Research on COD Soft Measurement Technology Based on Multi-Parameter Coupling Analysis Method
Abstract
:1. Introduction
2. Soft Measurement Method
2.1. Selection of Auxiliary Variables
- (1)
- Study on the correlation between dominant variables and auxiliary variables:
- (2)
- Study on the correlation between auxiliary parameter variables:
2.2. Data Conversion
2.3. Implementation of the Water Quality Parameter Model
- Set chemical oxygen demand as the label, and eliminate the PH, TU, DO and EC data of the original samples to form the training set;
- Normalize the PH, TU, DO, and EC data;
- Train the normalized data and corresponding labels to obtain water quality parameter models.
3. Modeling Method
3.1. Water Quality Parameter Modeling Based on a BP Network
3.2. Water Quality Parameter Model Based on Combined Prediction
4. Experimental Validation
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maharjan, L.; Tripathee, L.; Kang, S.; Ambade, B.; Chen, P.; Zheng, H.; Li, Q.; Shrestha, K.; Sharma, C. Characteristics of Atmospheric Particle-bound Polycyclic Aromatic Compounds over the Himalayan Middle Hills: Implications for Sources and Health Risk Assessment. Asian J. Atmos. Environ. 2021, 15, 19. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Chintalacheruvu, M.R. Distribution, risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) using positive matrix factorization (PMF) in urban soils of East India. In Environmental Geochemistry and Health; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Zhu, S.; Han, H.; Guo, M.; Qiao, J. A data-derived soft-sensor method for monitoring effluent total phosphorus. Chin. J. Chem. Eng. 2017, 25, 1791–1797. [Google Scholar] [CrossRef]
- Zare Abyaneh, H. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J. Environ. Health Sci. Eng. 2014, 12, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guoqiang, Y.; Weiguang, L.; Hao, W. Study of RBF Neural Network Based on PSO Algorithm in Nonlinear System Identification. In Proceedings of the 2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA), Nanchang, China, 14–15 June 2015; pp. 852–855. [Google Scholar]
- Li, Y.; Shi, Y.; Wang, K.; Sun, D.; Yang, D. Design of online monitoring device for COD parameter in industrial sewage based on soft measurement method. In Proceedings of the 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China, 19–21 May 2017; pp. 959–964. [Google Scholar]
- Cai, Y.; Fu, X.; Gao, X.; Li, L. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 022039. [Google Scholar] [CrossRef]
- Hamed, M.M.; Khalafallah, M.G.; Hassanien, E.A. Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model. Softw. 2004, 19, 919–928. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Al-Asheh, S.; Alfadala, H.E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J. Environ. Manag. 2007, 83, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Hykkerud, A.; Ratnaweera, H. Estimating Phosphorus and COD Concentrations Using a Hybrid Soft Sensor: A Case Study in a Norwegian Municipal Wastewater Treatment Plant. Water 2022, 14, 332. [Google Scholar] [CrossRef]
- Prada, J.; Dorronsoro, J.R. General noise support vector regression with non-constant uncertainty intervals for solar radiation prediction. J. Mod. Power Syst. Clean Energy 2018, 6, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Park, Y.; Hwang, J.; Jeong, K.; Kim, E. Improving Ocean Forecasting Using Deep Learning and Numerical Model Integration. J. Mar. Sci. Eng. 2022, 10, 450. [Google Scholar] [CrossRef]
- Cinar, A.F.; Barhli, S.M.; Hollis, D.; Flansbjer, M.; Tomlinson, R.A.; Marrow, T.J.; Mostafavi, M. An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency. Opt. Lasers Eng. 2017, 96, 94–106. [Google Scholar] [CrossRef]
- Yan, W.; Tang, D.; Lin, Y. A Data-Driven Soft Sensor Modeling Method Based on Deep Learning and its Application. IEEE Trans. Ind. Electron. 2017, 64, 4237–4245. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Ghaemi, A. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods. Environ. Monit. Assess. 2019, 191, 380. [Google Scholar] [CrossRef] [PubMed]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilki, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef] [PubMed]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4, [Springer Topics in Signal Processing]; Available online: http://link.springer.com/10.1007/978-3-642-00296-0_5 (accessed on 9 May 2022).
- Wang, G.; Jia, Q.S.; Zhou, M.; Bi, J.; Qiao, J.; Abusorrah, A. Artificial neural networks for water quality soft-sensing in wastewater treatment: A review. Artif. Intell. Rev. 2022, 55, 565–587. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Fan, L.; Boshnakov, K. Neural-network-based water quality monitoring for wastewater treatment processes. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August 2010; pp. 1746–1748. [Google Scholar]
- Aguado, D.; Ribes, J.; Montoya, T.; Ferrer, J.; Seco, A. A methodology for sequencing batch reactor identification with artificial neural networks: A case study. Comput. Chem. Eng. 2009, 33, 465–472. [Google Scholar] [CrossRef]
TU | DO | ORP | AN | |
---|---|---|---|---|
COD | −0.270611 | −0.815111 | −0.376139 | 0.077064 |
pH | TU | DO | EC | |
---|---|---|---|---|
COD | −0.368012 | −0.712238 | −0.715341 | −0.830134 |
DO | ORP | TU | |
---|---|---|---|
DO | 1 | 0.809963 | 0.417029 |
ORP | 0.809963 | 1 | 0.318108 |
TU | 0.417029 | 0.318108 | 1 |
5 | 6 | 7 | 8 | |||||
ep | MSE | ep | MSE | ep | MSE | ep | MSE | |
TrainGD | 1000 | 0.00828 | 1000 | 0.0129 | 1000 | 0.0115 | 1000 | 0.00537 |
TrainGDX | 124 | 0.00876 | 127 | 0.00502 | 45 | 0.0314 | 167 | 0.00252 |
TrainLM | 12 | 0.00116 | 17 | 0.000961 | 12 | 0.00302 | 10 | 0.000989 |
9 | 10 | 11 | 12 | |||||
ep | MSE | ep | MSE | ep | MSE | ep | MSE | |
TrainGD | 1000 | 0.00838 | 1000 | 0.0104 | 1000 | 0.0124 | 1000 | 0.0168 |
TrainGDX | 173 | 0.00460 | 165 | 0.00411 | 162 | 0.00241 | 164 | 0.00341 |
TrainLM | 8 | 0.000947 | 13 | 0.000994 | 4 | 0.000998 | 6 | 0.000954 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Duan, Z.; Yi, A.; Hu, J.; Chen, Y. Research on COD Soft Measurement Technology Based on Multi-Parameter Coupling Analysis Method. J. Mar. Sci. Eng. 2022, 10, 683. https://doi.org/10.3390/jmse10050683
Zhang Y, Duan Z, Yi A, Hu J, Chen Y. Research on COD Soft Measurement Technology Based on Multi-Parameter Coupling Analysis Method. Journal of Marine Science and Engineering. 2022; 10(5):683. https://doi.org/10.3390/jmse10050683
Chicago/Turabian StyleZhang, Yurui, Zhiyong Duan, Anzhe Yi, Jiaqi Hu, and Yanhu Chen. 2022. "Research on COD Soft Measurement Technology Based on Multi-Parameter Coupling Analysis Method" Journal of Marine Science and Engineering 10, no. 5: 683. https://doi.org/10.3390/jmse10050683
APA StyleZhang, Y., Duan, Z., Yi, A., Hu, J., & Chen, Y. (2022). Research on COD Soft Measurement Technology Based on Multi-Parameter Coupling Analysis Method. Journal of Marine Science and Engineering, 10(5), 683. https://doi.org/10.3390/jmse10050683