Multi-Level Wavelet-Based Network Embedded with Edge Enhancement Information for Underwater Image Enhancement
Abstract
:1. Introduction
- An improved UIE model that combines CNN and Transformer is proposed, and discrete wavelet transform and edge detection are added to the network to improve its feature representation and edge enhancement performances;
- A dense residual attention module, which consists of a dense residual block and three attention modules, is designed and embedded into the encoder-decoder network for feature encoding and decoding;
- The effectiveness of the proposed WE-Net is verified by comparison with the existing methods on the full- and non-reference datasets for UIE. In addition, the robustness of the proposed model is demonstrated by ablation studies, and quantitative and qualitative tests.
2. Related Work
3. Proposed Method
3.1. Proposed Architecture Background
3.2. Overall Architecture
3.3. Residual Dense Attention Module (RDAM)
3.4. Loss Function
4. Experiments
4.1. Implementation Details
4.2. Comparisons with SOTA Methods on Full-Reference Datasets
4.3. Comparisons with SOTA Methods on Non-Reference Datasets
4.4. Ablation Studies
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bonin-Font, F.; Oliver, G.; Wirth, S.; Massot, M.; Negre, P.L.; Beltran, J. Visual Sensing for Autonomous Underwater Exploration and Intervention Tasks. Ocean Eng. 2015, 93, 25–44. [Google Scholar] [CrossRef]
- Li, A.; Yu, L.; Tian, S. Underwater Biological Detection Based on YOLOv4 Combined with Channel Attention. J. Mar. Sci. Eng. 2022, 10, 469. [Google Scholar] [CrossRef]
- Drews, P.; Nascimento, E.; Moraes, F.; Botelho, S.; Campos, M. Transmission Estimation in Underwater Single Images. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 1–8 December 2013; pp. 825–830. [Google Scholar]
- Zhang, W.; Liu, W.; Li, L. Underwater Single-Image Restoration with Transmission Estimation Using Color Constancy. J. Mar. Sci. Eng. 2022, 10, 430. [Google Scholar] [CrossRef]
- Figueiredo, M.A.T.; Nowak, R.D. An EM Algorithm for Wavelet-based Image Restoration. IEEE Trans. Image Process. 2003, 12, 906–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, M.A.T.; Bioucas-Dias, J.M.; Nowak, R.D. Majorization–minimization Algorithms for Wavelet-based Image Restoration. IEEE Trans. Image Process. 2007, 16, 2980–2991. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, T.; Dong, J.; Yu, H. Underwater Image Enhancement Via Extended Multi-scale Retinex. Neurocomputing 2017, 245, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Wang, G.; Qi, H.; Zhang, C.; Zheng, H.; Yu, Z. Underwater Image Enhancement with a Deep Residual Framework. IEEE Access 2019, 7, 94614–94629. [Google Scholar] [CrossRef]
- Naik, A.; Swarnakar, A.; Mittal, K. Shallow-UWnet: Compressed Model for Underwater Image Enhancement. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; pp. 15853–15854. [Google Scholar]
- Sharma, P.K.; Bisht, I.; Sur, A. Wavelength-based Attributed Deep Neural Network for Underwater Image Restoration. arXiv 2021, arXiv:2106.07910. [Google Scholar]
- Wang, Y.; Guo, J.; Gao, H.; Yue, H. UIEC2Net: CNN-based Underwater Image Enhancement Using Two Color Space. Signal Process. Image Commun. 2021, 96, 116250. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, C.; Bian, L. U-shape Transformer for Underwater Image Enhancement. arXiv 2021, arXiv:2111.11843. [Google Scholar]
- Hu, K.; Weng, C.; Zhang, Y.; Jin, J.; Xia, Q. An Overview of Underwater Vision Enhancement: From Traditional Methods to Recent Deep Learning. J. Mar. Sci. Eng. 2022, 10, 241. [Google Scholar] [CrossRef]
- Liu, X.; Pedersen, M.; Wang, R. Survey of Natural Image Enhancement Techniques: Classification, Evaluation, Challenges, and Perspectives. Digit. Signal Process. 2022, 127, 103547. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.X.; Zhang, Z.; Lin, S.; Guo, B.N. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Liu, P.; Zhang, H.; Lian, W.; Zuo, W. Multi-level Wavelet Convolutional Neural Networks. IEEE Access 2019, 7, 74973–74985. [Google Scholar] [CrossRef]
- Ma, Z.; Oh, C. A Wavelet-based Dual-stream Network for Underwater Image Enhancement. arXiv 2022, arXiv:2202.08758. [Google Scholar]
- Aytekin, C.; Alenius, S.; Paliy, D.; Gren, J. A Sub-band Approach to Deep Denoising Wavelet Networks and a Frequency-adaptive Loss for Perceptual Quality. arXiv 2021, arXiv:2102.07973. [Google Scholar]
- Yang, H.H.; Yang, C.H.H.; Wang, Y.C.F. Wavelet Channel Attention Module with a Fusion Network for Single Image Deraining. In Proceedings of the IEEE International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 883–887. [Google Scholar]
- Chen, Y.; Huang, J.; Wang, J.; Xie, X. Edge Prior Augmented Networks for Motion Deblurring on Naturally Blurry Images. arXiv 2021, arXiv:2109.08915. [Google Scholar]
- Liang, T.; Jin, Y.; Li, Y.; Wang, T. EDCNN: Edge Enhancement-based Densely Connected Network with Compound Loss for Low-dose CT Denoising. In Proceedings of the IEEE International Conference on Signal Processing, Beijing, China, 6–9 December 2020; pp. 193–198. [Google Scholar]
- Kim, K.; Chun, S.Y. SREdgeNet: Edge Enhanced Single Image Super Resolution Using Dense Edge Detection Network and Feature Merge Network. arXiv 2018, arXiv:1812.07174. [Google Scholar]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. GridDehazeNet: Attention-based Multi-scale Network for Image Dehazing. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 7314–7323. [Google Scholar]
- Dai, L.; Liu, X.; Li, C.; Chen, J. AWNet: Attentive Wavelet Network for Image ISP. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 185–201. [Google Scholar]
- Li, J.; Wang, W.; Chen, C.; Zhang, T.X.; Zha, S.; Wang, J.; Yu, H. TransBTSV2: Wider Instead of Deeper Transformer for Medical Image Segmentation. arXiv 2022, arXiv:2201.12785. [Google Scholar]
- Song, L.; Liu, G.; Ma, M. TD-Net: Unsupervised Medical Image Registration Network Based on Transformer and CNN. Appl. Intell. 2022, 52, 1–9. [Google Scholar]
- Gao, G.; Xu, Z.; Li, J.; Yang, J.; Zeng, T.; Qi, G.J. CTCNet: A CNN-Transformer Cooperation Network for Face Image Super-Resolution. arXiv 2022, arXiv:2204.08696. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.D.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y.Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Ruikar, S.D.; Doye, D.D. Wavelet Based Image Denoising Technique. Int. J. Adv. Comput. Sci. Appl. 2011, 2, 49–53. [Google Scholar]
- Gnanadurai, D.; Sadasivam, V. An Efficient Adaptive Thresholding Technique for Wavelet Based Image Denoising. Int. J. Electron. Commun. Eng. 2008, 2, 1703–1708. [Google Scholar]
- Zhou, J.; Wei, X.; Shi, J.; Chu, W.; Lin, Y. Underwater Image Enhancement Via Two-level Wavelet Decomposition Maximum Brightness Color Restoration and Edge Refinement Histogram Stretching. Opt. Express 2022, 30, 17290–17306. [Google Scholar] [CrossRef]
- Yu, Y.; Zhan, F.; Lu, S.; Pan, J.X.; Ma, F.Y.; Xie, X.S.; Miao, C.Y. WaveFill: A Wavelet-based Generation Network for Image Inpainting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 14114–14123. [Google Scholar]
- Dharejo, F.A.; Zawish, M.; Zhou, F.D.Y.; Dev, K.; Khowaja, S.A.; Qureshi, N.M.F. Multimodal-Boost: Multimodal Medical Image Super-Resolution using Multi-Attention Network with Wavelet Transform. arXiv 2021, arXiv:2110.11684. [Google Scholar]
- Riba, E.; Mishkin, D.; Shi, J.; Ponsa, D.; Moreno-Noguer, F.; Bradski, G. A Survey on Kornia: An Open Source Differentiable Computer Vision Library for PyTorch. arXiv 2020, arXiv:2009.10521. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Qin, X.; Wang, Z.L.; Bai, Y.C.; Xie, X.D.; Jia, H.Z. FFA-Net: Feature Fusion Attention Network for Single Image Dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11908–11915. [Google Scholar]
- Sun, K.C.; Meng, F.; Tian, Y.B. Progressive Multi-branch Embedding Fusion Network for Underwater Image Enhancement. J. Vis. Common. Image R. (Minor Revise).
- Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.J.; Luo, P.; Sattar, J. Simultaneous Enhancement and Super-resolution of Underwater Imagery for Improved Visual Perception. arXiv 2020, arXiv:2002.01155. [Google Scholar]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset and Beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-World Underwater Enhancement: Challenges, Benchmarks, and Solutions Under Natural Light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [Google Scholar] [CrossRef]
- Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater Single Image Color Restoration Using Haze-lines and a New Quantitative Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2822–2837. [Google Scholar] [CrossRef] [Green Version]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Song, W.; Wang, Y.; Huang, D.; Tjondronegoro, D. A Rapid Scene Depth Estimation Model Based on Underwater Light Attenuation Prior for Underwater Image Restoration. In Proceedings of the Pacific Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; pp. 678–688. [Google Scholar]
- Chen, X.; Zhang, P.; Quan, L.; Yi, C.; Lu, C. Underwater Image Enhancement Based on Deep Learning and Image Formation Model. arXiv 2021, arXiv:2101.00991. [Google Scholar]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Ma, K.; Yeganeh, H.; Wang, Z.; Lin, W. A Patch-structure Representation Method for Quality Assessment of Contrast Changed Images. IEEE Signal Process. Lett. 2015, 22, 2387–2390. [Google Scholar] [CrossRef]
- Hunt, B.R. The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer. IEEE Trans. Comput. 1973, 100, 805–812. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Yang, M.; Sowmya, A. An Underwater Color Image Quality Evaluation Metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef]
Method | PSNR | SSIM | MSE | PCQI |
---|---|---|---|---|
UDCP [3] | 11.68 | 0.5362 | 5.1172 | 0.8521 |
ULAP [45] | 15.59 | 0.7345 | 2.8694 | 0.9177 |
Shallow-UWnet [9] | 17.36 | 0.7686 | 1.7166 | 1.0816 |
UResnet [8] | 17.91 | 0.7498 | 1.4731 | 0.7698 |
Chen et al. [46] | 17.81 | 0.7552 | 1.5475 | 0.8876 |
Deep WaveNet [10] | 18.71 | 0.8127 | 1.3427 | 1.0178 |
UIEC2Net [11] | 21.31 | 0.8310 | 0.7739 | 0.8429 |
Ma et al. [17] | 19.87 | 0.8536 | 1.0449 | 0.9618 |
Ours | 22.58 | 0.8906 | 0.6109 | 0.9206 |
Method | PSNR | SSIM | MSE | PCQI |
---|---|---|---|---|
UDCP [3] | 14.48 | 0.5252 | 2.8719 | 0.6968 |
ULAP [45] | 19.47 | 0.6952 | 0.8744 | 0.6660 |
Shallow-UWnet [9] | 23.56 | 0.7629 | 0.3142 | 0.7619 |
UResnet [8] | 23.30 | 0.7686 | 0.3346 | 0.6782 |
Chen et al. [46] | 23.21 | 0.7589 | 0.3666 | 0.7404 |
Deep WaveNet [10] | 24.42 | 0.7791 | 0.2625 | 0.7663 |
UIEC2Net [11] | 24.15 | 0.8033 | 0.2806 | 0.7213 |
Ma et al. [17] | 26.30 | 0.8055 | 0.1768 | 0.7609 |
Ours | 27.20 | 0.8180 | 0.1488 | 0.7706 |
Method | PSNR | SSIM | MSE | PCQI |
---|---|---|---|---|
UDCP [3] | 13.81 | 0.6174 | 3.2111 | 0.7340 |
ULAP [45] | 18.10 | 0.7384 | 1.2602 | 0.7063 |
Shallow-UWnet [9] | 21.17 | 0.8406 | 0.6862 | 0.8524 |
UResnet [8] | 21.32 | 0.8256 | 0.6431 | 0.7678 |
Chen et al. [46] | 22.92 | 0.8566 | 0.4675 | 0.8520 |
Deep WaveNet [10] | 23.13 | 0.8601 | 0.4676 | 0.8696 |
UIEC2Net [11] | 23.35 | 0.8740 | 0.4286 | 0.8454 |
Ma et al. [17] | 23.96 | 0.8728 | 0.3900 | 0.8721 |
Ours | 24.78 | 0.8838 | 0.3439 | 0.8791 |
Method | Test76 | RUIE-UTTS | ||
---|---|---|---|---|
UIQM | UCIQE | UIQM | UCIQE | |
UDCP [3] | 1.3489 | 0.5386 | 2.2369 | 0.5201 |
ULAP [45] | 1.5708 | 0.5222 | 2.6003 | 0.5275 |
Shallow-UWnet [9] | 2.1192 | 0.4659 | 2.8849 | 0.4577 |
UResnet [8] | 2.3534 | 0.5218 | 3.0769 | 0.5076 |
Chen et al. [46] | 2.2492 | 0.4993 | 2.8633 | 0.4850 |
Deep WaveNet [10] | 2.3492 | 0.4977 | 2.9712 | 0.4788 |
UIEC2Net [11] | 2.5421 | 0.5473 | 3.0514 | 0.5181 |
Ma et al. [17] | 2.4884 | 0.5361 | 3.0436 | 0.5200 |
Ours | 2.5596 | 0.5589 | 3.0229 | 0.5425 |
Method | EUVP | UFO-120 | ||||||
---|---|---|---|---|---|---|---|---|
PSNR | SSIM | MSE | PCQI | PSNR | SSIM | MSE | PCQI | |
w/o RSTG | 24.44 | 0.8812 | 0.3668 | 0.8742 | 27.07 | 0.8179 | 0.1512 | 0.7718 |
w/o EEB | 24.55 | 0.8812 | 0.3600 | 0.8778 | 26.90 | 0.8178 | 0.1565 | 0.7632 |
w/o RDAM | 24.52 | 0.8792 | 0.3605 | 0.8698 | 26.93 | 0.8108 | 0.1581 | 0.7651 |
w/one RDAM | 24.75 | 0.8830 | 0.3445 | 0.8765 | 27.14 | 0.8148 | 0.1504 | 0.7682 |
w/o DWT | 24.76 | 0.8828 | 0.3421 | 0.8782 | 27.04 | 0.8143 | 0.1527 | 0.7710 |
Full model | 24.78 | 0.8838 | 0.3439 | 0.8791 | 27.20 | 0.8180 | 0.1488 | 0.7706 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Meng, F.; Tian, Y. Multi-Level Wavelet-Based Network Embedded with Edge Enhancement Information for Underwater Image Enhancement. J. Mar. Sci. Eng. 2022, 10, 884. https://doi.org/10.3390/jmse10070884
Sun K, Meng F, Tian Y. Multi-Level Wavelet-Based Network Embedded with Edge Enhancement Information for Underwater Image Enhancement. Journal of Marine Science and Engineering. 2022; 10(7):884. https://doi.org/10.3390/jmse10070884
Chicago/Turabian StyleSun, Kaichuan, Fei Meng, and Yubo Tian. 2022. "Multi-Level Wavelet-Based Network Embedded with Edge Enhancement Information for Underwater Image Enhancement" Journal of Marine Science and Engineering 10, no. 7: 884. https://doi.org/10.3390/jmse10070884
APA StyleSun, K., Meng, F., & Tian, Y. (2022). Multi-Level Wavelet-Based Network Embedded with Edge Enhancement Information for Underwater Image Enhancement. Journal of Marine Science and Engineering, 10(7), 884. https://doi.org/10.3390/jmse10070884