
problems with a deterministic switching model manner. In practical applications, the multi-
agent systems often suffer from some disturbances, such as communication obstacles under
uncertain environments [21,22]. Stochastic switching models could reflect the changes of
the information structure, which can be governed by the Markovian switching model. There
are many results on multi-agent systems with Markovian switching topologies [23–25].
Note that the multi-AUV systems equipped with actuators are at risk of actuator failure in
each AUV due to encoding or decoding. Thus far, there have been many studies on the
consistency strategy with actuator faults [26–29].

In the past few years, a rich body of results has been made on formation control
for multi-agent systems with stochastic noises. In [30], three formation protocols were
established by using a novel stochastic analysis approach for a nonlinear multi-agent sys-
tems with communication delays and noise disturbance. Considering the time-varying
output and stochastic noise of formation systems, ref. [31] puts forward a fully adaptive
practical time-varying output formation protocol. Further, under both measurement and
communication noises, ref. [32] designed a robust distributed orientation estimate algo-
rithm and formation control law. Ref. [33] dealt with formation control problems with time
delays and multiplicative noises. In [34], a mean-square quasi-composite rotating formation
problem with stochastic communication noises was considered by taking coordinate trans-
formation. Up to now, scholars have developed some theories in the research of formation
control for stochastic agent systems; however, there are few studies on formation control
for multiple stochastic AUV systems with stochastic switching topologies and stochastic
noises, which is proposed in our present investigation for the first time.

In previous studies of heterogeneous multi-agent system formation control prob-
lems, the heterogeneity dynamics can be divided into two cases: one is that there are
different dynamic model equations [35]. For example, the agents’ orders may be first-
order, second-order, or high-order in the same system [36,37]; some cross-dimensional
formation issues [38], such as the cooperation of an unmanned aerial in three-dimension
and surface vehicles in the two-dimensional plane. The other is that each agent has the
same dynamic model but different heterogeneous dynamics because of different types,
external environment disturbances and configurations of the control objects, as illustrated
in [39,40]. Ref. [41] proposed a formation control scheme for multi-AUV systems with
heterogenous nonlinear dynamics. Heterogeneous multi-agent systems can be used to
solve more practical formation control problems and make the controller have high com-
patibility and adaptability. In this paper, the leader AUV is equipped with more sensors
and constructed as a stable time-invariant system, which can steadily send instructions
to the followers. However, the communication topology among all followers is switched
randomly. Moreover, the leaders and the followers have different lengths and weights.
Under these conditions, the paper focuses on solving the influences of the actuator fault,
ocean noise and communication switching on formation control.

Motivated by the above discussions, this paper aims to discuss fault-tolerant formation
control for multiple stochastic AUV systems under Markovian switching topologies with
multiple leaders. Based on previous research, the contributions of the paper are as follows:
(1) the works in [1,3] only considered formation control of a multi-AUV system with a single
leader. The paper provides a discussion of the group formation problem in a multi-AUV
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system with multiple leaders. All the AUVs are divided into multiple subgroups, and each
subgroup is controlled to track the average state of the leader while forming the desired sub-
formation. (2) The previous research in [42] employed switching communication topologies
based on Laplacian matrix theory. In the paper, the fault-tolerant formation control problem
is analyzed for the multiple stochastic AUV system with Markov switching topologies,
which considers the more random case that two independent stochastic processes exist
simultaneously in the system. (3) The communication matrices driven by a Markov process
are no longer of Laplacian type, aij is permitted to be negative in accordance with the group
competition and cooperation mechanism. The effect of switching topologies on group
formation is determined by the union of topologies of the Markov process, which is more
suitable for the limited and unreliable communication topology.

The rest of this paper is arranged as follows: Section 2 introduces some important
lemmas, definitions, preliminaries and the AUV model description. Section 3 develops the
formation control structure and controller design and presents the main results. Section 4
verifies the effectiveness of the proposed algorithms by simulation. The conclusion is
offered in Section 5.

Notations: Table 1 lists some notations and their meanings.

Table 1. Notations.

Notations Meanings

E(·) Mathematical expectation operator
‖·‖ Euclidean norm
Ni(t) Neighbors set
1n n dimension column vector with elements 1
P > 0 Matrix P is positive definite
⊗ Kronecker product
diag{·} Block-diagonal matrix
A =

(
aij

)
N×N

The weighted matrix

λmax(·) The largest eigenvalue
λmin(·) The smallest eigenvalue

2. Preliminaries

This section mainly introduces AUV dynamic models and some related concepts,
assumptions and lemmas.

2.1. Problem Formulation

It is well known that the nonlinear characteristics of an AUV are strong when it moves
to resist the ocean current in a deep sea with complex terrain. In this paper, the roll velocity
of the AUV is ignored due to the fact that the roll motion has less influence on the lateral
motion. The AUV is assumed to be under-actuated in the 5-DOF model with the body-fixed
and earth-fixed coordination consisting of the surge, sway, heave, pitch and yaw in this
paper, which is shown in Figure 1. The dynamic equations of AUV are given as [43].{

η̇ = J(η)υ,
Mυ̇ + C(υ)υ + D(υ)υ+g(η) = T + ω̃

(1)

where the vector η = [x, y, z, θ, ψ]T denotes the states of the position vector; υ = [u, v, w, q, r]T

denotes the states of the velocity vector; the matrix J(η) denotes the rotational transforma-
tion matrix; M denotes the inertia matrix including the added mass. The paper provides
an assumption that the AUV has only a yoz plane symmetry structure. C(υ) and D(υ) are
the Coriolis and centripetal matrix and the damping matrix; g(η) is the vector caused by
the effect of gravity and buoyancy; T denotes the vector of control input; ω̃ represents the
environmental disturbance forces due to ocean current.
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Figure 1. The coordinate system of the AUV.

In order to simplify the model, assume the AUV has zero buoyancy, and the parameters
of the matrices M, C(υ),D(υ) and g(η) are as follows:

M =


m− Xu̇ 0 0 0 0

0 m−Yv̇ 0 0 0
0 0 m− Zẇ 0 0
0 0 0 Iy −Mq̇ 0
0 0 0 0 Iz − Nṙ

 (2)

C(υ) =


0 0 0 mw− Zẇw −mv + Yv̇v
0 0 0 0 mu− Xu̇u
0 0 0 −mu + Xu̇u 0

−mw + Zẇw 0 mu− Xu̇u 0 0
mv−Yv̇v −mu + Xu̇u 0 0 0

 (3)

D(υ) = diag
{

Xu, Yv, Zw, Mq, Nr
}
+ diag

{
X|u|u|u|, Y|v|v|v|, Z|w|w|w|, M|q|q|q|, N|r|r|r|

}
(4)

g(η) =
[
0, 0, 0, ρgVGML sin θ, 0

]T (5)

where the details of the above parameters are presented in [43].
Let

ς = [x, y, z, θ, ϕ, u, v, w, q, r]T (6)

N(η, υ) = C(υ)υ + D(υ)υ+g(η) (7)

J(η)υ =[ f1(ς), f2(ς), f3(ς), f4(ς), f5(ς)]
T (8)

M−1N(η, υ) = [ f6(ς), f7(ς), f8(ς), f9(ς), f10(ς)]
T (9)

the model (1) of the AUV can be represented as [42] :

ς̇ = f (ς) + g(ς)ũ (10)
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where

f (ς) =
[

I 0
0 M−1

][
J(η)υ

N(η, υ)

]
+

[
0

M−1

]
ω̃ (11)

g(ς) =
[

0
M−1

]
g′(ς) (12)

Define the output function p = h(ς) = [x, y, z, θ, ϕ]T . By using the differential man-
ifold theory, the property of the Lie derivative, and relative order [44], we construct the
transformation of the new vectors:

p = [h1(ς), h2(ς), h3(ς), h4(ς), h5(ς)]
T (13)

v =
[
L f h1(ς), L f h2(ς), L f h3(ς), L f h4(ς), L f h5(ς)

]T (14)

Then, the control input Ũ and environmental disturbances F̃ in the new coordinate
system satisfy:

Ũ = χ(ς) + Lg L f h(ς)ũ
F̃ = J(η)ω̄ = J(η)M−1ω̃

(15)

After the coordinate transformation (13) and (14), µ(ς) is used instead of matrix
Lg L f h(ς). The dynamical equation of the AUV can be described as follows:

ṗ = L f h(ς) = J(η)υ = v
v̇ = Lg L f h(ς)ũ + L f

2h(ς)
= µ(ς)ũ + χ(ς) + J(η)M−1ω̃

(16)

In the transformed coordinate system, the vector of the control input is Ũ, and F̃ denotes
the environmental disturbance forces; therefore, ũ = µ−1(ς)

(
Ũ − χ(ς)

)
, ω̃ = M J−1(ς)F̃.

Following the above steps, the control framework of the multi-AUV formation system,
which consists of N AUVs, is shown in Figure 2. The control input U =

[
ŨT

1 , ŨT
2 , · · · ŨT

N
]T

and the disturbance function F =
[
F̃T

1 , F̃T
2 , · · · F̃T

N
]T of the multi-AUV system in the forma-

tion are transformed into the control input u =
[
ũT

1 , ũT
2 , · · · ũT

N
]T and current disturbance

function ω =
[
ω̃T

1 , ω̃T
2 , · · · ω̃T

N
]T of the original multi-AUV model by inverse coordinate

transformation. u and ω are used to satisfy the formation coordination control. The output
state ς of the multi-AUV is used as the control input state (p, v) of formation control in the
new coordinates.

In AUV system (16), no simplifications are made on system dynamics and distur-
bances. In this paper, the system (16) is inherently nonlinear and quite consistent with the
actual situation, compared with the simplification of the AUV model in [1], which ignores
the disturbances.
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Figure 2. The formation control scheme of a multi-AUV system.

2.2. Preliminaries

Consider that a multi-AUV system is comprised of N AUVs and M leaders. In
the multi-AUV system, the leader has no neighbor. Without loss of generality, we use
E = {1, 2, · · · , N} to denote the AUV set and O = {N + 1, N + 2, · · · , N + M} to denote
the leader set. The matrix between the leader and the AUVs is defined by

Dk = diag{d1k, d2k, · · · , dNk}, k ∈ {1, 2, · · · , M} (17)

where dik > 0 if AUV i can receive information from the leader k; otherwise, dik = 0. It is
important to note that an AUV can only follow one leader.

When a multi-AUV formation system performs an ocean survey mission, according
to the different locations of the seafloor survey areas and the actual ocean environment,
the multi-AUVs may need to arrive at the mission area by different paths, and then the
multi-AUV system needs to be divided into several subgroups. In this paper, the multi-
AUV system is decomposed into M sub-formations. Each sub-formation contains one
leader, and the kth sub-formation contains Nk AUVs. The first N1 AUVs belong to the first
sub-formation with the leader N + 1; the N2 AUVs belong to the second sub-formation with
the leader N + 2; the rest of the NM AUVs belong to the last sub-formation with the leader
N + M. The number of AUVs in each sub-formation has to satisfy the following equation

M

∑
k=1

Nk = N.

Consider the formation control problem for a multiple stochastic AUV system
with Markovian switching topologies and multiple leaders based on the AUV dynamical
Equation (3), the dynamics of the AUV i are described by

ṗi = vi, i ∈ E
v̇i = Ũi(t) + f (pi, vi, t), i ∈ E

(18)
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where
Ũi = χ(ς) + µ(ς)ũi

f (pi, vi, t) = F̃i = J(η)M−1ω̃i

pi = [xi, yi, zi, θi, ϕi]
T is the position state of the ith AUV, and vi = [ūi, v̄i, w̄i, q̄i, r̄i]

T is the
velocity state after the coordinate transformation, respectively,

f (pi, vi, t) = [ f1(pi, vi, t) , · · · , f5(pi, vi, t)]T

is a continuously differentiable nonlinear function.
The dynamics of the leaders can be described by

ṗl j = vl j, j ∈ O

v̇l j = f
(

pl j, vl j, t
)

, j ∈ O
(19)

where
f
(

pl j, vl j, t
)
= J(η)M−1

l j ω̃l j

is a differentiable nonlinear function. pl j =
[

xl j, yl j, zl j, θl j, ϕl j

]T
is the position state of the

jth leader, vl j =
[
ūl j, v̄l j, w̄l j, q̄l j, r̄l j

]T
is the velocity state after the coordinate transforma-

tion of the jth leader,

f
(

pl j, vl j, t
)

=
[

f1

(
pl j, vl j, t

)
, · · · , f5

(
pl j, vl j, t

)] T
.

It should be pointed out that the trajectories of the leaders are determined by the
actual marine survey mission and the ocean environment, and the motions are assumed to
be independent of that of other follower AUVs.

Next, we have the following definition:

Definition 1. All AUVs in the multiple stochastic AUV system (18) and (19) converge to their
respective leader’s trajectory if there exist fixed consensus gains K1, K2 such that for any given
initial data pi(t0), vi(t0), pli(t0), vli(t0) and initial distribution of πij(t0) and r(t0),

lim
t→∞

E
(∥∥∥pi(t)− pl j(t)− pi

∗
∥∥∥2
)
= 0

lim
t→∞

E
(∥∥∥vi(t)− vl j(t)

∥∥∥2
)
= 0

(20)

for ∀i ∈ Ni, j = N + i, where pi
∗ is the desired constant relative position vector between each

AUV i and the leader lj.

To solve the above formation control problem, we give the following assumptions
and lemmas.

Assumption 1. The union of communication graphs is balanced and contains a directed spanning
tree rooting at each leader.

Assumption 2. For the follower AUV i, the sum of all communication coefficients of the other sub-
formations that can exchange information with the AUV i is zero, i.e., ∑j∈Ñi

aij = 0,Ñi represents
the ith AUV’s neighbor set in the other sub-formations.

The below Lipschitz condition [43,45–49] has been widely used to limit the unknown
and bounded nonlinear functions.
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Assumption 3. The nonlinear continuous Lipschitz function f (·, ·, t) is assumed to satisfy the
following inequality: ∥∥ f̃ (pi, vi, t)− f̃

(
pj, vj, t

)∥∥ ≤ l1
∥∥εi − εj

∥∥ (21)

where f̃ (pi, vi, t) =
[

0 f (pi, vi, t)
]T , l1 > 0 is a constant.

Lemma 1 ([50]). Let S1, S2, S3 be given matrices such that S1 > 0. Then

S =

[
S1 S2
ST

2 S3

]
> 0 (22)

if and only if S3 − ST
2 S−1

1 S2 > 0.

Lemma 2 ([51]). For M-matrix L, there exists a matrix Λ = diag{e1, e2, · · · , eN} > 0 satisfying
LTΛ + ΛL > 0, and [e1, e2, · · · , eN ]

T =
(

LT)−11N .

Lemma 3 ([52]). Suppose that f (t) is F− measurable and that E
(

f (t)d
(

1{r(t)=i}

))
exists. Then

for any i ∈ S,

E
(

f (t)d
(

1{r(t)=i}

))
=

n

∑
j=1

πjiE
(

f (t)1{r(t)=i}d(t)
)
+ o(d(t))

Lemma 4 ([53]). Consider a stochastic differential equation

dε(t) = f (t, ε(t), r(t))dt + g(t, ε(t), r(t))dκ(t) (23)

where r(t) obeys a Markov process, and κ(t) is the standard Brownian motion, for a positive
definite V(t, ε(t)) satisfies Vi(t, ε(t))1{r(t)=i} = V(t, ε(t)), the infinitesimal differential generator
is defined as

L[EVi(t, ε(t))] = E
{[

∂V(t,ε(t))
∂t + ∂V(t,ε(t))

∂ε f

+ 1
2 Trace

[
gT ∂2V(t,ε(t))

∂ε2 g
]]}

1{r(t)=i}

+
n
∑

j=1
πjiEVj(t)

(24)

3. Main Results

In the complicated ocean environment, the AUV’s actuator may malfunction. For the
ith follower AUV, the actuator fault model is established as follows [27]:

uF
i (t) = ρi(t)Ũi(t) (25)

where random variable 0 ≤ ρi(t) ≤ 1 represents the unknown efficiency control input of
the ith AUV with E[ρi(t)] ≤ v, 0 < v < 1, ρ(t) = diag{ρ1(t), ρ2(t), · · · , ρN(t)}. In this
paper, we assume that the leader AUV in each sub-formation is fault-free.

Noting that the AUV propulsion system will be affected by the random ocean noise,
and the position and velocity state information received by the AUV from its neighbors will
be attenuated to a certain extent, it is important to take the impact of noise into account.

Based on the above analysis, the formation control consensus protocol can be de-
signed as
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Ũi(t)

= −γK1

[
∑

j∈Ni(t)
aij(t)

((
pi(t)− p∗i

)
−
(

pj(t)− p∗j
))

+dik
((

pi(t)− p∗i
)
− plk(t)

)]
−γK2

[
∑

j∈Ni(t)
aij(t)

(
vi(t)− vj(t)

)
+dik(vi(t)− vlk(t))]

−σ1

[
∑

j∈Ni(t)
ãij(t)

((
pi(t)− p∗i

)
−
(

pj(t)− p∗j
))

+d̃i
((

pi(t)− p∗i
)
− plk(t)

)]
ϑ(t)

−σ2

[
∑

j∈Ni(t)
ãij(t)

(
vi(t)− vj(t)

)
+d̃i(vi(t)− vlk(t))

]
ϑ(t)

(26)

where i ∈ E, k ∈ O, γ > 0, K1, K2 ∈ R5×5 are gain matrices to be designed, σ1 and σ2
represent noise intensity, ãij(t) represents the weight of the noise in the information channel
of the state variable at time t from the information sending AUV i to the information
receiving AUV j,

W =
[

˜̃aij
]
, ˜̃aii =

n

∑
j=1,j 6=i

ãij; ˜̃aij = −ãij, i 6= j

similarly, d̃i denotes the weight of the noise in the information channel of the leader AUV,
D̃ = diag

{
d̃1, d̃2, · · · , d̃N

}
, C = W + D̃. ϑ(t) is the measurement noise satisfying

∫ t

0
ϑ(τ)dτ = κ(t)

κ(t) is a one-dimensional Brownian motion defined in total probability space (Ω,F ,P).
The communication topology among agents is described by a randomly switching

graph: G = (V , ε(t),A(t)), which is governed by a Markovian chain r(t) with the state
space S = {1, 2, · · · , n}, the transition probability matrix Π =

(
πij
)
∈ Rn×n is given by:

P(r(t + h) = j|r(t) = i ) =
{

πijh + o(h), i 6= j
1 + πiih + o(h), i = j

(27)

where h > 0, πij is the transition rate from i to j if i 6= j, πii = − ∑
j 6=i

πij [54].

This paper considers the Markov process r(t) ergodic, and the invariant distribution is

π = (π1, · · · , πS)
T

for all n possible communication graphs G ∈
(
G(1),G(2), · · · ,G(n)

)
with G(i) =

(
V , ε(i)(t),

A(i)(t)
)

, respectively, Ni(t) represents the neighbor’s set of the ith AUV. The union com-
munication graph is defined as

Ḡ =
⋃n

i=1
G(i) =

(
V ,
⋃n

i=1
ε(i)(t),

⋃n

i=1
A(i)(t)

)
(28)

and the Laplacian matrix of communication graph G(t) is defined as L(t), we have

L(t) ∈ {L1, L2, · · · , L3} (29)

where Li is the Laplacian matrix of communication graph G(i). The union of Laplacian

matrix is denoted by L =
n
∑

k=1
Lk. The M sub networks of G on Vj =

{
v1, v2, · · · vNj

}
is

denoted by Gj , j = 1, 2, · · · , M, and similar notations will be held for G(k)j .
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In this paper, we assume that the stochastic processes r(t) and κ(t) are independent
of each other. According to the control protocol (26), the factors affected by noise in
underwater acoustic communication are reflected in the form of state measurement error in
the control protocol, which is beneficial to the effectiveness analysis of formation control.

Set
ξ(t) =

[(
p1(t)− p∗1

)T, (p2(t)− p∗2)
T, ...,
(

pN(t)− p∗N
)T
]T

ζ(t) =
[
vT

1 (t), vT
2 (t), ..., vT

N(t)
]T

ξl(t) =
[

pT
l,N+1(t), · · · , pT

l,N+1(t), pT
l,N+2(t), · · · , pT

l,N+2(t),

· · · , pT
l,N+M(t), · · · , pT

l,N+M(t)
]T

ζl(t) =
[
vT

l,N+1(t), · · · , vT
l,N+1(t), vT

l,N+2(t), · · · , vT
l,N+2(t),

· · · , vT
l,N+M(t), · · · , vT

l,N+M(t)
]T

_

F(p(t), v(t), t) =



f (p1(t), v1(t), t)
...

f
(

pN1(t), vN1(t), t
)

f
(

pN1+1(t), vN1+1(t), t
)

...
f
(

pN1+N2(t), vN1+N2(t), t
)

...
f
(

pN−NM+1(t), vN−NM+1(t), t
)

...
f (pN(t), vN(t), t)


where ξl(t) ∈ RN , ζl(t) ∈ RN , pT

l,N+i(t), i = 1, · · · , M in ξl(t) is repeated Ni times, and

vT
l,N+i(t), i = 1, · · · , M in ζl(t) is repeated Ni times,

_

F(p(t), v(t), t) is repeated Ni times too.
The system (18) and (19) can be expressed in a structured form as:

ξ̇(t) = ζ(t)
ζ̇(t) = −((L(t) + Dk)⊗ ρ(t)γK1)ξ(t)

−(C⊗ ρ(t)σ1 I5)ζ(t)ξ(t)
−((L(t) + Dk)⊗ ρ(t)γK2)ς(t)
−(C⊗ ρ(t)σ2 I5)ζ(t)ς(t)
+(Dk ⊗ ρ(t)K1)ξ

l(t) + (Dk ⊗ ρ(t)K2)ζ
l(t)

+
(

D̃⊗ ρ(t)σ1 I5
)
ζ(t)ξ l(t)

+
(

D̃⊗ ρ(t)σ2 I5
)
ζ(t)ζ l(t)

+
_

F(p(t), v(t), t)

(30)

where Dk = diag{d1k, d2k, · · · , dNk}, k = N + 1, · · · , N + M.
Let p̄li(t) = pi(t)− plk(t)− p∗i , v̄li(t) = vi(t)− vlk(t), i ∈ E, k ∈ O, and the system

can be written in the following equations associated with the error dynamics:

˙̄pli(t) = v̄li(t),
˙̄vli(t) = − ρ(t)γK1 ∑

j∈Ni(t)
hij p̄li(t)− ρ(t)γK2 ∑

j∈Ni(t)
hijv̄li(t)

−ρ(t)σ1ϑ(t) ∑
j∈Ni(t)

h̃ij p̄li(t)− ρ(t)σ2ϑ(t) ∑
j∈Ni(t)

h̃ijv̄li(t)

+ f
(

pi(t)− p∗i , vi(t), t
)
− f

(
pl j(t), vl j(t), t

) (31)

where
[
hij
]

N×N = Hk = L(t) + Dk,
[
h̃ij
]

N×N = C = W + D̃.
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Set
ε(t) =

[
εT

1 (t), · · · , εT
N(t)

]T

=

[[
p̄T

l,1(t), v̄T
l,1(t)

]T
, · · · ,

[
p̄T

l,N(t), v̄T
l,N(t)

]T
]T

The systems (18) and (19) can be recast in the following compact form:

dε(t) = [(IN ⊗ A)ε(t)− (Hk ⊗ γK̄1)ε(t)
+F̄(p(t), v(t), t)]dt− (C⊗ K̄2)ε(t)dκ(t)

(32)

where

A =

[
05 I5
05 05

]
, B =

[
05 05
05 I5

]
K̄1 =

[
05 05

ρ(t)K1 ρ(t)K2

]
, K̄2 =

[
05 05

ρ(t)σ1 I5 ρ(t)σ2 I5

]
F̄ = F̄(p(t), v(t), t) =

05

f
(

p1 − p∗1 , v1, t
)
− f

(
pl,N+1, vl,N+1, t

)
...

05

f
(

pN1
− p∗N1

, vN1
, t
)
− f

(
pl,N+1, vl,N+1, t

)
05

f
(

pN1+1 − p∗N1+1, vN1+1, t
)
− f

(
pl,N+2, vl,N+2, t

)
...

05

f
(

pN1+N2
− p∗N1+N2

, vN1+N2
, t
)
− f

(
pl,N+2, vl,N+2, t

)
...

05

f
(

pN−NM+1 − p∗N−NM+1, vN−NM+1, t
)
− f

(
pl,N+M, vl,N+M, t

)
...

05

f
(

pN − p∗N , vN , t
)
− f

(
pl,N+M, vl,N+M, t

)



(33)

By applying the properties of the elementary matrix, the following relationship can
be obtained

Ê · F̄ =

(
05N

F̃(p(t), v(t), t)

)
(34)

where

Ê =



I5 05 05 05 · · · 05 05 05 05 05
05 05 05 05 · · · 05 05 05 I5 05
05 05 05 05 · · · 05 I5 05 05 05
· · · · · · · · ·

05 05 05 05 · · · I5 05 05 05 05
05 05 05 05 · · · 05 05 I5 05 05
05 05 05 05 · · · 05 05 05 05 I5


is an elementary matrix.

Lemma 5. For communication expectation matrix E[L(t) +Dk], there exists a matrix Λ =

diag{e1, e2, · · · , eN} > 0 satisfyingE
[
LT(t) + Dk

]
Λ+ΛE[L(t) + Dk] > 0, and [e1, e2, · · · , eN ]

T

= (E[L(t)])−11N .
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Proof. According to literature [55], when Υ = [e1, e2, · · · , eN ]
T is the left eigenvector of E[L(t)]

associated with eigenvalue λ = 0, the generalized graph Laplacian potential can be defined as follows

VL =
N
∑

i,j=1
eiaij

(
εj − εi

)2

= εT(E[LT(t)
]
Λ + ΛE[L(t)]

)
ε

(35)

From Assumption 1, it is apparent that

Λ = diag{e1, e2, · · · , eN} > 0, (36)

although the matrix E[L(t)] does not satisfy the M-matrix condition. Not all aij in the adjacency
matrix are greater than zero when i 6= j, but according to Assumption 2, for element aij, which

is less than zero, there must exist aik, aik = −aij in matrix E[L(t)] such that eiaij
(
εj − εi

)2
+

eiaik
(
εj − εi

)2
= 0; this yields that

εT
(
E
[

LT(t)
]
Λ + ΛE[L(t)]

)
ε > 0 (37)

and according to the definition of Dk, we have

εT(DkΛ + ΛDk)ε ≥ 0, (38)

thus, we deduce
E
[

LT(t) + Dk

]
Λ + ΛE[L(t) + Dk] > 0. (39)

Our study is motivated by the M-matrix results in [55], where the M-matrix L satisfies
Lemma 2. While the result in Lemma 5 is similar to the conclusion based on a non-M
matrix, which generalizes the properties of the matrix.

Theorem 1. Consider the multiple stochastic AUV formation system (32) consisting of M leaders
and N followers, the switch topologies are G(1),G(2), · · · ,G(n). Under Assumptions 1, 2 and 3,
the formation control problem of system (32) can achieve consensus if there exists real matrix P,
such that [

AP + PAT + a0P− c0PP− b0BBT P
P − 1

c0
I

]
< 0 (40)

where a0 = vσ2
2 λmax(C) + 2l1, b0 =

vγλmin(E[HT
k ]Λ+ΛE[Hk])

max(ej)
, c0 > 0.

Proof. For i ∈ S and the Markov process r(t), construct the function candidates

Vi(t) = εT(t)
(

Λ⊗ P−1
)

ε(t)1{r(t)=i} (41)

then the Lyapunov functional candidate is

V(t) = εT(t)
(

Λ⊗ P−1
)

ε(t) (42)

Constructing the Lyapunov expectation equation [56]:

E[V(t)] =
n

∑
i=1

P{r(t) = i}[V(t)|r(t) = i ] (43)

By Lemma 4, the infinitesimal differential generator along (32) is given as

L[EV(t)] =
n
∑

i=1
P{r(t) = i}E

{
zT(t)

(
Λ⊗ P−1)ε(t) + εT(t)

(
Λ⊗ P−1)z(t)

+Trace
[
εT(t)(C⊗ BK̄2)

T(Λ⊗ P−1)(C⊗ BK̄2)ε(t)
]} (44)

where:
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z(t) = (IN ⊗ A)ε(t)− (Hk ⊗ γBK̄1)ε(t) + F̄(p(t), v(t), t)

and consider:

E
[

Trace
[
εT(t)(C⊗ BK̄2)

T(Λ⊗ P−1)(C⊗ BK̄2)ε(t)
] ]

≤ vσ2
2 λmax(C)E

[
εT(t)

(
Λ⊗ P−1)ε(t)] (45)

Let [
05 05
K1 K2

]
= BT P−1 (46)

we can obtain

E
{

zT(t)
(
Λ⊗ P−1)ε(t) + εT(t)

(
Λ⊗ P−1) z(t)}

= E
{

εT(t)
[
Λ⊗

(
P−1 A + AT P−1 + vσ2

2 λmax(C)P−1)]ε(t)
−εT(t)

[
γ
(

HT
k Λ + ΛHk

)
⊗v

(
P−1BBT P−1)]ε(t)

+2εT(t)
(
Λ⊗ P−1) F̄(p(t), v(t), t)}

(47)

According to Assumption 3, when f̃ (·, ·, t) satisfies Eq. (21), we have

2εT(t)
(

Λ⊗ P−1
)

F̄(x̃(t), ṽ(t), t) ≤ 2l1εT(t)
(

Λ⊗ P−1
)

ε(t) (48)

From Lemma 5 and the properties of ρ(t), we obtain

E
[
εT(t)

[(
HT

k Λ + ΛHk
)
⊗v

(
P−1BBT P−1)]ε(t)]

= vE
[
εT(t)

[
γ
(

HT
k Λ + ΛHk

)
⊗
(

P−1BBT P−1)]ε(t)]
≥ vγλmin(E[HT

k ]Λ+ΛE[Hk ])
max(ej)

E
[
εT(t)

(
Λ⊗ P−1BBT P−1)ε(t)] (49)

From (45), (47), (48) and (49), we obtain

L[EV(t)] = E
{

εT(t){Λ⊗Θ}ε(t)
}

(50)

where
Θ = P−1 A + AT P−1 + a0P−1 − b0P−1BBT P−1

vσ2
2 λmax(C) + 2l1 = a0,

vγλmin
(
E
[
HT

k
]
Λ + ΛE

[
Hk
])

max
(
ej
) = b0

According to Lemma 1, it can be concluded that if matrix inequality (40) is achieved, then

L[EV(t)] < 0 (51)

In summary, if the conditions in Theorem 1 hold together, the fault-tolerant multiple stochastic
AUV system under Markovian switching topologies and multiple leaders attains formation control.
The proof is completed.

According to Theorem 1, the design steps for the parameters in the control protocol (26)
are as follows:

Step 1: Determine the structure of switching networks and communication topology prob-
ability transition.

Step 2: According to Lemma 5, solve matrix Λ = diag{e1, e2, · · · , eN} by equation
[e1, e2, · · · , eN ]

T = (E[L(t)])−11N .
Step 3: Determine the noise and fault model, and choose the appropriate parameter l1

satisfying
∥∥ f̃ (pi, vi, t)− f̃

(
pj, vj, t

)∥∥ ≤ l1
∥∥εi − ε j

∥∥.
Step 4: Choose parameters γ, c0, calculate parameters a0, b0, solve matrix inequality (40),

and compute the positive matrix P.
Step 5: Compute the feedback matrices K1, K2 by equality (46).
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In the control protocol (26), γ is an adjustment parameter. In general, the bigger γ is,
the faster the system (32) converges [57]. The feedback matrices K1 and K2 depend on the
union matrix L, which represents the global information of the communication. In [49], a
fully distributed protocol was proposed under the directed graph. In the future, we will
try to design a controller that only relies on local communication information to realize
formation control under switching topology.

After comparison with previous references [11,44,47] on formation control in multi-
AUV systems, the innovations of this paper include the following two points. Firstly,
this paper studies a multiple stochastic AUV system, considering the general case that
the dynamic equations of an AUV include a Brownian motion. Secondly, the topology
switching satisfies a stochastic Markov process. Each AUV’s communication topology
can be randomly chosen from several preset possible topological graphs according to the
probability. Therefore, the paper focuses on the formation control problem where two
independent stochastic processes exist in the multi-AUV system. However, there are few
studies on the formation control problem of two stochastic processes coexisting in multi-AUV
systems in previous literature.

Compared with the existing results [1,3,16] on multi-AUV systems, the group forma-
tion and the effects of actuator faults have been considered in this paper. A fault-tolerant
control strategy is presented by designing the union communication topology and selecting
a Lyapunov expectation equation.

It should be mentioned that the Lyapunov function in Theorem 1 is constructed by
taking into account the above two stochastic processes, and the formation control stability
is proved by the Lyapunov expectation equation and infinitesimal generator.

4. Simulation

In this section, the numerical example is given to test the effectiveness of the proposed
algorithm, and the numerical results are compared with those obtained by the control
method proposed in reference [58]. Consider a multi-AUV system with six AUVs and
two leaders divided into two sub-formations. The parameters of the leader AUV model
are adopted from [59], and the parameters of the follower AUVs model refers to [42]. In
addition, we assume that there are 10% uncertainties in the physical parameters of the
AUV; that is, the nominal model parameters are reduced by 10% compared to the real
parameters. Suppose the constant current is uc = [0.2, 0.2, 0] m/s, there are no obstacles in
the simulation environment, and the leader AUV in each sub-formation is fault–free.

The initial value of the leader in each sub-formation has been listed in Table 2. The
initial locations of the follower AUVs are randomly distributed in the three-dimensional
space [−200, 200]× [−300, 200]× [0, 60], and the initial value of velocity is zero. The initial
value of pitch angles of the followers AUVs are set in the interval [−0.4, 0.4], yaw angles
are in the interval [0, 4], and the simulation time is 2500 s. In order to simulate the motion
of AUV more practically, the control input of each AUV is restricted. The thrust amplitude
is 1000 N, and the rudder angle amplitude is 35◦.

Table 2. The leaders’ initial value.

State Value State Value

xl1(0) 150 m ul1(0) 0.75 m·s−1

yl1(0) −250 m vl1(0) 0 m·s−1

zl1(0) 10 m wl1(0) 0 m·s−1

θl1(0) −π/36 ql1(0) 0 rad·s−1

ψl1(0) π/2 rl1(0) 0 rad·s−1

xl2(0) 20 m ul2(0) 0.75 m·s−1

yl2(0) 0 m vl2(0) 0 m·s−1

zl2(0) 8 m wl2(0) 0 m·s−1

θl2(0) −π/36 ql2(0) 0 rad·s−1

ψl2(0) π/2 rl2(0) 0 rad·s−1
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The interaction topologies randomly switch between G(i) following the Markovian
chain r(t) with the state space S = {1, 2, 3}, and the topologies are shown in Figure 3.
D7 = D8 = diag{1, 1, 1, 1, 1, 1}, D̃ = diag{1, 0, 1, 0, 1, 0}, and the generator are chosen as

Π =

 −2 1 1
0 −1 1
1 0 −1

 (52)

the initial distribution of the Markov process is given by its invariant distribution π =

(1/8, 1/2, 3/8)T , and by calculating E[L(t)] = 1
8 L1 +

1
2 L2 +

3
8 L3, it gives

λmin

(
E
[

HT
k

]
Λ + ΛE[Hk]) = 1.7225.

Consider the nonlinear functions:

F̃ = F̃(p(t), v(t), t) =



0.05 tanh(v1)− 0.05 tanh(vl1)
0.01 cos(p2 − p∗2)− 0.01 cos(pl1)
0.015 sin(p3 − p∗3) + 0.2 tanh(v3)
−0.01 cos

(
p4 − p∗4

)
+ 0.01 cos(pl2)

−0.2 tanh(v5) + 0.2 tanh(vl2)
0.015 cos(p6 − p∗6)− 0.35 tanh(v6)

 (53)

Clearly, the function F̃ satisfies Assumption 3.

Figure 3. The network topology graphs.

Set
p∗1 = [0, 0, 0, 0, 0]T , p∗2 = [80,−80, 0, 0, 0]T

p∗3 = [80, 80, 0, 0, 0]T , p∗4 = [−80,−80, 0, 0, 0]T

p∗5 = [−80, 80, 0, 0, 0]T , p∗6 = [0, 0, 0, 0, 0]T

and take [
˜̃aij
]
= L1 + L2 + L3, C = L1 + L2 + L3 + D̃, l1 = 0.1225

σ1 = 0.0523, σ2 = 0.3586, v = 0.75, a0 = c0 = 1.0295, b0 = 4.8740, γ = 1.8.

The actuator fault is considered as follows: the actuator of AUV 1 broke down at
1500 s–2500 s with ρ1(t) = 0.6 + 0.4 exp(1500− t), the actuator of AUV 5 broke down with
ρ2(t) = 0.85+ 0.15 exp(t), and the actuators of other AUVs are normal. In view of Theorem
1, the consensus gains are solved as:
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K1 =


0.0396 0 0 0 0

0 0.0396 0 0 0
0 0 0.0396 0 0
0 0 0 0.0396 0
0 0 0 0 0.0396



K2 =


0.8074 0 0 0 0

0 0.8074 0 0 0
0 0 0.8074 0 0
0 0 0 0.8074 0
0 0 0 0 0.8074


Table 3 shows that the larger the value of parameter γ, the faster the multiple stochastic

AUV system converges, so we select the parameter γ = 1.8.

Table 3. The formation convergence time corresponding to different values of parameter γ.

Parameter γ K1 and K2 The Time of Forming Formations

Formation 1 Formation 2

γ = 1.8 K1 = 0.0396I5, K2 = 0.8074I5 About 3.7 min About 7.8 min
γ = 1.2 K1 = 0.0618I5, K2 = 0.7887I5 About 4.6 min About 9.6 min
γ = 0.6 K1 = 0.0857I5, K2 = 0.8360I5 About 5.3 min About 12.4 min

The desired paths for the leaders are two helical curves and expressed as:
xl7 = 80 cos(0.002πt) + 200, 0 < t ≤ 2500
yl7 = 80 sin(0.002πt)− 200, 0 < t ≤ 2500
zl7 = 0.2t + 30, 0 < t ≤ 2500

x18 =


−t + 50, 0 < t < 50
0, 50 ≤ t < 200
25 cos(0.001π(t− 200)), 200 ≤ t < 1950
-25, 1950 ≤ t ≤ 2500

y18 =


t− 100, 0 < t < 100
1.2t− 120, 100 ≤ t < 200
25 sin(0.001π(t− 200)), 200 ≤ t ≤ 2500

z18 = 0.2t + 30, 0 < t ≤ 2500

Figure 4 shows the Markovian states of switching topology. Figures 5 and 6 plot the
stochastic noise, which is a Brownian motion κ(t), and the distribution ϑ(t) is normal.
Using the above-mentioned control parameters, Figure 7 presents the position states curves
of a multi-AUV system. It can be observed that the follower AUVs 1, 2 and 3 could track
the position states of leader 1 and asymptotically approach those of leader 1’s desired path.
The follower AUVs 4, 5 and 6 could track the position states of leader 2 and asymptotically
approach those of leader 2’s desired path. Figure 8 describes the trajectories of the multi-
AUV system with two leaders in three-dimensional space, which shows that the AUV in
the same sub-group can reach a consensus with switching topology and stochastic noise
through control protocol (26). In Figure 9, one can obtain that the follower AUVs in the
same sub-group can form and keep an equilateral triangle formation. In addition, the
tracking errors between the leaders and the followers are given in Figures 10 and 11. It
can be seen from Figure 10 that the position tracking errors eventually converge to zero
after about 500 s. In Figure 11, the velocity tracking error curves oscillate strongly before
formation convergence, which is caused by the change in the motion state information. It
is generated by the topological switching process, the influence of the external nonlinear
disturbance, and the effect of random ocean noise.
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Figure 4. The Markov states of switching topology.

Figure 5. The Brownian motion κ(t).

Figure 6. The distribution ϑ(t) of Brownian motion κ(t).
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Figure 7. The position states of a multiple stochastic AUV system.

Figure 8. Three-dimensional trajectories of a multiple stochastic AUV system.
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Figure 9. Position trajectories of a multiple stochastic AUV system.

Figure 10. The position tracking errors of a multiple stochastic AUV system.

Figure 11. The velocity tracking errors of a multiple stochastic AUV system.

In the study, we compared the proposed control method with the methods proposed
in [58], which studied path tracking control for multi-AUVs considering sampled-data
delays and packet losses, to show its effectiveness in dealing with random ocean noise
and actuator faults. The sampled-data delays and packet losses are omitted, and the noise
and the effect of the actuator fault are added into the path-tracking control method in [58]
in order to facilitate the comparison. All other simulation conditions are kept consistent
with those in this paper. Figure 12 shows the three-dimensional trajectory of the multi-
AUV system. Figures 13 and 14 show the formation errors of follower AUVs. It can be
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seen that there exist large deviations for the formation position and velocity tracking
errors of follower AUVs, which means the leader AUVs of each sub-formation cannot be
tracked well by the follower AUVs. Therefore, the above simulation results bring about
the conclusion that the proposed control protocols in the paper are valid for multi-AUV
system formation control.

Figure 12. Position trajectories of a multiple stochastic AUV system in a contrastsimulation.

Figure 13. The position tracking errors of a multiple stochastic AUV system in a contrast simulation.

Figure 14. The velocity tracking errors of a multiple stochastic AUV system in a contrast simulation.

5. Conclusions

This paper provides a study on the fault-tolerant formation control problem for a
multiple stochastic AUV system with Markovian switching topology. Using the theory
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of coordinate transformation and differential manifold, the control input and external
disturbance of the AUV system are transformed, which is more conducive to the design of
the controller and the effectiveness of the formation. In addition, the control protocols with
stochastic items and multiple leaders are proposed. The random processes are dominated
by the communication Markov process and the Brownian motion of noise, which are
independent of each other. The study employed the mathematical expectation function and
infinitesimal generator, which contributes to the establishment of some consistent results
for the formation control of multiple stochastic AUV systems. Finally, the simulation was
performed to verify the effectiveness of the proposed control strategy. Future studies on
the formation control for a semi-Markovian jump multiple stochastic AUV system with
an event-triggering communication strategy will be conducted.

Author Contributions: Conceptualization, investigation, simulation, writing—original draft, writing—
review and editing, X.P.; methodology, funding acquisition, Z.Y.; conceptualization, supervision, methodol-
ogy, H.J.; investigation, writing-review and editing, methodology, J.Z.; investigation, data curation, L.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Nature Science Foundation of China
under grant No. 52071102, No. 51609048, No. 51909044, Science Foundation for Distinguished
Young Scholars of Heilongjiang Province of China under grant No. J2016JQ0052, Harbin Science and
Technology Bureau under grant No. 2016RAQXJ080, and Heilongjiang Province Science Foundation
for Youths under grant No. QC2017051.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, W.; Zeng, J.; Yan, Z.; Wei, S.; Tian, W. Leader-following consensus of discrete-time multi-AUV recovery system with

time-varying delay. Ocean Eng. 2021, 219, 108258. [CrossRef]
2. Li, X.; Zhu, D.Q.; Qian, Y.A. Survey on formation control algorithms for multi-AUV system. Unmanned Syst. 2014, 2, 351–359.

[CrossRef]
3. Gao, Z.Y.; Guo, G. Velocity free leader-follower formation control for autonomous underwater vehicles with line-of-sight range

and angle constraints. Inf. Sci. 2019, 486, 359–378. [CrossRef]
4. Chen, S.; Ho, D.W. Consensus control for multiple AUVs under imperfect information caused by communication faults. Inf. Sci.

2016, 370, 565–577. [CrossRef]
5. Wang, J.Q.; Wang, C.; Wei, Y.J.; Zhang, C.J. Bounded neural adaptive formation control of multiple underactuated AUVs under

uncertain dynamics. ISA Trans. 2020, 105, 111–119. [CrossRef] [PubMed]
6. Cao, X.; Guo, L.Q. A Leader–follower formation control approach for target hunting by multiple autonomous underwater vehicle

in three-dimensional underwater environments. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419870664. [CrossRef]
7. Han, L.; Xie, Y.; Li, X.D.; Dong, X.W.; Li, Q.D.; Ren, Z. Time-varying group formation tracking control for second-order multi-agent

systems with communication delays and multiple leaders. J. Frankl. Inst. 2020, 357, 9761–9780. [CrossRef]
8. Park, B.S.; Yoo, S.J. Connectivity-maintaining obstacle avoidance approach for leader-follower formation tracking of uncertain

multiple nonholonomic mobile robots. Expert Syst. Appl. 2021, 171, 114589. [CrossRef]
9. Zhang, J.X.; Su, H.S. Time-varying formation for linear multi-agent systems based on sampled data with multiple leaders.

Neurocomputing 2016, 339, 59–65. [CrossRef]
10. Wang, N.; Li, H. Leader–follower formation control of surface vehicles: A fixed-time control approach. ISA Trans. 2022, 124,

356–364. [CrossRef]
11. Liang H.; Fu Y.; Gao J. Finite-time velocity-observed based adaptive output-feedback trajectory tracking formation control for

under actuated unmanned underwater vehicles with prescribed transient performance. Ocean Eng. 2021, 233, 109071. [CrossRef]
12. Wang, B.; Ashrafiuon H.; Nersesov S. Leader–follower formation stabilization and tracking control for heterogeneous planar

underactuated vehicle networks. Syst. Control Lett. 2021, 156, 105008. [CrossRef]
13. Ni, W.; Cheng D. Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett.

2010, 59, 209–217. [CrossRef]
14. Du, C.; Bian, Y.; Liu, H.; Ren, W.; Lu, P.; Liu, X. Cooperative startup control for heterogeneous vehicle platoons: A finite-time

output tracking-based approach. IEEE Trans. Control Netw. 2021, 8, 1767–1777. [CrossRef]

http://doi.org/10.1016/j.oceaneng.2020.108258
http://dx.doi.org/10.1142/S2301385014400093
http://dx.doi.org/10.1016/j.ins.2019.02.050
http://dx.doi.org/10.1016/j.ins.2016.04.037
http://dx.doi.org/10.1016/j.isatra.2020.06.002
http://www.ncbi.nlm.nih.gov/pubmed/32536369
http://dx.doi.org/10.1177/1729881419870664
http://dx.doi.org/10.1016/j.jfranklin.2020.07.048
http://dx.doi.org/10.1016/j.eswa.2021.114589
http://dx.doi.org/10.1016/j.neucom.2019.02.018
http://dx.doi.org/10.1016/j.isatra.2020.05.042
http://dx.doi.org/10.1016/j.oceaneng.2021.109071
http://dx.doi.org/10.1016/j.sysconle.2021.105008
http://dx.doi.org/10.1016/j.sysconle.2010.01.006
http://dx.doi.org/10.1109/TCNS.2021.3084463


J. Mar. Sci. Eng. 2023, 11, 159 22 of 23

15. Griparic, K.; Polic, M.; Krizmancic, M.; Bogdan, S. Consensus-Based Distributed Connectivity Control in Multi-Agent Systems.
IEEE Trans. Netw. Sci. Eng. 2022, 9, 1264–1281. [CrossRef]

16. Thanh, P.N.; Tam, P.M.; Anh, H.P. New approach for three-dimensional trajectory tracking control of under-actuated AUVs with
model uncertainties. Ocean Eng. 2021, 228, 108951. [CrossRef]

17. Karkoub, M.; Wu, H.M.; Wang, H. Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng. 2017,
145, 188–198. [CrossRef]

18. Shen, C.; Shi, Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking. Automatica 2020,
115, 108863. [CrossRef]

19. Yan, Z.; Gong, P.; Zhang, W.; Wu, W. Model predictive control of autonomous underwater vehicles for trajectory tracking with
external disturbances. Ocean Eng. 2020, 217, 107884. [CrossRef]

20. Cho, G.R.; Li, J.H.; Park, D.; Jung, J.H. Robust trajectory tracking of autonomous underwater vehicles using back-stepping control
and time delay estimation. Ocean Eng. 2020, 201, 107131. [CrossRef]

21. Yang, S.; Bai, W.W.; Li, T.S.; Shi, Q.; Yang, Y.; Wu, Y.; Chen, C.P. Neural-network-based formation control with collision, obstacle
avoidance and connectivity maintenance for a class of second-order nonlinear multi-agent systems. Neurocomputing 2021, 439,
243–255. [CrossRef]

22. Zhang, J.X.; Su, H.S. Formation-containment control for multi-agent systems with sampled data and time delays. Neurocomputing
2019, 424, 125–131. [CrossRef]

23. He, M.H.; Mu, J.R.; Mu, X.W. Leader-following consensus of nonlinear multi-agent systems under semi-Markovian switching
topologies with partially unknown transition rates. Inf. Sci. 2020, 513, 168–179. [CrossRef]

24. Gao, J.F.; Li, J.H.; Pan, H.P.; Wu, Z.G.; Yin, X.X.; Wang, H.J. Consensus via event-triggered strategy of nonlinear multi-agent
systems with Markovian switching topologies. ISA Trans. 2020, 104, 122–129. [CrossRef] [PubMed]

25. Ma, T.D.; Li, K.; Zhang, Z.L.; Cui, B. Impulsive consensus of one-sided Lipschitz nonlinear multi-agent systems with Semi-Markov
switching topologies. Nonlinear Anal. Hybrid Syst. 2021, 40, 101021. [CrossRef]

26. Wan, L.; Cao, Y.; Sun, Y.C.; Qin, H. Fault-tolerant trajectory tracking control for unmanned surface vehicle with actuator faults
based on a fast fixed-time system. ISA Trans. 2022, 130, 79–91. [CrossRef] [PubMed]

27. Cao, Y.; Li, B.; Wen, S.; Huang, T. Consensus tracking of stochastic multi-agent system with actuator faults and switching
topologies. Inf. Sci. 2022, 607, 921–930. [CrossRef]

28. Sun, Y.; Shi, P.; Lin, C. Adaptive consensus control for output-constrained nonlinear multi-agent systems with actuator faults. J.
Frankl. Inst. 2022, 359, 4216–4232. [CrossRef]

29. Lu, Y.; Xu, X.; Qiao, L.; Zhang, W. Robust adaptive formation tracking of autonomous surface vehicles with guaranteed
performance and actuator faults. Ocean Eng. 2021, 237, 109592. [CrossRef]

30. Lai, J.; Chen, S.; Lu, X. ; Zhou, H. Formation tracking for nonlinear multi-agent systems with delays and noise disturbance. Asian
J. Control 2015, 17, 879–891. [CrossRef]

31. Yu, J.; Dong, X.; Li, Q.; Lü, J.; Ren, Z. Fully adaptive practical time-varying output formation tracking for high-order nonlinear
stochastic multiagent system with multiple leaders. IEEE Trans. Cybern. 2019, 51, 2265–2277. [CrossRef] [PubMed]

32. Wang, B.; Tian, Y. Distributed formation control: Asymptotic stabilization results under local noisy information. IEEE Trans.
Cybern. 2019, 51,16–27. [CrossRef] [PubMed]

33. Jia, R.; Zong, X. Time-varying formation control of linear multiagent systems with time delays and multiplicative noises. Int. J.
Robust Nonlin. 2021, 31, 9008–9025. [CrossRef]

34. Mo, L.; Yuan, X.; Jia, Y.; Guo, S. Mean-square Quasi-composite Rotating Formation Control of Second-order Multi-agent Systems
under Stochastic Communication Noises. J. Robot. Netw. Artif. Life 2019, 6, 89–96. [CrossRef]

35. Wang, N.; Ahn, C. Coordinated trajectory-tracking control of a marine aerial-surface heterogeneous system. IEEE/ASME T. Mech.
2021, 26, 3198–3210. [CrossRef]

36. Long, J.; Wang, W.; Wen, C.; Huang, J.; Lü, J. Output feedback based adaptive consensus tracking for uncertain heterogeneous
multi-agent systems with event-triggered communication. Automatica 2020, 136, 110049. [CrossRef]

37. Shimin, W.; Zhi, Z.; Zhong, R.; Wu,Y.; Peng,Z. Adaptive distributed observer design for containment control of heterogeneous
discrete-time swarm systems. Chin. J. Aeronaut. 2020, 33, 2898–2906.

38. Wang, S.; Zhan, Z.; Zhong, R.; Wu, Y.; Peng, Z. Cross-dimensional formation control of second-order heterogeneous multi-agent
systems. ISA Trans. 2022, 127, 188–196.

39. Hu, W.; Liu, L. Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control. IEEE Trans.
Cybern. 2016, 47, 105–116. [CrossRef]

40. Liu, H.; Peng, F.; Modares, H.; Kiumarsi, B. Heterogeneous formation control of multiple rotorcrafts with unknown dynamics by
reinforcement learning. Inf. Sci. 2021, 558, 194–207. [CrossRef]

41. Yuan, C.; Licht, S.; He, H. Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear
uncertain dynamics. IEEE Trans. Cybern. 2017, 48, 2920–2934. [CrossRef] [PubMed]

42. Yan, Z.P.; Yang, Z.W.; Yue, L.D.; Wang, L.; Jia, H.M.; Zhou, J.J. Discrete-time coordinated control of leader-following multiple
AUVs under switching topologies and communication delays. Ocean Eng. 2019, 172, 361–372. [CrossRef]

43. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Trondheim, Norway, 2011; pp. 81–89.

http://dx.doi.org/10.1109/TNSE.2021.3139045
http://dx.doi.org/10.1016/j.oceaneng.2021.108951
http://dx.doi.org/10.1016/j.oceaneng.2017.08.025
http://dx.doi.org/10.1016/j.automatica.2020.108863
http://dx.doi.org/10.1016/j.oceaneng.2020.107884
http://dx.doi.org/10.1016/j.oceaneng.2020.107131
http://dx.doi.org/10.1016/j.neucom.2020.12.106
http://dx.doi.org/10.1016/j.neucom.2019.11.030
http://dx.doi.org/10.1016/j.ins.2019.11.002
http://dx.doi.org/10.1016/j.isatra.2019.11.013
http://www.ncbi.nlm.nih.gov/pubmed/31759683
http://dx.doi.org/10.1016/j.nahs.2021.101020
http://dx.doi.org/10.1016/j.isatra.2022.04.013
http://www.ncbi.nlm.nih.gov/pubmed/35491250
http://dx.doi.org/10.1016/j.ins.2022.06.009
http://dx.doi.org/10.1016/j.jfranklin.2022.03.025
http://dx.doi.org/10.1016/j.oceaneng.2021.109592
http://dx.doi.org/10.1002/asjc.937
http://dx.doi.org/10.1109/TCYB.2019.2956316
http://www.ncbi.nlm.nih.gov/pubmed/31869813
http://dx.doi.org/10.1109/TCYB.2019.2897605
http://www.ncbi.nlm.nih.gov/pubmed/30802880
http://dx.doi.org/10.1002/rnc.5754
http://dx.doi.org/10.2991/jrnal.k.190828.004
http://dx.doi.org/10.1109/TMECH.2021.3055450
http://dx.doi.org/10.1016/j.automatica.2021.110049
http://dx.doi.org/10.1109/TCYB.2015.2508561
http://dx.doi.org/10.1016/j.ins.2021.01.011
http://dx.doi.org/10.1109/TCYB.2017.2752458
http://www.ncbi.nlm.nih.gov/pubmed/28961137
http://dx.doi.org/10.1016/j.oceaneng.2018.12.018


J. Mar. Sci. Eng. 2023, 11, 159 23 of 23

44. Lin, X.; Tian, W.; Zhang, Y.; Li, Z.; Zhang, C. The fault-tolerant consensus strategy for leaderless Multi-AUV system on
heterogeneous condensation topology. Ocean Eng. 2022, 245, 110541. [CrossRef]

45. Yu, W.; Ren, W.; Zheng, W.; Chen, G.; Lü, J. Distributed control gains design for consensus in multi-agent systems with
second-order nonlinear dynamics. Automatica 2013, 49, 2107–2115. [CrossRef]

46. Li, Z.; Ren, W.; Liu, X.; Fu, M. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using
distributed adaptive protocols. IEEE Trans. Automat. Contr. 2012, 58, 1786–1791. [CrossRef]

47. Yan, Z. ; Zhang, M.; Zhang, C.; Zeng, J. Decentralized formation trajectory tracking control of multi-AUV system with actuator
saturation. Ocean Eng. 2022, 255, 111423. [CrossRef]

48. Sader, M.; Chen, Z.; Liu, Z.; Deng, C. Distributed robust fault-tolerant consensus control for a class of nonlinear multi-agent
systems with intermittent communications. Appl. Math. Comput. 2021, 403, 126166. [CrossRef]

49. Li, X.; Wang, J. Fault-tolerant tracking control for a class of nonlinear multi-agent systems. Syst. Control Lett. 2020, 135, 104576.
[CrossRef]

50. Fossen, T.I. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994; pp. 56–121.
51. Meng, M.; Liu, L.; Feng, G. Adaptive output regulation of heterogeneous multiagent systems under Markovian switching

topologies. IEEE Trans. Cybern. 2017, 48, 2962–2971. [CrossRef]
52. Fragoso, M.D.; Costa, O.L.V. A unified approach for stochastic and mean square stability of continuous-time linear systems with

Markovian jumping parameters and additive disturbances. SIAM J. Control Optimi. 2005, 44, 1165–1191. [CrossRef]
53. Li, K.; Mu, X. Containment control of stochastic multiagent systems with semi-Markovian switching topologies. Int. J. Robust

Nonlin. 2019, 29, 4943–4955. [CrossRef]
54. Meyn, S.P.; Tweedie, R. L. Markov Chains and Stochastic Stability; Springer Science & Business Media: Cambridge, UK, 2012;

pp. 48–72.
55. Zhang, H.; Lewis, F.; Qu, Z. Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communica-

tion graphs. IEEE Trans. Ind. Electron. 2011, 59, 3026–3041. [CrossRef]
56. Wang, H.; Xue, B.; Xu, A. Leader-following consensus control for semi-Markov jump multi-agent systems: An adaptive event-

triggered scheme. J. Frankl. Inst. 2021, 358, 428–447. [CrossRef]
57. Ren, W.; Beard, R.W. Distributed Consensus in Multi-Vehicle Cooperative Control; Springer: London, UK, 2008; pp. 25–40.
58. Yan, Z.; Yang, Z.; Pan, X.; Zhou, J.; Wu, D. Virtual leader based path tracking control for Multi-UUV considering sampled-data

delays and packet losses. Ocean Eng. 2020, 216, 108065. [CrossRef]
59. Yan, Z.; Yu, H.; Li, B. Bottom-following control for an underactuated unmanned undersea vehicle using integral-terminal sliding

mode control. J. Cent. South Univ. 2011, 22, 4193–4204. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.oceaneng.2022.110541
http://dx.doi.org/10.1016/j.automatica.2013.03.005
http://dx.doi.org/10.1109/TAC.2012.2235715
http://dx.doi.org/10.1016/j.oceaneng.2022.111423
http://dx.doi.org/10.1016/j.amc.2021.126166
http://dx.doi.org/10.1016/j.sysconle.2019.104576
http://dx.doi.org/10.1109/TCYB.2017.2753382
http://dx.doi.org/10.1137/S0363012903434753
http://dx.doi.org/10.1002/rnc.4661
http://dx.doi.org/10.1109/TIE.2011.2160140
http://dx.doi.org/10.1016/j.jfranklin.2020.10.031
http://dx.doi.org/10.1016/j.oceaneng.2020.108065
http://dx.doi.org/10.1007/s11771-015-2967-y

	Introduction
	Preliminaries
	 Problem Formulation
	 Preliminaries

	Main Results
	 Simulation
	Conclusions
	References

