Advances in Modelling and Analysis of Strength of Corroded Ship Structures
Abstract
:1. Introduction
2. Time-Variant Corrosion Degradation Models
3. Changes in Mechanical Properties
4. Strength Behaviour of Various Structural Components
4.1. Pitting Corrosion Degradation
4.2. General Corrosion Degradation
5. Reliability of Corroded Ship Structures
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Okumoto, Y.; Takeda, Y.; Mano, M.; Okada, T. Design of Ship Hull Structures; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- International Association of Classification Societies. Common Structural Rules (BC & OT); International Association of Classification Societies: London, UK, 2018. [Google Scholar]
- United Nations Conference on Trade and Development. Review of Maritime Transport 2019. Technical Report, United Nations Publications. 2019. Available online: https://unctad.org/system/files/official-document/rmt2019_en.pdf (accessed on 7 June 2022).
- INTERCARGO. Bulk Carrier Casualty Report. Years 2010 to 2019 and Trends. Technical Report, International Association of Dry Cargo Shipowners. 2020. Available online: https://www.intercargo.org/wp-content/uploads/2019/02/Bulk-Carrier-Casualty-Report-2018-publisher-version-10Apr2019.pdf (accessed on 7 June 2022).
- Zayed, A.; Garbatov, Y.; Guedes Soares, C. Corrosion degradation of ship hull steel plates accounting for local environmental conditions. Ocean. Eng. 2018, 163, 299–306. [Google Scholar] [CrossRef]
- Zayed, A.; Garbatov, Y.; Guedes Soares, C. Non-destructive Corrosion Inspection Modeling of Tanker Structures. In Proceedings of the ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, Volume 2: Structures, Safety and Reliability, Estoril, Portugal, 15–20 June 2008; pp. 465–476. [Google Scholar] [CrossRef]
- Melchers, R.E. Development of new applied models for steel corrosion in marine applications including shipping. Ships Offshore Struct. 2008, 3, 135–144. [Google Scholar] [CrossRef]
- Melchers, R.E. Corrosion uncertainty modelling for steel structures. J. Constr. Steel Res. 1999, 52, 3–19. [Google Scholar] [CrossRef]
- Yamamoto, N.; Ikegami, K. A Study on the Degradation of Coating and Corrosion of Ship’s Hull Based on the Probabilistic Approach. J. Offshore Mech. Arct. Eng. 1998, 120, 121–128. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Garbatov, Y. Non-linear time dependent model of corrosion for the reliability assessment of maintained structural components. A. A. Balkema Saf. Reliab. 1998, 2, 929–936. [Google Scholar]
- Guedes Soares, C.; Garbatov, Y. Reliability of maintained, corrosion protected plates subjected to non-linear corrosion and compressive loads. Mar. Struct. 1999, 12, 425–445. [Google Scholar] [CrossRef]
- Paik, J.K.; Kim, S.K.; Lee, S.K. Probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers. Ocean. Eng. 1998, 25, 837–860. [Google Scholar] [CrossRef]
- Qin, S.; Cui, W. Effect of corrosion models on the time-dependent reliability of steel plated elements. Mar. Struct. 2003, 16, 15–34. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Garbatov, Y.; Zayed, A. Effect of environmental factors on steel plate corrosion under marine immersion conditions. Corros. Eng. Sci. Technol. 2011, 46, 524–541. [Google Scholar] [CrossRef]
- Garbatov, Y.; Guedes Soares, C.; Wang, G. Nonlinear Time Dependent Corrosion Wastage of Deck Plates of Ballast and Cargo Tanks of Tankers. J. Offshore Mech. Arct. Eng. 2007, 129, 48–55. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Garbatov, Y.; Zayed, A.; Wang, G. Corrosion wastage model for ship crude oil tanks. Corros. Sci. 2008, 50, 3095–3106. [Google Scholar] [CrossRef]
- Garbatov, Y.; Guedes Soares, C. Corrosion wastage modeling of deteriorated bulk carrier decks. Int. Shipbuild. Prog. 2008, 55, 109–125. [Google Scholar] [CrossRef]
- Lampe, J.; Hamann, R. Probabilistic model for corrosion degradation of tanker and bulk carrier. Mar. Struct. 2018, 61, 309–325. [Google Scholar] [CrossRef]
- Ivosevic, S.; Mestrovic, R.; Kovac, N. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers. Int. J. Nav. Archit. Ocean. 2019, 11, 165–177. [Google Scholar] [CrossRef]
- Mohammadrahimi, A.; Sayebani, M. Using the Bayesian updating approach to develop time-dependent corrosion wastage model for deck panel of bulk carriers. Mar. Struct. 2019, 64, 92–109. [Google Scholar] [CrossRef]
- Kim, C.; Oterkus, S.; Oterkus, E.; Kim, Y. Probabilistic ship corrosion wastage model with Bayesian inference. Ocean. Eng. 2022, 246, 110571. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y.; Kowalski, J. Indoor accelerated controlled corrosion degradation test of small- and large-scale specimens. Ocean. Eng. 2021, 241, 110039. [Google Scholar] [CrossRef]
- Ayyub, B.M.; Stambaugh; Karl, A.K.; McGill, W. End-of-Life Corrosion Estimation and Profile of Ship Hull Structure: Non-Parametric Statistical Analysis of Medium Endurance Cutters. ASCE-ASME J. Risk Uncertain. Eng. Sys. Part B Mech. Engrg. 2022, 8, 31203. [Google Scholar] [CrossRef]
- Garbatov, Y.; Guedes Soares, C.; Parunov, J.; Kodvanj, J. Tensile strength assessment of corroded small scale specimens. Corros. Sci. 2014, 85, 296–303. [Google Scholar] [CrossRef]
- Garbatov, Y.; Parunov, J.; Kodvanj, J.; Saad-Eldeen, S.; Guedes Soares, C. Experimental assessment of tensile strength of corroded steel specimens subjected to sandblast and sandpaper cleaning. Mar. Struct. 2016, 49, 18–30. [Google Scholar] [CrossRef]
- Garbatov, Y.; Saad-Eldeen, S.; Guedes Soares, C.; Parunov, J.; Kodvanj, J. Tensile test analysis of corroded cleaned aged steel specimens. Corros. Eng. Sci. Technol. 2018, 54, 154–162. [Google Scholar] [CrossRef]
- Du, Y.G.; Clark, L.A.; Chan, A.H.C. Residual capacity of corroded reinforcing bars. Mag. Concr. Res. 2005, 57, 135–147. [Google Scholar] [CrossRef]
- Cairns, J.; Plizzari, G.A.; Du, Y.; Law, D.W.; Franzoni, C. Mechanical properties of corrosion-damaged reinforcement. ACI Mater. J. 2005, 102, 256–264. [Google Scholar]
- Du, Y.G.; Clark, L.A.; Chan, A.H.C. Effect of corrosion on ductility of reinforcing bars. Mag. Concr. Res. 2005, 57, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Palsson, R.; Mirza, M.S. Mechanical response of corroded steel reinforcement of abandoned concrete bridge. ACI Struct. J. 2002, 99, 157–162. [Google Scholar]
- Kodvanj, J.; Garbatov, Y.; Guedes Soares, C.; Parunov, J. Numerical analysis of stress concentration in non-uniformly corroded small-scale specimens. J. Mar. Sci. Appl. 2021, 20, 1–9. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y.; Kłosowski, P. Stress–strain model of lower corroded steel plates of normal strength for fitness-for-purpose analyses. Constr. Build. Mater. 2022, 323, 126560. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Wang, H.; Li, A. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology. Constr. Build. Mater. 2017, 152, 777–793. [Google Scholar] [CrossRef]
- Wu, H.; Lei, H.; Chen, Y.F.; Qiao, J. Comparison on corrosion behaviour and mechanical properties of structural steel exposed between urban industrial atmosphere and laboratory simulated environment. Constr. Build. Mater. 2019, 211, 228–243. [Google Scholar] [CrossRef]
- Nie, B.; Xu, S.; Yu, J.; Zhang, H. Experimental investigation of mechanical properties of corroded cold-formed steels. J. Constr. Steel Res. 2019, 162, 105706. [Google Scholar] [CrossRef]
- Qin, G.C.; Xu, S.H.; Yao, D.Q.; Zhang, Z.X. Study on the degradation of mechanical properties of corroded steel plates based on surface topography. J. Constr. Steel Res. 2016, 125, 205–217. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Z.; Li, R.; Wang, H. Effect of cleaned corrosion surface topography on mechanical properties of cold-formed thin-walled steel. Constr. Build. Mater. 2019, 222, 1–14. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, H.; Wang, Y. Estimation of the properties of corroded steel plates exposed to salt-spray atmosphere. Corros. Eng. Sci. Technol. 2019, 54, 431–443. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Y.; Xing, Y.; Jiao, J.; Fu, B.; Wang, Y. Experimental and numerical analysis of mechanical behaviors of long-term atmospheric corroded Q235 steel. Structures 2022, 39, 115–131. [Google Scholar] [CrossRef]
- Nakai, T.; Matsushita, H.; Yamamoto, N.; Arai, H. Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report). Mar. Struct. 2004, 17, 403–432. [Google Scholar] [CrossRef]
- Ahmmad, M.M.; Sumi, Y. Strength and deformability of corroded steel plates under quasi-static tensile load. J. Mar. Sci. Technol. 2010, 15, 1–15. [Google Scholar] [CrossRef]
- Wu, H.; Lei, H.; Chen, Y.F. Grey relational analysis of static tensile properties of structural steel subjected to urban industrial atmospheric corrosion and accelerated corrosion. Constr. Build. Mater. 2022, 315, 125706. [Google Scholar] [CrossRef]
- Wu, H.; Lei, H.; Frank, C.Y. Study on corrosion models of structural steel exposed in urban industrial atmospheric and laboratory simulated environments based on the 3D profile. Thin-Walled Struct. 2021, 168, 108286. [Google Scholar] [CrossRef]
- Česen, A.; Kosec, T.; Legat, A. Characterization of steel corrosion in mortar by various electrochemical and physical techniques. Corros. Sci. 2013, 75, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, S.; Li, H.; Zhang, H. Surface Characteristics and Stochastic Model of Corroded Structural Steel Under General Atmospheric Environment. Acta Metall. Sin. 2020, 56, 148–160. [Google Scholar] [CrossRef]
- Xu, S.H.; Wang, Y.D. Estimating the effects of corrosion pits on the fatigue life of steel plate based on the 3D profile. Int. J. Fatigue 2015, 72, 27–41. [Google Scholar] [CrossRef]
- Xiao, L.; Peng, J.; Zhang, J.; Ma, Y.; Cai, C. Comparative assessment of mechanical properties of HPS between electrochemical corrosion and spray corrosion. Constr. Build. Mater. 2020, 237, 117735. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y. Random field modelling of mechanical behaviour of corroded thin steel plate specimens. Eng. Struct. 2020, 212, 110544. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y. An enhanced method in predicting tensile behaviour of corroded thick steel plate specimens by using random field approach. Ocean. Eng. 2020, 213, 107803. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Wang, H.; Kong, D.; Xu, S. Stochastic constitutive model of structural steel based on random field of corrosion depth. Case Stud. Constr. Mater. 2022, 16, e00972. [Google Scholar] [CrossRef]
- Paik, J.K.; Lee, J.M.; Ko, M.J. Ultimate compressive strength of plate elements with pit corrosion wastage. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2003, 217, 185–200. [Google Scholar] [CrossRef]
- Paik, J.K.; Lee, J.M.; Ko, J. Ultimate shear strength of plate elements with pit corrosion wastage. Thin-Walled Struct. 2004, 42, 1161–1176. [Google Scholar] [CrossRef]
- Rahbar-Ranji, A.; Niamir, N.; Zarookian, A. Ultimate strength of stiffened plates with pitting corrosion. Int. J. Nav. Archit. Ocean. 2015, 7, 509–525. [Google Scholar] [CrossRef] [Green Version]
- Ok, D.; Pu, Y.; Incecik, A. Computation of ultimate strength of locally corroded unstiffened plates under uniaxial compression. Mar. Struct. 2007, 20, 100–114. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Liu, G.; Zhang, Q. Ultimate strength assessment of hull structural plate with pitting corrosion damnification under biaxial compression. Ocean. Eng. 2010, 37, 1503–1512. [Google Scholar] [CrossRef]
- Feng, L.; He, J.; Hu, L.; Shi, H.; Yu, C.; Wang, S.; Yang, S. A parametric study on effects of pitting corrosion on steel plate’s ultimate strength. Appl. Ocean. Res. 2020, 95, 102026. [Google Scholar] [CrossRef]
- Jiang, X.; Guedes Soares, C. Ultimate capacity of rectangular plates with partial depth pits under uniaxial loads. Mar. Struct. 2012, 26, 27–41. [Google Scholar] [CrossRef]
- Silva, J.; Garbatov, Y.; Guedes Soares, C. Ultimate strength assessment of rectangular steel plates subjected to a random localised corrosion degradation. Eng. Struct. 2013, 52, 295–305. [Google Scholar] [CrossRef]
- Wang, R.; Ajit Shenoi, R.; Sobey, A. Ultimate strength assessment of plated steel structures with random pitting corrosion damage. J. Constr. Steel Res. 2018, 143, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Y.; Wei, Y. Ultimate strength experiment of hull structural plate with pitting corrosion damage under unaxial compression. Ocean. Eng. 2017, 130, 103–114. [Google Scholar] [CrossRef]
- Pidaparti, R.M.; Rao, A.S. Analysis of pits induced stresses due to metal corrosion. Corros. Sci. 2008, 50, 1932–1938. [Google Scholar] [CrossRef]
- Ok, D.; Pu, Y.; Incecik, A. Artificial neural networks and their application to assessment of ultimate strength of plates with pitting corrosion. Ocean. Eng. 2007, 34, 2222–2230. [Google Scholar] [CrossRef]
- Wang, R. On the effect of pit shape on pitted plates, Part II: Compressive behavior due to random pitting corrosion. Ocean. Eng. 2021, 236, 108737. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, X.H.; Guedes Soares, C. Experimental analysis of residual ultimate strength of stiffened panels with pitting corrosion under compression. Eng. Struct. 2017, 152, 70–86. [Google Scholar] [CrossRef]
- Shi, X.H.; Zhang, J.; Guedes Soares, C. Numerical assessment of experiments on the ultimate strength of stiffened panels with pitting corrosion under compression. Thin-Walled Struct. 2018, 133, 52–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Meng, F. Ultimate strength of hull structural stiffened plate with pitting corrosion damage under unaxial compression. Mar. Struct. 2017, 56, 117–136. [Google Scholar] [CrossRef]
- Sultana, S.; Wang, Y.; Sobey, A.; Wharton, J.; Shenoi, R. Influence of corrosion on the ultimate compressive strength of steel plates and stiffened panels. Thin-Walled Struct. 2015, 96, 95–104. [Google Scholar] [CrossRef]
- Wang, Y.; Wharton, J.A.; Shenoi, R.A. Ultimate strength assessment of steel stiffened plate structures with grooving corrosion damage. Eng. Struct. 2015, 94, 29–42. [Google Scholar] [CrossRef]
- Feng, L.; Hong, K.; Li, D.; Shi, H. Ultimate torsional strength assessment of large deck opening stiffened box girder subjected to pitting corrosion. Ocean. Eng. 2022, 251, 111059. [Google Scholar] [CrossRef]
- Piscopo, V.; Scamardella, A. Incidence of Pitting Corrosion Wastage on the Hull Girder Ultimate Strength. J. Mar. Sci. Appl. 2021, 20, 477–490. [Google Scholar] [CrossRef]
- Piscopo, V.; Scamardella, A. Towards a unified formulation for the ultimate strength assessment of uncorroded and pitted platings under uniaxial compression. Ocean. Eng. 2018, 169, 70–86. [Google Scholar] [CrossRef]
- Panayotova, M.; Garbatov, Y. Corrosion of steels in marine environment, monitoring and standards. In Safety and Reliability of Industrial Products, Systems and Structures; CRC Press: Boca Raton, FL, USA, 2010; pp. 369–413. [Google Scholar] [CrossRef]
- International Association of Classification Societies. PR No 19. Procedural Requirement for Thickness Measurements; International Association of Classification Societies: London, UK, 2017. [Google Scholar]
- Mateus, A.; Witz, J. On the post-buckling of corroded steel plates used in marine structures. Trans RINA 1998, 140, 165–183. [Google Scholar]
- Teixeira, A.P.; Ivanov, L.D.; Guedes Soares, C. Assessment of characteristic values of the ultimate strength of corroded steel plates with initial imperfections. Eng. Struct. 2013, 56, 517–527. [Google Scholar] [CrossRef]
- Reza Khedmati, M.; Mahdi Roshanali, M.; Mohammad Esmaeil Nouri, Z.H. Strength of steel plates with both-sides randomly distributed with corrosion wastage under uniaxial compression. Thin-Walled Struct. 2011, 49, 325–342. [Google Scholar] [CrossRef]
- Rahbar-Ranji, A. Ultimate strength of corroded steel plates with irregular surfaces under in-plane compression. Ocean. Eng. 2012, 54, 261–269. [Google Scholar] [CrossRef]
- Khedmati, M.R.; Nouri, Z.H.M.E.; Roshanali, M.M. A comparative computational investigation on the effects of randomly distributed general corrosion on the post-buckling behaviour of uniaxially loaded plates. J. Mech. Sci. Technol. 2012, 26, 767–783. [Google Scholar] [CrossRef]
- Teixeira, A.P.; Guedes Soares, C.; Wang, G. Probabilistic modelling of the ultimate strength of ship plates with non-uniform corrosion. J. Mar. Sci. Technol. 2013, 18, 115–132. [Google Scholar] [CrossRef]
- Qi, Z.; Hongqi, Y.; Huan, Z.; Kaixuan, L.; Yi, H. Ultimate strength assessment of hull structural plates with general corrosion based on fractal theory. Ocean. Eng. 2022, 245, 110417. [Google Scholar] [CrossRef]
- Garbatov, Y.; Tekgoz, M.; Guedes Soares, C. Experimental and numerical strength assessment of stiffened plates subjected to severe non-uniform corrosion degradation and compressive load. Ships Offshore Struct. 2017, 12, 461–473. [Google Scholar] [CrossRef]
- Woloszyk, K.; Kahsin, M.; Garbatov, Y. Numerical assessment of ultimate strength of severe corroded stiffened plates. Eng. Struct. 2018, 168, 346–354. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y. Uncertainty assessment of ultimate strength of corroded stiffened plates subjected to maintenance. In Sustainable Development and Innovations in Marine Technologies; Georgiev, P., Guedes Soares, C., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 429–436. [Google Scholar] [CrossRef]
- Mohammad, Z.H.; Nouri, E.; Khedmati, M.R.; Roshanali, M.M. Degradation of the compressive strength of unstiffened/stiffened steel plates due to both-sides randomly distributed corrosion wastage. Lat. Am. J. Solids Struct. 2010, 7, 335–367. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Park, D.K.; Kim, J.H.; Kim, S.J.; Kim, B.J.; Seo, J.K.; Paik, J.K. Effect of corrosion on the ultimate strength of double hull oil tankers - Part I: Stiffened panels. Struct. Eng. Mech. 2012, 42, 507–530. [Google Scholar] [CrossRef]
- Georgiadis, D.G.; Samuelides, M.S. The effect of corrosion spatial randomness and model selection on the ultimate strength of stiffened panels. Ships Offshore Struct. 2021, 16, 140–152. [Google Scholar] [CrossRef]
- Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. Analysis of plate deflections during ultimate strength experiments of corroded box girders. Thin-Walled Struct. 2012, 54, 164–176. [Google Scholar] [CrossRef]
- Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. Effect of corrosion degradation on ultimate strength of steel box girders. Corros. Eng. Sci. Technol. 2012, 47, 272–283. [Google Scholar] [CrossRef]
- Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. Experimental assessment of the ultimate strength of a box girder subjected to severe corrosion. Mar. Struct. 2011, 24, 338–357. [Google Scholar] [CrossRef]
- Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. Corrosion-Dependent Ultimate Strength Assessment of Aged Box Girders Based on Experimental Results. J. Ship Res. 2011, 55, 289–300. [Google Scholar] [CrossRef]
- Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. Ultimate strength assessment of corroded box girders. Ocean. Eng. 2013, 58, 35–47. [Google Scholar] [CrossRef]
- Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. Experimental assessment of corroded steel box-girders subjected to uniform bending. Ships Offshore Struct. 2013, 8, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. Strength assessment of a severely corroded box girder subjected to bending moment. J. Constr. Steel Res. 2014, 92, 90–102. [Google Scholar] [CrossRef]
- Domzalicki, P.; Skalski, I.; Guedes Soares, C.; Garbatov, Y. Large Scale Corrosion Tests. In Analysis and Design of Marine Structures; Das, P.K., Ed.; Taylor & Francis Group: Abingdon, UK, 2009; pp. 193–198. [Google Scholar]
- Garbatov, Y.; Saad-Eldeen, S.; Guedes Soares, C. Hull girder ultimate strength assessment based on experimental results and the dimensional theory. Eng. Struct. 2015, 100, 742–750. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Garbatov, Y. Reliability of maintained ship hulls subjected to corrosion. J. Ship Res. 1996, 40, 235–243. [Google Scholar] [CrossRef]
- Wirsching, P.H.; Ferensic, J.; Thayamballi, A. Reliability with Respect to Ultimate Strength of a Corroding Ship Hull. Mar. Struct. 1997, 10, 501–518. [Google Scholar] [CrossRef]
- Akpan, U.O.; Koko, T.S.; Ayyub, B.; Dunbar, T.E. Risk assessment of aging ship hull structures in the presence of corrosion and fatigue. Mar. Struct. 2002, 15, 211–231. [Google Scholar] [CrossRef]
- Paik, J.K.; Lee, J.M.; Hwang, J.S.; Park, Y.I. A Time-Dependent Corrosion Wastage Model for the Structures of Single-and Double-Hull Tankers and FSOs and FPSOs. Mar. Technol. Sname News 2003, 40, 201–217. [Google Scholar] [CrossRef]
- Horte, T.; Wang, G.; White, N. Calibration of the hull girder ultimate capacity criterion for double hull tankers. In Proceedings of the 10th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS’07), Houston, TX, USA, 30 September–5 October 2007; pp. 1–5. [Google Scholar]
- Ivanov, L.D. A Probabilistic Assessment of all Hull Girder Geometric Properties at any Ship’s Age. Int. J. Marit. Eng. 2007, 149, 15. [Google Scholar] [CrossRef]
- Wang, G.; Lee, A.K.; Ivanov, L.; Lynch, T.J.; Serratella, C.; Basu, R. A statistical investigation of time-variant hull girder strength of aging ships and coating life. Mar. Struct. 2008, 21, 240–256. [Google Scholar] [CrossRef]
- Yamamoto, N.; Yao, T. Hull Girder Strength of a Tanker under Longitudinal Bending considering Strength Diminution due to Corrosion. ClassNK Tech. Bull. (NK Tech. Bull.) 2002, 20, 103–109. [Google Scholar]
- Liu, B.; Garbatov, Y.; Zhu, L.; Guedes Soares, C. Numerical assessment of the structural crashworthiness of corroded ship hulls in stranding. Ocean. Eng. 2018, 170, 276–285. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Garbatov, Y. Reliability assessment of maintained ship hulls with correlated corroded elements. Mar. Struct. 1997, 10, 629–653. [Google Scholar] [CrossRef]
- Teixeira, A.P.; Guedes Soares, C. Semi-empirical Based Response Surface Approach for Reliability Evaluation of Steel Plates with Random Fields of Corrosion. In 18th International Probabilistic Workshop; Matos, J.C., Lourenco, P.B., Oliveira, D.V., Branco, J., Proske, D., Silva, R.A., Sousa, H.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 715–732. [Google Scholar] [CrossRef]
- Han, X.; Yang, D.Y.; Frangopol, D.M. Time-variant reliability analysis of steel plates in marine environments considering pit nucleation and propagation. Probabilistic Eng. Mech. 2019, 57, 32–42. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y. Reliability of corroded stiffened plate subjected to uniaxial compressive loading. Int. J. Marit. Eng. 2020, 162, 421–430. [Google Scholar] [CrossRef]
- Zayed, A.; Garbatov, Y.; Guedes Soares, C. Reliability of ship hulls subjected to corrosion and maintenance. Struct. Saf. 2013, 43, 1–11. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y. Structural Reliability Assessment of Corroded Tanker Ship Based on Experimentally Estimated Ultimate Strength. Pol. Marit. Res. 2019, 26, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Moan, T.; Ayala-Uraga, E. Reliability-based assessment of deteriorating ship structures operating in multiple sea loading climates. Reliab. Eng. Syst. Saf. 2008, 93, 433–446. [Google Scholar] [CrossRef]
- Dong, Y.; Frangopol, D.M. Risk-informed life-cycle optimum inspection and maintenance of ship structures considering corrosion and fatigue. Ocean. Eng. 2015, 101, 161–171. [Google Scholar] [CrossRef]
- Zhu, B.; Frangopol, D.M. Reliability assessment of ship structures using Bayesian updating. Eng. Struct. 2013, 56, 1836–1847. [Google Scholar] [CrossRef]
- Jiang, X.; Melchers, R.E. Reliability Analysis of Maintained Ships Under Correlated Fatigue and Corrosion. Int. J. Marit. Eng. 2005, 147, 9–18. [Google Scholar] [CrossRef]
- International Association of Classification Societies. Annual Review 2020. Technical Report. 2021. Available online: https://iacs.org.uk/media/8047/iacs-ar2020-low-res.pdf (accessed on 7 June 2022).
- Garbatov, Y. Risk-based corrosion allowance of oil tankers. Ocean. Eng. 2020, 213, 107753. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woloszyk, K.; Garbatov, Y. Advances in Modelling and Analysis of Strength of Corroded Ship Structures. J. Mar. Sci. Eng. 2022, 10, 807. https://doi.org/10.3390/jmse10060807
Woloszyk K, Garbatov Y. Advances in Modelling and Analysis of Strength of Corroded Ship Structures. Journal of Marine Science and Engineering. 2022; 10(6):807. https://doi.org/10.3390/jmse10060807
Chicago/Turabian StyleWoloszyk, Krzysztof, and Yordan Garbatov. 2022. "Advances in Modelling and Analysis of Strength of Corroded Ship Structures" Journal of Marine Science and Engineering 10, no. 6: 807. https://doi.org/10.3390/jmse10060807
APA StyleWoloszyk, K., & Garbatov, Y. (2022). Advances in Modelling and Analysis of Strength of Corroded Ship Structures. Journal of Marine Science and Engineering, 10(6), 807. https://doi.org/10.3390/jmse10060807