Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer
Abstract
:1. Introduction
2. Experimental Setup and Method
2.1. Geometry of Inducer
2.2. Experimental Setup
2.3. Experimental Method
2.3.1. Experimental Method for the External Characteristic Performance
2.3.2. Experimental Method for Cavitation Performance
2.3.3. Experimental Method for Pressure Pulsation
2.3.4. Experimental Method for High-Speed Photography
2.4. Uncertainty Analysis
3. Results and Discussions
3.1. External Characteristic Performance
3.2. Cavitation Characteristic Curve
3.3. Pressure Pulsation Characteristics Analysis
3.4. Non-Cavitation Condition
3.4.1. Time Domain Analysis
3.4.2. Frequency Domain Analysis
3.5. Cavitation Condition
3.5.1. Time Domain Analysis
3.5.2. Frequency Domain Analysis
3.6. High-Speed Photography Experiment Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, Y.; Wang, N.; Li, J.; Zhang, Z.; Han, L. Experimental and numerical study on pressure oscillation in a combustor with rotary valve. Chin. J. Aeronaut. 2021, 34, 298–314. [Google Scholar] [CrossRef]
- Ren, P.; Wang, H.; Zhou, G.; Li, J.; Cai, Q.; Yu, J.; Yuan, Y. Solid rocket motor propellant grain burnback simulation based on fast minimum distance function calculation and improved marching tetrahedron method. Chin. J. Aeronaut. 2020, 34, 208–224. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Sun, B.; Li, K.; Cai, G. Index allocation for a reusable LOX/CH4 rocket engine. Chin. J. Aeronaut. 2021, 34, 432–440. [Google Scholar] [CrossRef]
- Tian, H.; Duan, Y.; Zhu, H. Three-dimensional numerical analysis on combustion performance and flow of hybrid rocket motor with multi-segmented grain. Chin. J. Aeronaut. 2020, 33, 1181–1191. [Google Scholar] [CrossRef]
- Song, A.; Wang, N.; Li, J.; Ma, B.; Chen, X. Transient flow characteristics and performance of a solid rocket motor with a pintle valve. Chin. J. Aeronaut. 2020, 33, 3189–3205. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Gao, Y.; Chen, H. Investigation on Schemes for Accelerating Oxidizer Boost Pump During Start-Up of LOX/Kerosene Staged Combustion Rocket Engine. J. Propulsion Technol. 2020, 41, 1441–1448. [Google Scholar]
- Li, D.; Ren, Z.; Li, Y.; Gong, R.; Wang, H. Thermodynamic effects on the cavitation flow of a liquid oxygen turbopump. Cryogenics 2021, 116, 103302. [Google Scholar] [CrossRef]
- Zhai, L.; Li, Y.; Cui, B.; Guo, J.; Li, X.; Zhu, Z. Studies of cavitation characteristics of inducers with different blade numbers. AIP Adv. 2021, 11, 085216. [Google Scholar] [CrossRef]
- Guan, X.-Y.; Jia, B.-Q.; Yang, L.-J.; Fu, Q.-F. Linear instability of an annular liquid jet with gas velocity oscillations. Phys. Fluids 2021, 33, 054110. [Google Scholar] [CrossRef]
- Rutard, N.; Dorey, L.-H.; Le Touze, C.; Ducruix, S. Large-eddy simulation of an air-assisted liquid jet under a high-frequency transverse acoustic forcing. Int. J. Multiph. Flow 2019, 122, 103144. [Google Scholar] [CrossRef]
- Chen, T.; Mu, Z.; Huang, B.; Zhang, M.; Wang, G. Dynamic instability analysis of cavitating flow with liquid nitrogen in a converging–diverging nozzle. Appl. Therm. Eng. 2021, 192, 116870. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Ma, Z. A modified filter-based model for simulation of unsteady cavitating flows around a NACA66 hydrofoil. Mod. Phys. Lett. B 2020, 35. [Google Scholar] [CrossRef]
- Yu, J.; Liu, J.-H.; Wang, H.-K.; Wang, J.; Zhang, L.-P.; Liu, G.-Z. Numerical simulation of underwater explosion cavitation characteristics based on phase transition model in compressible multicomponent fluids. Ocean Eng. 2021, 240, 109934. [Google Scholar] [CrossRef]
- Li, Y.; Deng, J. Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model. Energy 2021, 238, 121995. [Google Scholar] [CrossRef]
- Kim, H.; Kim, C. A physics-based cavitation model ranging from inertial to thermal regimes. Int. J. Heat Mass Transf. 2021, 181, 121991. [Google Scholar] [CrossRef]
- Bermejo, D.; Escaler, X.; Ruíz-Mansilla, R. Experimental investigation of a cavitating Venturi and its application to flow metering. Flow Meas. Instrum. 2021, 78, 101868. [Google Scholar] [CrossRef]
- Lee, K.-H.; Yoo, J.-H.; Kang, S.-H. Experiments on cavitation instability of a two-bladed turbopump inducer. J. Mech. Sci. Technol. 2009, 23, 2350–2356. [Google Scholar] [CrossRef]
- Kim, J.; Song, S.J. A water test facility for a turbopump inducer cavitation experiment. In Proceedings of the 15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, USA, 1 January 2014. [Google Scholar]
- Cui, B.; Chen, J.; Li, X.; Lin, Z.; Cai, H.; Han, A. Experiment and Numerical Simulation of Cavitation Evolution in High Speed Centrifugal Pump with Inducer. Trans. Chin. Soc. Agric. Machin. 2018, 49, 148–155. [Google Scholar]
- Cui, B.; Chen, J. Visual experiment and numerical simulation of cavitation instability in a high-speed inducer. Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 234, 470–480. [Google Scholar] [CrossRef]
- Li, L.; Ding, Z.; Zhou, L.; Wu, Y. An Experiment on Cavitating Flow in Rocket Engine Inducer. Trans. Nanjing Univ. Aeronaut. Astronaut. 2019, 36, 306–312. [Google Scholar]
- Xiang, L.; Chen, H.; Tan, Y.; Xu, K.; Liu, J. Experiment of Cavitating Flow Characteristics of Inducer. Trans. Chinese Soc. Agric. Machin. 2019, 50, 125–132. [Google Scholar]
- Zhang, Y.H.; Chen, H.; Xiang, L.; Chen, W.; Xu, K.; Li, Y. Study on Cavitation Performance of Inducer Based on Orthogonal Experiment. J. Propuls. Technol. 2020, 41, 343–352. [Google Scholar]
- Cheng, X.; Yang, D.; Lu, X. Studying on the influence of the annular groove position on the cavitation performance of high-speed inducer. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–13. [Google Scholar] [CrossRef]
- Xu, Z.F.; Kong, F.Y.; Zhang, H.L.; Zhang, K.; Wang, J.Q.; Qiu, N. Research on Visualization of Inducer Cavitation of High-Speed Centrifugal Pump in Low Flow Conditions. J. Mar. Sci. Eng. 2021, 9, 1240. [Google Scholar] [CrossRef]
- Huan, Y.Y.; Liu, Y.Y.; Li, X.J.; Zhu, Z.C.; Qu, J.T.; Zhe, L.; Han, A.D. Experimental and numerical investigations of cavitation evolution in a high-speed centrifugal pump with inducer. J. Hydrodyn. 2021, 33, 140–149. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, B.; Kong, F.Y.; Li, G.D.; Cao, P.Y. Experimental investigation of cavitation characteristics for a high-speed inducer with a great flow rate. Adv. Mech. Eng. 2022, 14, 1–15. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Design discharge Qd/(m3/h) | 159.12 |
Rotation speed n/(r/min) | 1450 |
Inlet diameter Dt/mm | 199 |
Hub diameter at leading-edge dh1/mm | 51 |
Hub diameter at leading-edge dh2/mm | 90 |
Inlet tip blade angle βt1/° | 10.7 |
Wrap angle at leading-edge Δφ/° | 128 |
Cascade solidity s | 2.1 |
Number of blades z | 3 |
Tip gap d1/mm | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Feng, J.; Liu, K.; Shen, X.; Xu, B.; Zhang, D.; Zhang, W. Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer. J. Mar. Sci. Eng. 2022, 10, 806. https://doi.org/10.3390/jmse10060806
Wang H, Feng J, Liu K, Shen X, Xu B, Zhang D, Zhang W. Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer. Journal of Marine Science and Engineering. 2022; 10(6):806. https://doi.org/10.3390/jmse10060806
Chicago/Turabian StyleWang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang, and Weibin Zhang. 2022. "Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer" Journal of Marine Science and Engineering 10, no. 6: 806. https://doi.org/10.3390/jmse10060806
APA StyleWang, H., Feng, J., Liu, K., Shen, X., Xu, B., Zhang, D., & Zhang, W. (2022). Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer. Journal of Marine Science and Engineering, 10(6), 806. https://doi.org/10.3390/jmse10060806