Critique on Ecological Methodologies Used in Water Quality Studies and Coastal Management: A Review
Abstract
:1. Introduction
2. Data Collection and Selection of Variables
2.1. Sampling Design Considerations
2.2. Sampling: Some Delicate Issues
2.3. Data Collection for Regulatory Policies
3. Βiοindicator Species
Benefits and Drawbacks | References | |
---|---|---|
Benefits | ||
A1 | Used for monitoring environmental quality | [48] |
A2 | Data collection at a low cost | [52] |
A3 | Testing of toxic contaminants | [52] |
A4 | Monitoring synergistic and antagonistic impacts of various pollutants on a species | [39] |
A5 | Easy identification of the indicator species | [52] |
A6 | Legislative mandates covering wide areas | [51] |
Drawbacks | ||
B1 | Oversimplification of the ecosystem’s complexity | [51] |
B2 | Sometimes different results leading to different conclusions are likely to be produced | [50] |
B3 | Spatial and temporal uncertainties | [42] |
B4 | Ecosystem’s complexity restricts their validity | [53] |
B5 | Development of an ordinal water quality scale may not be possible | [54] |
B6 | Bioindicator’s ability is scale-dependent | [51] |
4. Ecological Indices: Are They a Reliable Tool for Coastal Management?
4.1. General Views of Diversity
4.2. Indices and Marine Environmental Governance
5. Experimenting: Microcosm Systems
Advantages–Limitations | References | |
---|---|---|
STANDARDIZED AQUATIC MICROCOSMS | ||
Advantages | ||
A1 | Experimental replicability | [12,96,98] |
A2 | No taxonomic uncertainties | [99] |
A3 | Preformatted statistical analysis | [100] |
A4 | Controlled degree of complexity | [12] |
A5 | Species of known physio–ecological characteristics | [92] |
Limitations | ||
L1 | Limited number of trophic levels | [75,97] |
L2 | Standardization cannot include regional or temporal differences | [93] |
NATURAL AQUATC MICROCOSMS | ||
Advantages | ||
A1 | Initial community compatible with the natural environment | [75] |
A2 | Shelf organization of the community | [75] |
Limitations | ||
L1 | Limited number of trophic levels | [75,97] |
L2 | Limited repeatability | [96] |
L3 | Uncontrolled degree of complexity | [97] |
L4 | Unexpected mortality | [92] |
6. Statistical Considerations
6.1. Assumptions and Drawbacks
6.2. Messy Data: A Problem with Field Observations
6.3. Probability Distributions
6.4. Univariate Statistics
6.5. Multivariate Procedures
6.6. Cluster Analysis
6.6.1. Objectives of Cluster Analysis
6.6.2. Setting Up the Procedure
6.6.3. Problem of Statistical Documentation
6.6.4. Critique on Cluster Analysis
7. Predictive Methods: Modeling
7.1. Predictive Approaches
7.2. Simulation Models: Model Evolution and Perspectives
7.3. Simulation Models: Ecological Economic Coupling
7.4. Simulation Models: Some Drawbacks
8. Water Quality Assessment and Adaptive Management: A Discussion
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Poole, R.W. An Introduction to Quantitative Ecology; McGraw-Hill: Tokyo, Japan, 1974. [Google Scholar]
- Pielou, E.C. Mathematical Ecology; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, USA, 1977. [Google Scholar]
- De Jong, F. Marine Eutrophication in Perspective: On the Relevance of Ecology and Environmental Policy; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Wilhm, J.L.; Dorris, T.C. Biological Parameters for Water Quality Criteria. BioScience 1968, 18, 477–481. [Google Scholar] [CrossRef]
- Washington, H.G. Diversity, Biotic and Similarity Indexes—A Review with Special Relevance to Aquatic Ecosystems. Water Res. 1984, 18, 653–694. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 20 February 2022).
- EC. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0056 (accessed on 20 February 2022).
- Birnie, S.G.; Boyle, A.; Redgwell, C. International Law and Environment; Oxford University Press Inc.: New York, NY, USA, 2009. [Google Scholar]
- DiMento, J.F.C.; Hickman, A.J. Environmental Governance of the Great Seas: Law and Effect; Edward Elgar: Cheltenham, UK, 2012. [Google Scholar]
- Karydis, M.; Kitsiou, D. Marine Eutrophication: A Global Perspective; CRC Press Publishers: New York, NY, USA, 2020. [Google Scholar]
- Taub, F.B. Unique information contributed by multispecies systems: Examples from the standardized aquatic microcosm. Ecol. Appl. 1997, 7, 1103–1110. [Google Scholar] [CrossRef]
- Karydis, M. Environmental marine monitoring strategies and ecosystem management: Matching science with policy. In Coastal Ecosystems: Experiences and Recommendations for Environmental Monitoring Programs; Sebastia, M.T., Ed.; Nova Science: New York, NY, USA, 2015; pp. 13–42. [Google Scholar]
- Pinet, P.R. Invitation to Oceanography, 7th ed.; Jones and Bartlett Learning: Burlington, MA, USA, 2016. [Google Scholar]
- Kitsiou, D.; Tsirtsis, G.; Karydis, M. Developing an optimal sampling design. A case study in a coastal marine ecosystem. Environ. Monit. Assess. 2001, 71, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The Design of Experiments; Oliver and Boyd: New York, NY, USA, 1935. [Google Scholar]
- Frontier, S. Strategies d’ Echantillonage en Ecologie; Masson, S., Ed.; Presses de l’Universite: Quebec City, QC, Canada, 1983. [Google Scholar]
- Legendre, P.; Troussellier, M.; Jarry, V.; Fortin, M.J. Design for Simultaneous Sampling of Ecological Variables—From Concepts to Numerical-Solutions. Oikos 1989, 55, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Duan, K.; Li, K.Q.; Liang, S.K.; Li, Y.B.; Su, Y.; Wang, X.L. Optimizing a coastal monitoring network using a water-quality response grid (WRG)-based sampling design for improved reliability and efficiency. Mar. Pollut. Bull. 2019, 145, 480–489. [Google Scholar] [CrossRef]
- Anttila, S.; Kairesalo, T.; Pellikka, P. A feasible method to assess inaccuracy caused by patchiness in water quality monitoring. Environ. Monit. Assess. 2008, 142, 11–22. [Google Scholar] [CrossRef]
- Ignatiades, L. Taxonomic diversity, size-functional diversity, and species dominance interrelations in phytoplankton communities: A critical analysis of data interpretation. Mar. Biodivers. 2020, 50, 1–9. [Google Scholar] [CrossRef]
- Ignatiades, L. Redeinition of cell size classiication of phytoplankton—A potential tool for improving the quality and assurance of data interpretation. Mediterr. Mar. Sci. 2016, 17, 56–64. [Google Scholar] [CrossRef]
- Ignatiades, L. Size scaling patterns of species richness and carbon biomass for marine phytoplankton functional groups. Mar. Ecol.-Evol. Persp. 2017, 38, e12454. [Google Scholar] [CrossRef]
- Grossman, S.I.; Turner, J.E. Mathematics for the Biological Sciences; MacMillan Publishing Co., Inc.: New York, NY, USA, 1974. [Google Scholar]
- Garate-Lizaragga, I.; Siqueiros-Beltrones, D.A. Time variation in phytoplankton assemblages in a subtropical lagoon sytem after the 1982-1983 El Nino event (1984 to 1986). Pac. Sci. 1998, 52, 79–97. [Google Scholar]
- Floder, S.; Jaschinski, S.; Wells, G.; Burns, C.W. Dominance and compensatory growth in phytoplankton communities under salinity stress. J. Exp. Mar. Biol. Ecol. 2010, 395, 223–231. [Google Scholar] [CrossRef]
- Ignatiades, L.; Gotsis-Skretas, O. The contribution of rare species to coastal phytoplankton assemblages. Mar. Ecol.-Evol. Persp. 2014, 35, 132–145. [Google Scholar] [CrossRef]
- Boero, F. Fluctuations and Variations in Coastal Marine Environments. Pszni. Mar. Ecol. 1994, 15, 3–25. [Google Scholar] [CrossRef]
- Weithoff, G. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—A new understanding of phytoplankton ecology? Freshwater Biol. 2003, 48, 1669–1675. [Google Scholar] [CrossRef]
- MIT. Man’s Impact on the Global Environment. Report of the Study of Critical Environmental Problems (SCEP): Assessments and Recommendations for Action; MIT Press, Massachusetts Institute of Technology: Cambridge, MA, USA, 1970. [Google Scholar]
- UNEP. Eutrophication Monitoring and Strategy of MED POL; UNEP: Athens, Greece, 2003. [Google Scholar]
- Kitsiou, D.; Karydis, M. Coastal marine eutrophication assessment: A review on data analysis. Environ. Int. 2011, 37, 778–801. [Google Scholar] [CrossRef]
- UNEP/MAP. Eutrophication Monitoring Strategy for the MED POL (REVISION); UNEP/MAP: Athens, Greece, 2007; p. 12. [Google Scholar]
- POL UMM. Sampling and Analysis Techniques for the Eutrophication Monitoring Monitoring Strategy of MED POL; POL UMM: Athens, Greece, 2005; p. 61. [Google Scholar]
- HELCOM. HELCOM Monitoring and Assessment Strategy; HELCOM: Helsinki, Finland, 2013.
- HELCOM. Manual for Marine Monitoring in the COMBINE; HELCOM: Helsinki, Finland, 2014; p. 414.
- OSPAR. Background Document on CEMP Assessment Criteria for QSR 2010; OSPAR: London, UK, 2009; p. 25. [Google Scholar]
- Vollenweider, R.A. A Manual on Methods for Measuring Primary Production in Aquatic Environments, 2nd ed.; Blackwell Publishing: Oxford, UK, 1974. [Google Scholar]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Siddig, A.A.H.; Ellison, A.M.; Ochs, A.; Villar-Leeman, C.; Lau, M.K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Indic. 2016, 60, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Vallaeys, T.; Klink, S.; Fleouter, E.; LeMoing, B.; Lignot, J.; Smith, A. Bioindicators of marine contaminations at the frontier of environmental monitoring and environmental genomics. Adv. Biotechnol. Microbiol. 2017, 4, 1–10. [Google Scholar] [CrossRef]
- Bonanno, G.; Orlando-Bonaca, M. Perspectives on using marine species as bioindicators of plastic pollution. Mar. Pollut. Bull. 2018, 137, 209–221. [Google Scholar] [CrossRef]
- Sumudumali, R.G.I.; Jayawardana, J.M.C.K. A Review of Biological Monitoring of Aquatic Ecosystems Approaches: With Special Reference to Macroinvertebrates and Pesticide Pollution. Environ. Manag. 2021, 67, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, R.; Roccheri, M. Marine invertebrates as biondicators of heavy meatl pollution. Open J. Metal 2014, 4, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Parker, B.; Andreou, D.; Green, I.; Britton, J. Microplastics in freshwater fishes: Occurence, impacts and future perspectives. Fish Fish. 2020, 22, 467–488. [Google Scholar] [CrossRef]
- Lourenco, R.A.; Magalhaes, C.A.; Taniguchi, S.; Siqueira, S.G.L.; Jacobucci, G.B.; Leite, F.P.P.; Bicego, M.C. Evaluation of macroalgae and amphipods as bioindicators of petroleum hydrocarbons input into the marine environment. Mar. Pollut. Bull. 2019, 145, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Sivasankar, R.; Ezhilarasan, P.; Kumar, P.S.; Naidu, S.A.; Rao, G.D.; Kanuri, V.V.; Rao, V.R.; Ramu, K. Loricate ciliates as an indicator of eutrophication status in the estuarine and coastal waters. Mar. Pollut. Bull. 2018, 129, 207–211. [Google Scholar] [CrossRef]
- Howells, G.; Calamari, D.; Gray, J.; Wells, P.G. An Analytical Approach to Assessment of Long-Term Effects of Low-Levels of Contaminants in the Marine-Environment. Mar. Pollut. Bull. 1990, 21, 371–375. [Google Scholar] [CrossRef]
- Bernstein, B. A Framework for Trend Detection: Coupling Ecological and Managerial Perspectives; McKenzy, D., Hyatt, D., McDonald, V., Eds.; Elsevier Applied Sciences: London, UK; New York, NY, USA, 1992; Volume 2, pp. 1101–1114. [Google Scholar]
- Long, E.; Buchman, M.; Bay, S.; Breteler, R.; Carr, R.; Chapman, P.; Hose, J.; Lissner, A.; Scott, J.; Wolfe, D. Comparative evaluation of five toxicity tests with sediments from San Francisco Bay and Tomales Bay, California. Environ. Toxicol. Chem. 1990, 9, 1193–1214. [Google Scholar] [CrossRef]
- Holt, E.; Miller, S. Bioindicators using organisms to measure environmental impacts. Nat. Educ. Knowl. 2010, 3, 8. [Google Scholar]
- Wolfe, D. Selection of bioindicators of pollution for marine manitoring programmes. Chem. Ecol. 1992, 6, 149–167. [Google Scholar] [CrossRef]
- Asif, N.; Malik, M.F.; Chaudhry, F.N. A Review of on Environmental Pollution Bioindicators. Pollution 2018, 4, 111–118. [Google Scholar] [CrossRef]
- Primpas, I.; Tsirtsis, G.; Karydis, M.; Kokkoris, G.D. Principal component analysis: Development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol. Indic. 2010, 10, 178–183. [Google Scholar] [CrossRef]
- Hooper, F.F. Eutrophication indices and their relation to other indices of ecosystem change. In Eutrophication: Causes, Consequences and Correctives; Council, N.R., Ed.; National Academy of Sciences: Washington, DC, USA, 1969; pp. 225–235. [Google Scholar]
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The relation between the number of species and the number of individuals in a random sample of an optimal population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- Cook, S.E.K. Quest for an Index of Community Structure Sensitive to Water-Pollution. Environ. Pollut. 1976, 11, 269–288. [Google Scholar] [CrossRef]
- Peet, R. The measurement of species diversity. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Karydis, M.; Tsirtsis, G. Ecological indices: A biometric approach for assessing eutrophication levels in the marine environment. Sci. Total. Environ. 1996, 186, 209–219. [Google Scholar] [CrossRef]
- Gauch, H.G. Multivariate Analysis in Community Ecology; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Izzo, G. Annual Summary Report 1996. European Topic Centre on Marine and Coastal Environment. Available online: https://www.eea.europa.eu/publications/92-9167-067-7/file (accessed on 20 February 2022).
- Tsirtsis, G.; Karydis, M. Evaluation of phytoplankton community indices for detecting eutrophic trends in the marine environment. Environ. Monit. Assess. 1998, 50, 255–269. [Google Scholar] [CrossRef]
- Boyle, T.P.; Smillie, G.M.; Anderson, J.D.; Beason, D.R. A sensitivity analysis of nine diversity and seven similarity indices. Res. J. WPCF 1990, 62, 749–762. [Google Scholar]
- Death, R.G.; Winterbourn, M.J. Diversity Patterns in Stream Benthic Invertebrate Communities—The Influence of Habitat Stability. Ecology 1995, 76, 1446–1460. [Google Scholar] [CrossRef]
- Spatharis, S.; Roelke, D.L.; Dimitrakopoulos, P.G.; Kokkoris, G.D. Analyzing the (mis) behavior of Shannon index in eutrophication studies using field and simulated phytoplankton assemblages. Ecol. Indic. 2011, 11, 697–703. [Google Scholar] [CrossRef]
- Lamb, E.G.; Bayne, E.; Holloway, G.; Schieck, J.; Boutin, S.; Herbers, J.; Haughland, D.L. Indices for monitoring biodiversity change: Are some more effective than others? Ecol. Indic. 2009, 9, 432–444. [Google Scholar] [CrossRef]
- Birk, S.; Bonne, W.; Borja, A.; Brucet, S.; Courrat, A.; Poikane, S.; Solimini, A.; van de Bund, W.V.; Zampoukas, N.; Hering, D. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 2012, 18, 31–41. [Google Scholar] [CrossRef]
- Karydis, M. Water quality and ecosystem’s health in oceans around the world. In Marine Spatial Planning: Methodologies, Environmental Issues An Current Trends; Kitsiou, D., Karydis, M., Eds.; Nova Science: New York, NY, USA, 2017; pp. 3–36. [Google Scholar]
- Texeira, H.; Berg, T.; Usotato, L. A catalogue of marine biodiversity indicators. Front. Mar. Sci. 2016, 3, 207. [Google Scholar] [CrossRef] [Green Version]
- Rees, H.L.; Hyland, J.L.; Hylland, K.; Clarke, C.S.L.M.; Roff, J.C.; Ware, S. Environmental indicators: Utility in meeting regulatory needs. An overview. ICES J. Mar. Sci. 2008, 65, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Pinto, R.; Patricio, J.; Baeta, A.; Fath, B.D.; Neto, J.M.; Marques, J.C. Review and evaluation of estuarine biotic indices to assess benthic condition. Ecol. Indic. 2009, 9, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Borja, A.; Dauer, D.M. Assessing the environmental quality status in estuarine and coastal systems: Comparing methodologies and indices. Ecol. Indic. 2008, 8, 331–337. [Google Scholar] [CrossRef]
- National Research Council. Ecological Indicators for the Nation; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Tamvakis, A.; Tsirtsis, G.; Karydis, M.; Patsidis, K.; Kokkoris, G.D. Drivers of harmful algal blooms in coastal areas of Eastern Mediterranean: A machine learning methodological approach. Math. Biosci. Eng. 2021, 18, 6484–6505. [Google Scholar] [CrossRef]
- Karydis, M. Use of microcosm systems in phytoplankton ecology studies: Objectives, limitations and applications. In Phytoplankton: Biology, Classification and Environmental Impacts; Sebastia, M.T., Ed.; Nova Science: New York, NY, USA, 2014; pp. 245–275. [Google Scholar]
- Halffman, W. The boundry between ecology and toxicology: A sociologist’s perspective. In Ecological Toxicity Testing: Scale, Complexity and Relevance; Cairns, J., Niederlehner, B., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 11–34. [Google Scholar]
- Ramirez-Olvera, M.A.; Alcocer, J.; Merino-Ibarra, M.; Lugo, A. Nutrient limitation in a tropical saline lake: A microcosm experiment. Hydrobiologia 2009, 626, 5–13. [Google Scholar] [CrossRef]
- Edwards, V.R.; Tett, P.; Jones, K.J. Changes in the yield of chlorophyll a from dissolved available inorganic nitrogen after an enrichment event—Applications for predicting eutrophication in coastal waters. Cont. Shelf Res. 2003, 23, 1771–1785. [Google Scholar] [CrossRef]
- Pasternak, A.; Hillebrand, H.; Floder, S. Competition between benthic and pelagic microalgae for phosphorus and light—Long-term experiments using artificial substrates. Aquat. Sci. 2009, 71, 238–249. [Google Scholar] [CrossRef]
- Buyukates, Y.; Roelke, D. Influence of pulsed inflows and nutrient loading on zooplankton and phytoplankton community structure and biomass in microcosm experiments using estuarine assemblages. Hydrobiologia 2005, 548, 233–249. [Google Scholar] [CrossRef]
- Tsirtsis, G.; Karydis, M. Aquatic microcosms: A methodological approach for the quantification of eutrophication processes. Environ. Monit. Assess. 1997, 48, 193–215. [Google Scholar] [CrossRef]
- Domis, L.N.D.; Mooij, W.M.; Huisman, J. Climate-induced shifts in an experimental phytoplankton community: A mechanistic approach. Hydrobiologia 2007, 584, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Belzile, C.; Demers, S.; Ferreyra, G.A.; Schloss, I.; Nozais, C.; Lacoste, K.; Mostajir, B.; Roy, S.; Gosselin, M.; Pelletier, E.; et al. UV effects on marine planktonic food webs: A synthesis of results from mesocosm studies. Photochem. Photobiol. 2006, 82, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Trochine, C.; Guerrieri, M.; Liboriussen, L.; Meerhoff, M.; Lauridsen, T.L.; Sondergaard, M.; Jeppesen, E. Filamentous green algae inhibit phytoplankton with enhanced effects when lakes get warmer. Freshwater Biol. 2011, 56, 541–553. [Google Scholar] [CrossRef]
- Moss, B.; Mckee, D.; Atkinson, D.; Collings, S.E.; Eaton, J.W.; Gill, A.B.; Harvey, I.; Hatton, K.; Heyes, T.; Wilson, D. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J. Appl. Ecol. 2003, 40, 782–792. [Google Scholar] [CrossRef] [Green Version]
- Niederlehner, B.; Pratt, J.; Buikema, A.; Cairns, J. Comparison of estimates of hazard dervied at three levels of complexity. In Community Toxicity Testing; Cairns, J., Ed.; ASTM: Philadelphia, PA, USA, 1986; pp. 30–48. [Google Scholar]
- Hook, L.; Franco, P.; Giddings, J. Zooplankton community responses to synthetic oil exposure. In Community Toxicity Testing; Cairns, J., Ed.; ASTM: Philadelphia, PA, USA, 1986; pp. 291–321. [Google Scholar]
- Hardy, J.T.; Apts, C.W.; Crecelius, E.A.; Fellingham, G.W. The Sea-Surface Microlayer—Fate and Residence Times of Atmospheric Metals. Limnol. Oceanogr. 1985, 30, 93–101. [Google Scholar] [CrossRef]
- Nys, C.; Van Regenmortel, T.; De Schamphelaere, K. The effects of nickel on the structure and functioning of a freshwater plankton community under high dissolved organic carbon conditions: A microcosm experiment. Environ. Toxicol. Chem. 2019, 38, 1923–1939. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, L.; Traunspurger, W.; Lynen, F.; Moens, T. Effects of the water-soluble fraction of a crude oil on estuarine meiofauna: A microcosm approach. Mar. Environ. Res. 2019, 147, 113–125. [Google Scholar] [CrossRef]
- Bai, X.; Jiang, Y.M.; Jiang, Z.D.; Zhu, L.; Feng, J.F. Nutrient potentiate the responses of plankton community structure and metabolites to cadmium: A microcosm study. J. Hazard. Mater. 2022, 430, 128506. [Google Scholar] [CrossRef]
- Beyers, R.J.; Odum, H.T. Ecological Microcosms; Springer: New York, NY, USA, 1993. [Google Scholar]
- Cairns, J.J. (Ed.) Multispecies Toxicity Testing; Pergamon Press: New York, NY, USA, 1985; p. 261. [Google Scholar]
- Parkhurst, B. Are single species toxicity test results valid indicators of effects to aquatic communities? In Ecological Toxicity Testing: Scale, Complexity and Relevance; Cairns, J., Niederlehner, B., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995; p. 228. [Google Scholar]
- ASTM. E 1366-91 ASTM standard practice for standardized aquatic microcosm: Fresh water. In Annual Book of ASTM Standards; American Society for Testing Materials: Philadelphica, PA, USA, 1995; Volume 11.05, pp. 1048–1082. [Google Scholar]
- Giesy, J.; Allred, P. Replicability of aquatic multispecies test systems. In Multispecies Toxicity Testing; Cairns, J., Ed.; Pergamon Press: New York, NY, USA, 1985; pp. 187–247. [Google Scholar]
- Miller, C.J.; Roelke, D.L.; Davis, S.E.; Li, H.P.; Gable, G. The role of inflow magnitude and frequency on plankton communities from the Guadalupe Estuary, Texas, USA: Findings from microcosm experiments. Estuar. Coast. Shelf Sci. 2008, 80, 67–73. [Google Scholar] [CrossRef]
- Abbot, W. Microcosm studies on estuarine waters. I. The replicability of microcosms. J. Water Pollut. Control. Fed. 1966, 38, 258–270. [Google Scholar]
- Cairns, J.; Niederlehner, B. (Eds.) Ecological Toxicity Testing: Scale, Complexity and Relevance; Lewis Publishers: Boca Raton, FL, USA, 1995. [Google Scholar]
- Smith, E. Design and analysis of multispecies experiments. In Ecological Toxicity Testing: Scale, Complexity and Relevance; Cairns, J., Niederlehner, B., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 73–96. [Google Scholar]
- MacGarvin, M. The implications of the precautionary principle for biological monitoring. Helgol. Meeresunterhuchungen 1995, 49, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Cochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1957. [Google Scholar]
- Box, G.E.P.; Box, G.; HUNTER, W.G.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; John Wiley and Sons: New York, NY, USA, 1978. [Google Scholar]
- Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Milliken, G.A.; Johnson, D.E. Analysis of Messy Data: Volume I: Designed Experiments; Chapman and Hall: London, UK, 1997. [Google Scholar]
- Green, R.F. Sampling Design and Statistical Methods for Environmental Biologists; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Steele, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997. [Google Scholar]
- Ignatiades, L.; Karydis, M.; Vounatsou, P. A Possible Method for Evaluating Oligotrophy and Eutrophication Based on Nutrient Concentration Scales. Mar. Pollut. Bull. 1992, 24, 238–243. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; W. H. Freeman: New York, NY, USA, 1981. [Google Scholar]
- Georgopoulos, P.G.; Seinfeld, J.H. Statistical Distributions of Air Pollutant Concentrations. Environ. Sci. Technol. 1982, 16, A401. [Google Scholar] [CrossRef]
- O’Hara, R.B.; Kotze, D.J. Do not log-transform count data. Methods Ecol. Evol. 2010, 1, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Eadie, J.M.; Broekhoven, L.; Colgan, P. Size Ratios and Artifacts—Hutchinson Rule Revisited. Am. Nat. 1987, 129, 1–17. [Google Scholar] [CrossRef]
- Stefanou, P.; Tsirtsis, G.; Karydis, M. Nutrient scaling for assessing eutrophication: The development of a simulated normal distribution. Ecol. Appl. 2000, 10, 303–309. [Google Scholar] [CrossRef]
- Siegel, S.; Castellan, N.J. Nonparametric Statistics for the Behavioral Sciences; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Gardner, R.H.; Kemp, W.M.; Kennedy, V.S.; Petersen, J.E. Scaling Relations in Experimental Ecology; Complexity in Ecological Systems Series; Columbia University Press: New York, NY, USA, 2001. [Google Scholar]
- Kitsiou, D.; Karydis, M. Categorical mapping of marine eutrophication based on ecological indices. Sci Total Environ 2000, 255, 113–127. [Google Scholar] [CrossRef]
- Vounatsou, P.; Karydis, M. Environmental Characteristics in Oligotrophic Waters—Data Evaluation and Statistical Limitations in Water-Quality Studies. Environ. Monit. Assess. 1991, 18, 211–220. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; ter Braak, C.J.F.; Van Tongersen, O.F.R. Data Analysis in Community and Landscape Ecology; Pudoc: Wageningen, The Netherlands, 1987. [Google Scholar]
- Digby, R.G.N.; Kempton, R.A. Multivariate Analysis of Ecological Communities; Chapman and Hall: London, UK, 1987. [Google Scholar]
- Anderberg, M.R. Cluster Analysis for Applications; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Everitt, B.S.; Landem, S.; Leese, M. Cluster Analysis, 4th ed.; Arnold: London, UK, 2001. [Google Scholar]
- Romesburg, H.C. Cluster Analysis for Researchers; Lulu Press: Research Triangle, NC, USA, 2000. [Google Scholar]
- Ignatiades, L.; Georgopoulos, D.; Karydis, M. Description of the Phytoplanktonic Community of the Oligotrophic Waters of the Se Aegean Sea (Mediterranean). Pszni. Mar. Ecol. 1995, 16, 13–26. [Google Scholar] [CrossRef]
- Primpas, I.; Karydis, M.; Tsirtsis, G. Assessment of Clustering Algorithms in Discriminating Eutrophic Levels in Coastal Waters. Global Nest J. 2008, 10, 359–365. [Google Scholar]
- Karydis, M. Scaling Methods in Assessing Environmental-Quality–A Methodological Approach to Eutrophication. Environ. Monit. Assess. 1992, 22, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On clustering validation techniques. J. Intell. Inf. Syst. 2001, 17, 107–145. [Google Scholar] [CrossRef]
- Bailey, T.A.; Dubes, R. Cluster validity profiles. Pattern Recognit. 1982, 15, 61–83. [Google Scholar] [CrossRef]
- Bock, H.H. On some significance tests in cluster analysis. J. Classif. 1985, 2, 77–108. [Google Scholar] [CrossRef]
- Ben Ncir, C.E.; Hamza, A.; Bouaguel, W. Parallel and scalable Dunn Index for the validation of big data clusters. Parallel Comput. 2021, 102, 102751. [Google Scholar] [CrossRef]
- Wang, W.N.; Zhang, Y.J. On fuzzy cluster validity indices. Fuzzy Sets Syst. 2007, 158, 2095–2117. [Google Scholar] [CrossRef]
- Vassiliou, A.; Ignatiades, L.; Karydis, M. Clustering of Transect Phytoplankton Collections with a Quick Randomization Algorithm. J. Exp. Mar. Biol. Ecol. 1989, 130, 135–145. [Google Scholar] [CrossRef]
- Clark, J.R.; Green, R.H. Statistical Design and Analysis for a Biological Effects Study. Mar. Ecol. Prog. Ser. 1988, 46, 213–226. [Google Scholar] [CrossRef]
- Abraham, B.; Ledolter, J. Statistical Methods for Forecasting; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Rand, G.M. Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment, 2nd ed.; Taylor and Francis: London, UK, 1995. [Google Scholar]
- Diggle, P.J. Time Series: A Biostatistical Introduction; Clarendon Press: Oxford, UK, 1990; p. 257. [Google Scholar]
- Vollenweider, R.A. Possibilities and limits of elementary models concerning the budgets of substance in lakes. Archiv. Fur. Hydrobiol. 1969, 66, 1–66. [Google Scholar]
- Vollenweider, R.A. Concept of Nutrient Load as a Basis for the External Control of the Eutrophication Process in Lakes and Reservoirs. Zeitschrift Wasser Adwasser Forschung 1979, 12, 46–56. [Google Scholar]
- Van Pagee, J.; Glas, P.; Hopstaken, C.; Postma, L. Water quality modelling of the Southern North Sea: A useful tool for research and management. In Environmental Protection of the North Sea; Newman, P., Ed.; Heinemann: Oxford, UK, 1988; pp. 597–612. [Google Scholar]
- Jorgensen, S.E.; Jorgensen, L.A.; Kampnielsen, L.; Mejer, H.F. Parameter-Estimation in Eutrophication Modeling. Ecol. Model. 1981, 13, 111–129. [Google Scholar] [CrossRef]
- Baretta, J.; Ruardij, P. Tidal Flat Estuaries: Simulation Analysis of the Ems Estuary; Springer: Berlin/Heidelberg, Germany, 1988; p. 353. [Google Scholar]
- Le Gall, A.C.; Hydes, D.J.; Kelly-Gerreyn, B.A.; Slinn, D.J. Development of a 2D horizontal biogeochemical model for the Irish Sea DYMONIS. ICES J. Mar. Sci. 2000, 57, 1050–1059. [Google Scholar] [CrossRef]
- Alvera-Azcarate, A.; Ferreira, J.G.; Nunes, J.P. Modelling eutrophication in mesotidal and macrotidal estuaries. The role of intertidal seaweeds. Estuar. Coast. Shelf Sci. 2003, 57, 715–724. [Google Scholar] [CrossRef]
- Flipo, N.; Jeannee, N.; Poulin, M.; Even, S.; Ledoux, E. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling. Environ. Pollut. 2007, 146, 241–256. [Google Scholar] [CrossRef]
- Scheffer, M.; Szabo, S.; Gragnani, A.; van Nes, E.H.; Rinaldi, S.; Kautsky, N.; Norberg, J.; Roijackers, R.M.M.; Franken, R.J.M. Floating plant dominance as a stable state. Proc. Natl. Acad. Sci. USA 2003, 100, 4040–4045. [Google Scholar] [CrossRef] [Green Version]
- Zaldivar, J.M.; Bacelar, F.S.; Dueri, S.; Marinov, D.; Viaroli, P.; Hernandez-Garcia, E. Modeling approach to regime shifts of primary production in shallow coastal ecosystems. Ecol. Model. 2009, 220, 3100–3110. [Google Scholar] [CrossRef] [Green Version]
- NSFT. Summary Record. In Proceedings of the 1st Meeting North Sea Task Force, The Hague, The Netherlands, 7–9 December 1988. [Google Scholar]
- Arhonditsis, G.; Tsirtsis, G.; Angelidis, M.O.; Karydis, M. Quantification of the effects of nonpoint nutrient sources to coastal marine eutrophication: Applications to a semi-enclosed gulf in the Mediterranean Sea. Ecol. Model. 2000, 129, 209–227. [Google Scholar] [CrossRef]
- Kolovoyiannis, V.N.; Tsirtsis, G.E. Downscaling the marine modelling effort: Development, application and assessment of a 3D ecosystem model implemented in a small coastal area. Estuar. Coast. Shelf Sci. 2013, 126, 44–60. [Google Scholar] [CrossRef]
- Desmit, X.; Thieu, V.; Billen, G.; Campuzano, F.; Duliere, V.; Garnier, J.; Lassaletta, L.; Menesguen, A.; Neves, R.; Pinto, L.; et al. Reducing marine eutrophication may require a paradigmatic change. Sci. Total. Environ. 2018, 635, 1444–1466. [Google Scholar] [CrossRef]
- Kasperski, S.; DePiper, G.S.; Haynie, A.C.; Blake, S.; Colburn, L.L.; Freitag, A.; Jepson, M.; Karnauskas, M.; Leong, K.M.; Lipton, D.; et al. Assessing the State of Coupled Social-Ecological Modeling in Support of Ecosystem Based Fisheries Management in the United States. Front. Mar. Sci. 2021, 8, 631400. [Google Scholar] [CrossRef]
- Navarro, M.; Hailu, A.; Langlois, T.; Ryan, K.L.; Burton, M.; Kragt, M.E. Combining spatial ecology and economics to incorporate recreational fishing into marine spatial planning. ICES J. Mar. Sci. 2022, 79, 147–157. [Google Scholar] [CrossRef]
- Uehara, T.; Cordier, M.; Hamaide, B. Fully Dynamic Input-Output/System Dynamics Modeling for Ecological-Economic System Analysis. Sustainability 2018, 10, 1765. [Google Scholar] [CrossRef] [Green Version]
- Piroddi, C.; Heymans, J.J.; Macias, D.; Gregoire, M.; Townsend, H. Editorial: Using Ecological Models to Support and Shape Environmental Policy Decisions. Front. Mar. Sci. 2021, 8, 81513. [Google Scholar] [CrossRef]
- Kitsiou, D.; Karydis, M. Oil spills: Behavior oi oil, impact, detection, tracking and management. In Marine Pollution: Types, Environmental Significance and Management Strategies; Jefferson, D., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 197–242. [Google Scholar]
- Keramea, P.; Spanoudaki, K.; Zodiatis, G.; Gikas, G.; Sylaios, G. Oil Spill Modeling: A Critical Review on Current Trends, Perspectives, and Challenges. J. Mar. Sci. Eng. 2021, 9, 181. [Google Scholar] [CrossRef]
- NUT. Summary Record Meeting Working Group on Nutrients; NUT: London, UK, 1989. [Google Scholar]
- Hellebust, J.A.; Craigie, J.S. Handbook of Phycological Methods: Physiological and Biochemical Methods; Cambridge University Press: Cambridge, UK; London, UK, 1978. [Google Scholar]
- Bell, R.T. Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine. In Handbook on Methods in Aquatic Microbial Ecology; Kemp, P.F., Sherr, B.F., Sherr, E.B., Cole, J.J., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 495–503. [Google Scholar]
- Munn, C. Marine Microbiology: Ecology and Applications, 2nd ed.; Garland Science: New York, NY, USA, 2011. [Google Scholar]
- Pollution, I.; Mer, C. Report of the ICES Advisory Committee on Marine Pollution, 1988; International Council for the Exploration of the Sea: Copenhagen V, Denmark, 1988. [Google Scholar]
- Baretta, J.; Ruardij, P. (Eds.) Model applications and limitations. In Tidal Flat Estuaries: Simulation and Analysis of the Ems Estuary; Springer: Berlin/Heidelberg, Germany, 1988; pp. 259–281. [Google Scholar]
- Peters, R.H. A Critique for Ecology; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Healey, M. North Sea Quality Status Report 1993; Estuaries: London, UK, 1995. [Google Scholar]
Monitored Variables | Reference |
---|---|
Background information | |
Temperature, salinity, water transparency and pH | [33] |
Variables connected to eutrophication | |
Orthophosphate, nitrate, nitrite, ammonium, silicates and organic contaminants | [34,35,36,37] |
Variables connected to toxic effects | [36,37] |
Heavy metals in the water column | |
Heavy metals in the sediment | |
Bioaccumulation of heavy metals | |
Petroleum hydrocarbons in the water column | |
PAH in shellfish | |
Persistent synthetic materials |
Field of Application | References |
---|---|
Nutrients–Phytoplankton–Eutrophication | |
Nutrient limitation | [77] |
Microcosm studies on dynamics for eutrophication assessment | [78] |
Competition between benthic and pelagic microalgae | [79] |
Phytoplankton dynamics based on nutrient pulsed inflows | [80] |
Modeling | |
Microcosm system to model eutrophication processes | [81] |
Modeling dynamics of cyanobacteria, diatoms and green algae under nutrient-limited conditions | [82] |
Climate Change | |
Warming scenarios based on the succession of algal groups | [82] |
Possible impact of UV radiation in the marine ecosystem | [83] |
Allelopathy changes between green algae in a warmer regime | [84] |
Effects of warming trends on lake phytoplankton communities | [85] |
Toxicity Studies | |
Cadmium effects at three levels of complexity | [86] |
Zooplankton response to synthetic oil exposure | [87] |
Atmospheric metals on the sea surface microlayer | [88] |
Nickel/organic matter effects on plankton | [89] |
Crude oil on meiofauna | [90] |
Cadmium toxicity under different nutrient conditions | [91] |
Cadmium effects at three levels of complexity | [86] |
Simulation Models | References | |
---|---|---|
Advantages | ||
A1 | Description of system dynamics | [141,152] |
A2 | Simultaneous assessment of many ecosystem state variables and processes | [161] |
A3 | Provide the possibility of coupling ecological and economic functions | [150,151,152,153] |
Limitations—future improvements | ||
L1 | Need to increase the trophic resolution | [148] |
L2 | Frequent scarcity of data in open boundaries | [148,155,161] |
L3 | Difficulty to include many physico-chemical processes in oil spill models | [155] |
L4 | Good time series data are always available | [32] |
L5 | Gaps in ecological theories | [162] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karydis, M. Critique on Ecological Methodologies Used in Water Quality Studies and Coastal Management: A Review. J. Mar. Sci. Eng. 2022, 10, 701. https://doi.org/10.3390/jmse10050701
Karydis M. Critique on Ecological Methodologies Used in Water Quality Studies and Coastal Management: A Review. Journal of Marine Science and Engineering. 2022; 10(5):701. https://doi.org/10.3390/jmse10050701
Chicago/Turabian StyleKarydis, Michael. 2022. "Critique on Ecological Methodologies Used in Water Quality Studies and Coastal Management: A Review" Journal of Marine Science and Engineering 10, no. 5: 701. https://doi.org/10.3390/jmse10050701