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Abstract: This paper presents a soft measurement technique for COD (Chemical Oxygen Demand)
based on the multiparameter coupling analysis method. First, through mechanism analysis and
correlation analysis of historical data during the measurement process, water quality parameters,
such as hydrogen potential (PH), dissolved oxygen (DO), turbidity (TU), and electrical conductivity
(EC), can be used to estimate COD values. To further improve the estimation accuracy of the water
quality parameter model, we adopted a modeling method combining a BP neural network and
support vector machine, which showed an average relative error of 6.13% and an absolute coefficient
of up to 0.9605. Finally, experiments in a lake environment demonstrate that this method shows
excellent performance, with highly reliable and accurate prediction results.

Keywords: COD; water quality online monitoring; water quality parameter model; soft measurement
technology

1. Introduction

As water resources play an increasingly prominent role in global economic develop-
ment and environmental protection [1,2], countries around the world are paying more
attention to water environment protection issues, and have devoted enormous resources
to support research on the monitoring and control of water environment pollution. The
COD parameter is very important for showing the degree of water pollution [3–6]. In
practice, COD sensors require frequent manual calibration, which prevents them from
accurately measuring COD values for prolonged periods. To overcome this limitation, soft
measurement technology has been proposed.

Soft measurement technology, also known as soft instrument technology, can under-
take online real-time measurement tasks that are not possible with instrumentation or
hardware detection and is widely used in many fields such as production process control,
optimization and parameter monitoring [7–10]. With this approach, mechanism analysis or
experimental data are used to select variables that can be easily and accurately measured
as auxiliary variables, whereas those that cannot be directly and accurately measured are
selected as dominant variables. After this selection process, a mapping relationship is
constructed between them so that the prediction of process variables can be measured.

The existing chemical oxygen demand measurement methods cannot meet the needs
of long-term outdoor water quality monitoring, and COD sensors also require frequent
manual calibration and maintenance. In contrast, soft measurement technology has a host
of advantages that makes it a more appealing alternative in practical situations. It is eco-
nomical and reliable, has a rapid dynamic response, and replaces hardware with software.
Because of these advantages, in this study, we propose a multi-parameter coupling analysis
method based on COD measurement technology, which can achieve short-term estimation
of the target parameter chemical oxygen demand and can enable the automatic underwater
calibration of COD hardware sensors. Compared with existing measurement methods, this
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method is accurate and efficient, does not rely on hardware, and can provide a basis for the
automatic underwater calibration of COD sensors. Moreover, it also effectively prolongs
the manual calibration cycle, and greatly reduces monitoring costs.

2. Soft Measurement Method
2.1. Selection of Auxiliary Variables

The selection process of auxiliary variables includes three steps: primary selection of
auxiliary variables, correlation analysis, and final determination of auxiliary variables. First,
it is necessary to clarify the target of soft measurement, and to determine the dominant
variable of chemical oxygen demand. On this basis, we have a deep understanding and
familiarity with the measurement principles of soft sensor objects and related equipment,
and can preliminarily determine the auxiliary variables that affect the dominant variables
through mechanism analysis and literature investigation. The auxiliary variable selection
range encompasses the variable parameters that can be collected accurately and in real time
in the process of measurement. Then, the selected auxiliary parameters are screened and
adjusted by correlation analysis.

The selection of auxiliary variables plays an important role in the establishment of the
model, which not only affects the structure of the water quality parameter model, but also
further affects the estimation accuracy of the model. There are more than 10 kinds of water
quality parameters that characterize water quality, but they are not independent of one an-
other. There are always strong or weak coupling relationships between multiple-parameters
of water quality [11,12], and these relationships are enhanced in some specific scenarios.

Widespread studies have been conducted on the coupling relationships between
multiple parameters of water quality [13–16], and certain achievements have been made.
Through the mechanistic analysis of the measurement process and literature review, four
water quality parameters—namely, pH turbidity (TU), dissolved oxygen (DO) and oxygen
redox potential (ORP) were initially selected as auxiliary variables, all closely related to the
content of organic matter in water. Biological activities such as the growth and respiration
of organic matter can change the pH value of water bodies, and strong acidic and alkaline
environment are not suitable for the survival of organic matter. The magnitude of turbidity
is closely related to the concentration of organic pollutants in water. Dissolved oxygen
is closely related to the presence of microorganisms in water, thus affecting the content
of organic matter; if the dissolved oxygen is insufficient, it will have an impact on the
physiological activities of microorganisms, while an excessively high concentration may
also lead to excessive decomposition of organic pollutants, resulting in a lack of nutrients.
Redox potential is a comprehensive reflection of redox reaction, and the change in ORP
is directly related to the species of microorganisms and their respiration. In summary,
the dominant variable of the water quality parameter model is COD, and the auxiliary
variables are pH, TU, DO and ORP.

Correlation analysis is a statistical analysis method used to study the correlation be-
tween two or more random variables in the same status. At present, there are three kinds
of correlation coefficients used to express the correlation between variables: Pearson’s cor-
relation coefficient, Spearman’s correlation coefficient, and Kendall’s correlation coefficient.
The correlation coefficient can be used to reflect the direction and degree of the changing
trend between the two variables. Its value ranges from −1 to 1, with 0 indicating that the
two variables are not related. Positive values indicate positive correlation, while negative
values indicate negative correlation. The greater the absolute value of the correlation
coefficient, the stronger the correlation.

Through the analysis of the historical monitoring data, the applicable conditions of
Pearson’s correlation coefficient are satisfied, and the correlation analysis is performed us-
ing MATLAB software. Pearson’s correlation, also known as product difference correlation,
was proposed by the British statistician Pearson in the 20th century [17]. It is a method used
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to calculate linear correlation. The equation for calculating Pearson’s correlation coefficient
is shown in Equation (1):

ρ(X, Y) =
cov(X, Y)
σX× σY

(1)

where cov(X, Y) is the covariance of the variable (X, Y), and σX and σY are their respective
standard deviations.

Correlation analysis includes two parts: the correlation analysis between dominant
variables and auxiliary variables and the correlation analysis between auxiliary parame-
ter variables.

(1) Study on the correlation between dominant variables and auxiliary variables:

In order to verify the correlation between COD and the four auxiliary variables, the
historical monitoring data covering these parameters were selected for correlation analysis.
Since there is no water quality monitoring project covering the selected five variables at the
same time, the two water quality monitoring projects covering the most selected parameters
were selected, in which the monitoring parameters of item 1 included COD, TU, DO, ORP
and ammonia nitrogen (AN), while the monitoring parameters of item 2 included COD,
pH, TU, DO and electrical conductivity (EC). The correlation coefficients are shown in
Tables 1 and 2.

Table 1. Correlation coefficients of item 1.

TU DO ORP AN

COD −0.270611 −0.815111 −0.376139 0.077064

Table 2. Correlation coefficients of item 2.

pH TU DO EC

COD −0.368012 −0.712238 −0.715341 −0.830134

It can be seen from Tables 1 and 2 that COD has a high correlation with the four
auxiliary variables of primary selection. In addition, it also has a high correlation with EC,
but a low correlation with AN.

(2) Study on the correlation between auxiliary parameter variables:

In order to further adjust the auxiliary parameters of the water quality parameter
model, the correlation between the selected auxiliary variables was also analyzed. If
the correlation between the auxiliary variables is strong, it shows that there is duplicate
information between the auxiliary variables, and the number of auxiliary variables can
be reduced. Selecting the historical monitoring data of project 2, and carrying on the
correlation analysis to the auxiliary variable parameters, we can obtain the correlation
coefficients shown in Table 3.

Table 3. Correlation coefficients between auxiliary variables.

DO ORP TU

DO 1 0.809963 0.417029
ORP 0.809963 1 0.318108
TU 0.417029 0.318108 1

It can be seen from the table that the correlation between ORP and DO is very high,
indicating that they contain a lot of repetitive information. At the same time, considering
external factors such as economic conditions and the degree of difficulty of maintenance,
the auxiliary variables of the water quality parameter model can be adjusted to pH, TU,
DO and EC.
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2.2. Data Conversion

To better elucidate the role of each water quality parameter in the soft sensor model,
standardization of the raw data is necessary. This is because the auxiliary variable pa-
rameters all have different magnitudes and magnitude units, which can complicate the
interpretation of the results since they are not measured on the same scale. Data stan-
dardization can mitigate the influence of different units and makes it possible to compare
different water quality parameters [18]. In this article, we employ and improve on the
min-max standardization technique by transforming the mapping interval to [−1, +1].

2.3. Implementation of the Water Quality Parameter Model

The establishment of a water quality parameter model is at the core of soft sensor
technology. Specifically, the mapping relationship between auxiliary variables and domi-
nant variables needs to be analyzed in order to build a soft measurement model for water
quality parameters. The establishment and offline training of the water quality parameter
model were implemented in MATLAB. The training steps of the water quality parameter
model are as follows:

1. Set chemical oxygen demand as the label, and eliminate the PH, TU, DO and EC data
of the original samples to form the training set;

2. Normalize the PH, TU, DO, and EC data;
3. Train the normalized data and corresponding labels to obtain water quality parame-

ter models.

3. Modeling Method
3.1. Water Quality Parameter Modeling Based on a BP Network

Considering the complexity and nonlinearity of water quality parameter measurement,
this study adopts a water quality parameter model based on a 3-layer BP neural network.
The basic components of this neural network include 1 input layer, 1 hidden layer and
1 output layer, with the input layer containing 4 neurons and the output layer containing
1 neuron [19–21]. The tansig function is selected as the transfer function from the input
layer to the hidden layer, whereas the purelin function is selected as the transfer function
from the hidden layer to the output layer. The mean square error (MSE) between the model
output and the desired output is used as the evaluation index to determine whether the
training requirements are met.

The original data used in this study were selected from the historical monitoring data
of the wireless water quality monitoring project of Zhongtian Ocean Systems Co. from
0:00 on 10 June 2019 to 11:00 on 19 June 2019, with a total of 338 sets of valid data points.
For the purposes of this study, the first 300 sets were selected for training the water
quality parameter model, whereas the last 38 groups were used as the validation set for
simulation analysis.

In order to determine the optimal number of neurons in the hidden layer and the
optimal learning algorithm of the BP neural network model, neural network models
with different structures were designed to help determine the training process parameters.
According to the previous analysis of BP neural network learning algorithms, three different
learning algorithms-gradient descent method (TrainGD), adaptive learning rate momentum
gradient descent method (TrainGDX) and the Levenberg-Marquardt method (TrainLM)
were selected. At the same time, the number of neurons in the hidden layer was adjusted
continuously, and the maximum number of iterations (ep) of the training parameters of
the model alone with the mean square error (MSE) of the sample data, were observed. The
number of neurons in the different hidden layers and the corresponding iterative times and
errors of the learning algorithms, are shown in Table 4.
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Table 4. The number of neurons in different hidden layers and the corresponding iterative times and
errors of the learning algorithms.

5 6 7 8
ep MSE ep MSE ep MSE ep MSE

TrainGD 1000 0.00828 1000 0.0129 1000 0.0115 1000 0.00537
TrainGDX 124 0.00876 127 0.00502 45 0.0314 167 0.00252
TrainLM 12 0.00116 17 0.000961 12 0.00302 10 0.000989

9 10 11 12
ep MSE ep MSE ep MSE ep MSE

TrainGD 1000 0.00838 1000 0.0104 1000 0.0124 1000 0.0168
TrainGDX 173 0.00460 165 0.00411 162 0.00241 164 0.00341
TrainLM 8 0.000947 13 0.000994 4 0.000998 6 0.000954

It can be seen from Table 4 that the convergence speed of the gradient descent method
is too slow to achieve the desired target error within the specified maximum number
of iterations. Although the adaptive learning rate momentum gradient descent method
can achieve the desired target error within the specified maximum number of iterations,
compared with the Levenberg–Marquardt algorithm, the required number of iterations
for training is increased and the training error is obviously greater, indicating that the LM
learning algorithm is more suitable for this model. The number of neurons in the hidden
layer of the model was set as 9, and Levenberg–Marquardt was selected as the learning
algorithm. A schematic representation of the static water quality parameter model based
on the BP neural network (SWQM) is presented in Figure 1.
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Figure 1. The SWQM model.

The 300 sets of training data were proportionally divided into a training set (70%),
validation set (15%) and test set (15%) for model training. As shown in the Figure 2, after
8 epochs, the mean squared error met the requirements and the model stopped training.

As shown in the Figure 3, the correlation coefficients between the output results of the
training set, validation set and test set of the SWQM model and the expected output were
0.98449, 0.98061, and 0.98575, respectively. For the entire training example, the correlation
coefficient between the output results and the expected output was 0.98382.



J. Mar. Sci. Eng. 2022, 10, 683 6 of 16J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

Figure 2. Training error curve of the SWQM model. 

As shown in the Figure 3, the correlation coefficients between the output results of 

the training set, validation set and test set of the SWQM model and the expected output 

were 0.98449, 0.98061, and 0.98575, respectively. For the entire training example, the cor-

relation coefficient between the output results and the expected output was 0.98382. 

 

Figure 3. Correlation coefficient curves of the SWQM model. 

To increase the estimation accuracy of chemical oxygen demand and make full use 

of the limited data, we added the changes of in PH, TU, DO and EC as auxiliary variables 

based on the original auxiliary variables. For the dominant variable parameters, the BP 

neural network was selected as the modeling algorithm, and a dynamic water quality pa-

rameter model based on the BP neural network (DWQM) was further proposed. X2, X4, 

X6 and X8 are the D-values between the current dataset and the previous dataset. 

Figure 2. Training error curve of the SWQM model.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

Figure 2. Training error curve of the SWQM model. 

As shown in the Figure 3, the correlation coefficients between the output results of 

the training set, validation set and test set of the SWQM model and the expected output 

were 0.98449, 0.98061, and 0.98575, respectively. For the entire training example, the cor-

relation coefficient between the output results and the expected output was 0.98382. 

 

Figure 3. Correlation coefficient curves of the SWQM model. 

To increase the estimation accuracy of chemical oxygen demand and make full use 

of the limited data, we added the changes of in PH, TU, DO and EC as auxiliary variables 

based on the original auxiliary variables. For the dominant variable parameters, the BP 

neural network was selected as the modeling algorithm, and a dynamic water quality pa-

rameter model based on the BP neural network (DWQM) was further proposed. X2, X4, 

X6 and X8 are the D-values between the current dataset and the previous dataset. 

Figure 3. Correlation coefficient curves of the SWQM model.

To increase the estimation accuracy of chemical oxygen demand and make full use of
the limited data, we added the changes of in PH, TU, DO and EC as auxiliary variables
based on the original auxiliary variables. For the dominant variable parameters, the BP
neural network was selected as the modeling algorithm, and a dynamic water quality
parameter model based on the BP neural network (DWQM) was further proposed. X2,
X4, X6 and X8 are the D-values between the current dataset and the previous dataset.
After the data have been normalized, the D-values can be directly input into the neural
network model. It should be noted that in order to ensure the uniformity of the D-value, the
training set data must be input into the neural network from the second group. A schematic
representation of the model structure is shown in the following Figure 4.
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The Figure 5 below show the offline training of the DWQM model. After 13 epochs,
the mean square error of the model met the requirements, and the model stopped training.
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As shown in Figure 6, the correlation coefficients between the output results of the
training set, validation set and test set of the DWQM model and the expected output were
0.98598, 0.98769, and 0.98464, respectively. The output results of the entire training sample
had a correlation coefficient of 0.98597 with the expected output.
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The mean relative error (MRE) and the absolute coefficient R2 were selected as the
evaluation indicators for the estimation ability of the water quality parameter model. The
equation for calculating the average relative error is as follows:

MRE =
1
m

m

∑
1

|xi − x̂i|
xi

(2)

where xi is the measured value, x̂i is the estimated value, and m is the number of sam-
ple data.

The equation for calculating the coefficient of determination is as follows:

R2 =
SSR
SST

= 1− SSE
SST

(3)

where SST = SSR + SSE, SST is the total sum of squares, SSR is the regression sum of
squares, and SSE is the residual sum of squares. The smaller the MRE, the closer R2 is to 1
and the better estimation accuracy of the model.

The last 38 groups of data were used to test the simulation and estimation accuracy of
the model. The simulation results of the SWQM model are shown in Figure 7. The average
relative error MRE = 9.45% and the absolute coefficient R2 = 0.8918.
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The simulation results of the DWQM model are shown in Figure 8. The average
relative error MRE = 8.21% and the absolute coefficient R2 = 0.9110.
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It can be seen from the simulation results that both the SWQM model and the DWQM
model can estimate the changing trend of chemical oxygen demand. Compared with the
SWQM model, the DWQM model shows smaller average relative error (MRE) and a larger
absolute coefficient, indicating that the improved model is more suitable for the numerical
estimation of COD.
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3.2. Water Quality Parameter Model Based on Combined Prediction

To further improve the estimation accuracy of the water quality parameter model,
a combination of multiple modeling methods should be adopted. The water quality
parameter model based on a BP neural network only considers the influence of other water
quality parameters on chemical oxygen demand in the same time dimension, but ignores
the influence of water quality parameters in the previous stage—such as chemical oxygen
demand and other water quality parameters—on the current oxygen demand value. The
analysis of the simulation results of the water quality parameter model based on the BP
neural network shows that significant changes in the chemical oxygen demand value can
increase the chemical oxygen demand estimation error, indicating that the water quality
parameter model based on the BP neural network is relatively robust to fluctuations in the
water quality state. The water COD value shows good estimation accuracy, but when there
are great changes in the water environment, a single prediction model can no longer meet
the estimation needs. Instead, a prediction method based on time-series analysis needs
to be supplemented—with trend forecasting performed to revise the final COD estimate.
A schematic diagram of the water quality parameter model based on combined prediction
is shown in Figure 9.
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Specifically, the water quality parameter model based on the BP neural network com-
pletes offline training using a large amount of historical monitoring data, and undertakes
the main prediction task of the combined prediction model. Meanwhile, the water quality
parameter model based on a support vector machine (SVM) is trained online in real time
using the water quality data collected on the previous day to perform auxiliary correction
on the prediction results. When the water quality changes significantly, greater weight is
given to the estimated value of the water quality parameter model based on the SVM in
the combined prediction model. The equation for calculating the chemical oxygen demand
of the combined prediction model is as follows:

COD = (1−α) ∗ CODBP + α ∗ CODSVM (4)

where CODBP is the estimated value of the COD of the water quality parameter model
based on the BP neural network, CODSVM is the estimated value of the COD of the water
quality parameter model based on the SVM, and α is the correction coefficient. According
to the chemical oxygen demand of the water quality parameter model based on the BP
neural network, the estimated value of oxygen demand and the measured value of chemical
oxygen demand are adjusted in real time.

The offline training of the water quality parameter model based on combined predic-
tion is shown in the Figure 10. After 24 epochs, the mean square error of the water quality
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parameter model based on combined prediction meets the requirements, and the model
stops training.
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As shown in the Figure 11, the correlation coefficients between the output results of
the training set, validation set and test set of the CWQM model and the expected output
are 0.99153, 0.99215, and 0.98915. For the entire training example, the correlation coefficient
between the output results and the expected output is 0.99048.
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As shown in the Figure 12, the simulation results of the water quality parameter model
based on combined prediction indicate an average relative error (MRE) of 6.13% and an
absolute coefficient of 0.9605. Compared with the two water quality parameter models
based on the BP neural network, the average relative error (MRE) is further reduced, and
the absolute coefficient R2 is also improved.
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4. Experimental Validation

The hardware circuit of this paper was designed according to the experimental re-
quirements and was divided into functional modules. The Figures 13 and 14 show the
hardware circuit architecture of the COD online estimation system, which is divided into
five functional modules.
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The machine monitoring interface runs on a remote client terminal and is the upper
computer software program of the COD online estimation system. It is responsible for
receiving the data uploaded by the lower computer, calling the water quality parameter
model and carrying out the online estimation of COD values.

In July 2019, to verify the availability and stability of the COD measurement technology
based on the multi-parameter coupled analysis method, we went to Yunhu, in the city of
Nantong to conduct a one-week lake experiment using the COD online estimation system.
The field test work is shown in Figure 15.
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Figure 15. Lake experiment.

Through the pre-test experiment on the first day, it was found that under normal
circumstances, there is little change in the water quality environment. To ensure a certain
degree of volatility in the collected data, the measurement frequency of the system was set
to 2 h, the test time was from 08:00 to 18:00 and continuous measurement was performed
for 6 days. Altogether, a total of 36 sets of data were obtained. Then the measured values
of the hardware sensor were compared with the estimated value of the system, and a
line graph was drawn in Figure 16. The experimental results show that the COD online
estimation system can accurately measure the trend of chemical oxygen demand in the
target water environment and meets the design requirements of the system. Moreover, it
provides a basis for the online calibration of portable COD sensors, prolongs the manual
maintenance cycle, and effectively reduces the use cost.

The lake experiment results show that the COD online estimation system is reliable
and stable, even during long service hours. The overall relative error of the 36 datasets
was 6.97%, and the absolute coefficient was 0.9393, both of which indicate high estimation
accuracy. Altogether, 33 groups of data fall within the relative error, with only 1 dataset
exceeding the error range (i.e., data efficiency higher than 90%). Collectively, these results
demonstrate that the online system is highly reliable.
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5. Summary and Discussion

This paper proposes a COD measurement technology based on the multiparameter
coupling analysis method and designs a COD online estimation system. The COD mea-
surement technology based on the multi-parameter coupled analysis method proposed in
this paper provides a low-cost, real-time method for the monitoring of chemical oxygen
demand in natural water. It can be used with COD hardware sensors to extend the manual
maintenance period and reduce the cost of use.

There are a number of advantages associated with the use of the water quality param-
eter model as the method of measurement of chemical oxygen demand, including strong
environmental adaptability, a long maintenance period and low cost of use. Furthermore,
the model is especially suitable for monitoring the needs of complex water environment
and high labor maintenance costs, such as when the outdoor monitoring conditions are
poor and the monitoring points are scattered. Compared with existing online water quality
monitoring systems, the combination of the hardware sensors and control circuits of the
monitoring nodes and the soft measurement modeling method is more tailored to such
monitoring activities.

Despite such promising findings, some limitations of our study must be duly ac-
knowledged. Due to limited sample data, the water quality parameter model can only
be estimated accurately over a short period of time. Estimation errors increase when
the time exceeds 1 month. Therefore, soft measurement cannot completely replace the
hardware sensors but can only serve as an auxiliary measurement technique by prolong-
ing the manual maintenance cycle of the hardware sensor, and reducing the cost of use.
In future research, long term sample datasets should be collected. Based on changes in
water quality, the datasets can be divided into multiple sub-sample datasets of different
periods, and the modeled and estimated separately. Through more targeted sample data,
the effective estimation period of the water quality parameter model can be extended, the
maintenance period of the hardware sensor can be further extended, and the cost of use
can be further reduced.

A second direction worth pursing in future research pertains to the generalizability of
the system. If a soft measurement system is only developed for a specific measurement
process and specific measurement conditions, the application of the system to other different
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working environments will be difficult, and will incur huge costs. In future research,
multiple sample data on water quality parameters should be collected so that a basic
estimation model of each water system can be established. In practical applications, only
a small number of water quality parameter data of the target water body needs to be
collected, and a similar basic estimation model can be further trained via techniques such as
transfer learning to obtain the final estimation model. This can reduce repetitive modeling
and improve system performance.

In addition, more attempts can be implemented on modeling methods, such as using
emerging technologies for soft sensor modeling, or establishing soft sensor models with
better performance. It is also a worthwhile pursuit to try to apply some of the latest research
results to the modeling of soft sensors in order to further solve practical needs.
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